TWINING CHARACTERS AND KOSTANT'S HOMOLOGY FORMULA

Satoshi Naito

(Received April 17, 2001)

Abstract

Let \mathfrak{g} be a symmetrizable generalized Kac-Moody algebra and \mathfrak{n}_{-}the sum of all its negative root spaces. We obtain a formula for the twining characters of the Lie algebra homology modules of \mathfrak{n} - with coefficients in the irreducible highest weight \mathfrak{g}-module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ. This formula gives a new (and convincing) proof of the formula for the twining character of $L(\Lambda)$ above.

Introduction. In [FSS] and [FRS], Fuchs, Schweigert, et al. introduced a new type of character-like quantities, called twining characters, corresponding to a Dynkin diagram automorphism for certain highest weight modules over a symmetrizable (generalized) Kac-Moody algebra \mathfrak{g}. Moreover, they gave a formula (see Theorem 2.2.1) for the twining character of an irreducible highest weight \mathfrak{g}-module $L(\Lambda)$ of symmetric, dominant integral highest weight Λ.

In this paper, we give a new proof of this result of theirs. In our proof, we use an extension of Kostant's homology formula to generalized Kac-Moody algebras in [N2] to obtain a formula for the twining characters of the Lie algebra homology modules $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$, $j \geq 0$, of \mathfrak{n}_{-}with coefficients in $L(\Lambda)$, where \mathfrak{n}_{-}is the sum of all negative root spaces of \mathfrak{g}. Then, by an Euler-Poincaré principle, we get the twining character formula for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ.

This new proof will give us a satisfactory explanation of why we need the subgroup \tilde{W} of the Weyl group W consisting of elements which commute with the Dynkin diagram automorphism.

This paper is organized as follows. In Section 1, we recall the definition of a generalized Kac-Moody algebra and fix our notation. Furthermore, we review an extension of Kostant's homology formula to generalized Kac-Moody algebras in [N2]. In Section 2, following [FSS] and [FRS], we review the definition of a twining character and the twining character formula for $L(\Lambda)$.

Section 3 is the main part of this paper. There we show a formula for the twining characters of the Lie algebra homology modules $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), j \geq 0$, and then give a new proof of the twining character formula for $L(\Lambda)$.

1. Preliminaries and notation.

1.1. Generalized Kac-Moody algebras. Let $I=\{1,2, \ldots, n\}$ be a finite index set, and let $A=\left(a_{i j}\right)_{i, j \in I}$ be an $n \times n$ real matrix satisfying:

[^0](C1) either $a_{i i}=2$ or $a_{i i} \leq 0$ for all $i \in I$;
(C2) $\quad a_{i j} \leq 0$ if $i \neq j \in I$, and $a_{i j} \in \boldsymbol{Z}$ for $j \neq i$ if $a_{i i}=2$;
(C3) $a_{i j}=0$ if and only if $a_{j i}=0$ for $i, j \in I$.
Such a matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is called a generalized GCM (GGCM). In this paper, following [K], we define a generalized Kac-Moody algebra (GKM algebra) \mathfrak{g} over \boldsymbol{C} to be the contragredient Lie algebra $\mathfrak{g}(A)$ associated to a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$. Let \mathfrak{h} be the Cartan subalgebra and e_{i}, f_{i} for $i \in I$ the Chevalley generators. Let $\Delta_{+} \subset \mathfrak{h}^{*}:=\operatorname{Hom}_{\boldsymbol{C}}(\mathfrak{h}, \boldsymbol{C})$ be the set of positive roots, $\Delta_{-}=-\Delta_{+}$the set of negative roots, and \mathfrak{g}_{α} the root space of \mathfrak{g} corresponding to a $\operatorname{root} \alpha \in \Delta=\Delta_{-} \sqcup \Delta_{+}$. We set
\[

$$
\begin{equation*}
\mathfrak{n}_{ \pm}:=\bigoplus_{\alpha \in \Delta_{ \pm}} \mathfrak{g}_{\alpha}, \quad \mathfrak{b}:=\mathfrak{h} \oplus \mathfrak{n}_{+} \tag{1.1.1}
\end{equation*}
$$

\]

We denote by $\Pi=\left\{\alpha_{i} \mid i \in I\right\}$ the set of simple roots, and by $\Pi^{\vee}=\left\{h_{i} \mid i \in I\right\}$ the set of simple coroots. We set $I^{\text {re }}:=\left\{i \in I \mid a_{i i}=2\right\}, I^{\text {im }}:=\left\{i \in I \mid a_{i i} \leq 0\right\}$, and call $\Pi^{\mathrm{re}}:=\left\{\alpha_{i} \in \Pi \mid i \in I^{\mathrm{re}}\right\}$ the set of real simple roots, $\Pi^{\mathrm{im}}:=\left\{\alpha_{i} \in \Pi \mid i \in I^{\mathrm{im}}\right\}$ the set of imaginary simple roots. Note that $\mathfrak{g}_{\alpha_{i}}=\boldsymbol{C} e_{i}, \mathfrak{g}_{-\alpha_{i}}=\boldsymbol{C} f_{i}$ for all $i \in I$.

The Weyl group W of the GKM algebra \mathfrak{g} is defined by

$$
\begin{equation*}
W:=\left\langle r_{i} \mid i \in I^{\mathrm{re}}\right\rangle \subset G L\left(\mathfrak{h}^{*}\right), \tag{1.1.2}
\end{equation*}
$$

where $r_{i} \in G L\left(\mathfrak{h}^{*}\right)$ for $i \in I^{\mathrm{re}}$ is the simple reflection of \mathfrak{h}^{*}. The length function of the Coxeter system ($W,\left\{r_{i} \mid i \in I^{\mathrm{re}}\right\}$) is denoted by

$$
\begin{equation*}
\ell: W \rightarrow \boldsymbol{Z} \tag{1.1.3}
\end{equation*}
$$

Throughout this paper, we assume that a GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ is symmetrizable, i.e., that there exist a diagonal matrix $D=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ with $\varepsilon_{i}>0$ for all $i \in I$ and a symmetric matrix $B=\left(b_{i j}\right)_{i, j \in I}$ such that $A=D B$. Hence there exists a nondegenerate, symmetric, invariant bilinear form $(\cdot \cdot)$ on $\mathfrak{g}=\mathfrak{g}(A)$. The restriction of this bilinear form $(\cdot \mid \cdot)$ to \mathfrak{h} is again nondegenerate, so that it induces a nondegenerate, symmetric, W-invariant bilinear form on \mathfrak{h}^{*}, which is also denoted by $(\cdot \|)$.
1.2. Kostant's homology formula. For $\lambda \in \mathfrak{h}^{*}$, let

$$
\begin{equation*}
M(\lambda):=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \boldsymbol{C}(\lambda) \tag{1.2.1}
\end{equation*}
$$

be the Verma module of highest weight λ over \mathfrak{g}, where $U(\mathfrak{a})$ denotes the universal enveloping algebra of a Lie algebra \mathfrak{a} and $\boldsymbol{C}(\lambda)$ is the one-dimensional (irreducible) \mathfrak{h}-module of weight λ on which \mathfrak{n}_{+}acts trivially. We then define a \mathfrak{g}-module $L(\lambda)$ to be the unique irreducible quotient of $M(\lambda)$, that is,

$$
\begin{equation*}
L(\lambda):=M(\lambda) / J(\lambda), \tag{1.2.2}
\end{equation*}
$$

where $J(\lambda)$ is the unique maximal proper submodule of $M(\lambda)$.
Let

$$
\begin{equation*}
P_{+}:=\left\{\Lambda \in \mathfrak{h}^{*} \mid \Lambda\left(h_{i}\right) \geq 0 \text { for all } i \in I, \text { and } \Lambda\left(h_{i}\right) \in \boldsymbol{Z} \text { if } a_{i i}=2\right\} \tag{1.2.3}
\end{equation*}
$$

be the set of dominant integral weights. We denote by $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), j \geq 0$, the Lie algebra homology modules of \mathfrak{n}_{-}with coefficients in $L(\Lambda)$ for $\Lambda \in P_{+}$. Recall from [GL] that, for $j \geq 0$, the $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is defined to be the j-th homology of the chain complex $\left\{C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right), d_{j}\right\}_{j \geq 0}$ with $C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right):=\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$, where $\bigwedge^{j} \mathfrak{n}_{-}$denotes the j-th exterior power of \mathfrak{n}_{-}. Note that the boundary operator $d_{j}: C_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow$ $C_{j-1}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ commutes with the action of \mathfrak{h}, and hence $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is an \mathfrak{h}-module in the usual way.

In order to state an extension of Kostant's homology formula to GKM algebras, we introduce some notation. Let $i \neq j \in I^{\mathrm{im}}$ and $\Lambda \in P_{+}$. Two distinct imaginary simple roots α_{i} and α_{j} are said to be pairwise perpendicular if $a_{i j}=0=a_{j i}$, and an imaginary simple root α_{i} is said to be perpendicular to Λ if $\Lambda\left(h_{i}\right)=0$. We denote by $\mathcal{S}(\Lambda)$ the set of sums of distinct, pairwise perpendicular, imaginary simple roots perpendicular to Λ. In addition, for an element $\beta=\sum_{i \in I^{\text {im }}} k_{i} \alpha_{i} \in \mathcal{S}(\Lambda)$, we set $\operatorname{ht}(\beta):=\sum_{i \in I^{\text {im }}} k_{i} \in \boldsymbol{Z}_{\geq 0}$ (note that $k_{i}=0,1$ for all $i \in I^{\text {im }}$ by the definition of $\mathcal{S}(\Lambda)$). Now we take and fix an element $\rho \in \mathfrak{h}^{*}$ (called a Weyl vector) such that $\rho\left(h_{i}\right)=(1 / 2) \cdot a_{i i}$ for all $i \in I$. For $(w, \beta) \in W \times \mathcal{S}(\Lambda)$, we set

$$
\begin{equation*}
(w, \beta) \circ \Lambda:=w(\Lambda+\rho-\beta)-\rho . \tag{1.2.4}
\end{equation*}
$$

We know from [N 2 , Propositions 3.2, 3.3, and Theorem 5.3] the following theorem.
THEOREM 1.2.1. Let $\Lambda \in P_{+}$and $j \in \mathbf{Z}_{\geq 0}$.
(1) We have the following isomorphism of \mathfrak{h}-modules:

$$
H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \cong \bigoplus_{\substack{(w, \beta) \in W \times \mathcal{S}(\Lambda) \\ \ell(w)+h t(\beta)=j}} \boldsymbol{C}((w, \beta) \circ \Lambda)
$$

Here the sum above is a direct sum of inequivalent irreducible \mathfrak{h}-modules, i.e., the weights $(w, \beta) \circ \Lambda$ for $(w, \beta) \in W \times \mathcal{S}(\Lambda)$ with $\ell(w)+\operatorname{ht}(\beta)=j$ are all distinct.
(2) If we set $\mu:=(w, \beta) \circ \Lambda$ for $(w, \beta) \in W \times \mathcal{S}(\Lambda)$ with $\ell(w)+\operatorname{ht}(\beta)=j$, then the multiplicities of $\mu(=$ the dimensions of the μ-weight space $)$ in the \mathfrak{h}-modules $\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}}$ $L(\Lambda)$ and $\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)$ are both equal to one.

Here we recall from the proof of [N 2 , Proposition 3.3] the construction of a nonzero weight vector $v_{(w, \beta)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$ of weight $\mu=(w, \beta) \circ \Lambda$ in part (2) of Theorem 1.2.1. First, we note that $w(\rho)-\rho=-\sum_{\alpha \in \Delta_{w}} \alpha$ and that the number of elements of the set Δ_{w} equals $\ell(w)$, where $\Delta_{w}:=\left\{\alpha \in \Delta_{+} \mid w^{-1}(\alpha) \in \Delta_{-}\right\}$. Second, we write β in the form $\beta=\sum_{k=1}^{m} \alpha_{i_{k}}$, where $m=\operatorname{ht}(\beta), \alpha_{i_{k}} \in \Pi^{\mathrm{im}}$, and $i_{r} \neq i_{t}$ for $1 \leq r \neq t \leq m$. Now we take nonzero root vectors $F_{k} \in \mathfrak{g}_{-w\left(\alpha_{i_{k}}\right)}$ for $1 \leq k \leq m, F_{\alpha} \in \mathfrak{g}_{-\alpha}$ for $\alpha \in \Delta_{w}$, and a nonzero weight vector $v_{w(\Lambda)} \in L(\Lambda)_{w(\Lambda)}$ of weight $w(\Lambda)$. Then we set

$$
\begin{equation*}
v_{(w, \beta)}:=\left(F_{1} \wedge \cdots \wedge F_{m}\right) \wedge\left(\bigwedge_{\alpha \in \Delta_{w}} F_{\alpha}\right) \otimes v_{w(\Lambda)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda) \tag{1.2.5}
\end{equation*}
$$

We see that the vector $v_{(w, \beta)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$ is nonzero, and of weight $\mu=(w, \beta) \circ \Lambda$, since

$$
\begin{aligned}
\mu & =w(\Lambda+\rho-\beta)-\rho \\
& =-w(\beta)+(w(\rho)-\rho)+w(\Lambda) \\
& =\sum_{k=1}^{m}\left(-w\left(\alpha_{i_{k}}\right)\right)+\sum_{\alpha \in \Delta_{w}}(-\alpha)+w(\Lambda)
\end{aligned}
$$

We deduce from Theorem 1.2.1 that the image $\bar{v}_{(w, \beta)}$ of the vector $v_{(w, \beta)} \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}}$ $L(\Lambda)$ of weight μ by the natural quotient map ${ }^{-}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \rightarrow H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is nonzero, and hence that the μ-weight space $\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{\mu}$ of $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is spanned by the vector $\bar{v}_{(w, \beta)}$:

$$
\begin{equation*}
\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{\mu}=\boldsymbol{C} \bar{v}_{(w, \beta)} \tag{1.2.6}
\end{equation*}
$$

2. Twining character formula for $L(\Lambda)$.

2.1. Twining characters. We recall the definition of the twining character of a certain highest weight module, following [FRS] and [FSS] (see also [N4]).

Let $A=\left(a_{i j}\right)_{i, j \in I}$ be a symmetrizable GGCM indexed by a finite set I. A bijection $\omega: I \rightarrow I$ such that

$$
\begin{equation*}
a_{\omega(i), \omega(j)}=a_{i j} \quad \text { for all } i, j \in I \tag{2.1.1}
\end{equation*}
$$

is called a (Dynkin) diagram automorphism, since such an ω induces an automorphism of the Dynkin diagram of the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ as a graph. Let N be the order of $\omega: I \rightarrow I$, and N_{i} the number of elements of the ω-orbit of $i \in I$ in I. We may (and will henceforth) assume that $\varepsilon_{\omega(i)}=\varepsilon_{i}$ for all $i \in I$ in the decomposition $A=D B$ with $D=\operatorname{diag}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ (see [N4, §3.1]).

The diagram automorphism $\omega: I \rightarrow I$ can be extended (cf. [FSS, §3.2] and [K, §2.2]) to an automorphism ω of order N of the GKM algebra $\mathfrak{g}=\mathfrak{g}(A)$ associated to the GGCM $A=\left(a_{i j}\right)_{i, j \in I}$ so that

$$
\begin{cases}\omega\left(e_{i}\right):=e_{\omega(i)} & \text { for } i \in I, \tag{2.1.2}\\ \omega\left(f_{i}\right):=f_{\omega(i)} & \text { for } i \in I, \\ \omega\left(h_{i}\right):=h_{\omega(i)} & \text { for } i \in I, \\ \omega(\mathfrak{h}):=\mathfrak{h}, & \\ (\omega(x) \mid \omega(y))=(x \mid y) & \text { for } x, y \in \mathfrak{g}\end{cases}
$$

Notice that the $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ extends to a unique algebra automorphism $\omega: U(\mathfrak{g}) \rightarrow U(\mathfrak{g})$ by

$$
\omega\left(x_{1} \cdots x_{k}\right)=\omega\left(x_{1}\right) \cdots \omega\left(x_{k}\right) \text { for } x_{1}, \ldots, x_{k} \in \mathfrak{g}
$$

We call these two automorphisms ω also diagram automorphisms by abuse of notation.

The restriction of the diagram automorphism $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ to the Cartan subalgebra \mathfrak{h} induces a transposed map $\omega^{*}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*}$ by

$$
\begin{equation*}
\omega^{*}(\lambda)(h):=\lambda(\omega(h)) \quad \text { for } \lambda \in \mathfrak{h}^{*}, h \in \mathfrak{h} . \tag{2.1.3}
\end{equation*}
$$

We set

$$
\begin{equation*}
\left(\mathfrak{h}^{*}\right)^{0}:=\left\{\lambda \in \mathfrak{h}^{*} \mid \omega^{*}(\lambda)=\lambda\right\}, \tag{2.1.4}
\end{equation*}
$$

and call an element of $\left(\mathfrak{h}^{*}\right)^{0}$ a symmetric weight. Note that we may (and will henceforth) assume that the Weyl vector ρ is a symmetric weight, i.e.,

$$
\begin{equation*}
\omega^{*}(\rho)=\rho . \tag{2.1.5}
\end{equation*}
$$

Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric weight, and let $V(\lambda)$ be either the Verma module $M(\lambda)$ or the irreducible highest weight module $L(\lambda)$ of highest weight λ. Then there exists a unique linear automorphism $\tau_{\omega}: V(\lambda) \rightarrow V(\lambda)$ such that

$$
\begin{equation*}
\tau_{\omega}(x v)=\omega^{-1}(x) \tau_{\omega}(v) \quad \text { for } x \in \mathfrak{g}, v \in V(\lambda) \tag{2.1.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau_{\omega}(v)=v \quad \text { for } v \in V(\lambda)_{\lambda}, \tag{2.1.7}
\end{equation*}
$$

where $V(\lambda)_{\lambda}$ is the (one-dimensional) highest weight space of $V(\lambda)$.
REMARK 2.1.1. Because $M(\lambda)=U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \boldsymbol{C}(\lambda)$ by definition, we can take the linear automorphism $\omega^{-1} \otimes \mathrm{id}: U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \boldsymbol{C}(\lambda) \rightarrow U(\mathfrak{g}) \otimes_{U(\mathfrak{b})} \boldsymbol{C}(\lambda)$ for $\tau_{\omega}: M(\lambda) \rightarrow M(\lambda)$ above. Moreover, since this map $\omega^{-1} \otimes \mathrm{id}: M(\lambda) \rightarrow M(\lambda)$ stabilizes the unique maximal proper submodule $J(\lambda)$ of $M(\lambda)$, we can take for $\tau_{\omega}: L(\lambda) \rightarrow L(\lambda)$ above the linear map $M(\lambda) / J(\lambda) \rightarrow M(\lambda) / J(\lambda)$ induced from $\omega^{-1} \otimes \mathrm{id}: M(\lambda) \rightarrow M(\lambda)$.

REMARK 2.1.2. Let V be an \mathfrak{h}-module admitting a weight space decomposition

$$
V=\bigoplus_{x \in \mathfrak{h}^{*}} V_{\chi}
$$

with finite-dimensional weight spaces V_{χ}, and let $f: V \rightarrow V$ be a linear map such that $f(h v)=\omega^{-1}(h) f(v)$ for $h \in \mathfrak{h}, v \in V$. Then it follows that

$$
f\left(V_{\chi}\right) \subset V_{\omega^{*}(\chi)}
$$

for all $\chi \in \mathfrak{h}^{*}$. Thus, we define a formal sum:

$$
\operatorname{Tr}_{V} f \exp :=\sum_{\chi \in\left(\mathfrak{h}^{*}\right)^{0}} \operatorname{Tr}\left(\left.f\right|_{V_{\chi}}\right) e(\chi),
$$

where $\operatorname{Tr}\left(\left.f\right|_{V_{\chi}}\right)$ for $\chi \in\left(\mathfrak{h}^{*}\right)^{0}$ denotes the trace of the restriction of f to the χ-weight space V_{χ} of V.

Let $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric weight. The twining character $\operatorname{ch}^{\omega}(V(\lambda))$ of $V(\lambda)$ $(=M(\lambda), L(\lambda))$ is then defined to be the formal sum

$$
\begin{equation*}
\operatorname{ch}^{\omega}(V(\lambda)):=\operatorname{Tr}_{V(\lambda)} \tau_{\omega} \exp =\sum_{\left.\chi \in(\mathfrak{h})^{*}\right)^{0}} \operatorname{Tr}\left(\left.\tau_{\omega}\right|_{V(\lambda)_{\chi}}\right) e(\chi) \tag{2.1.8}
\end{equation*}
$$

2.2. Twining character formula for $L(\Lambda)$. We review the twining character formula for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ, which is the main result of [FSS] and [FRS].

We choose a set of representatives \hat{I} of the ω-orbits in I, and then introduce the following subset of \hat{I} :

$$
\begin{equation*}
\breve{I}:=\left\{i \in \hat{I} \mid \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1,2\right\} . \tag{2.2.1}
\end{equation*}
$$

We define the following subgroup of the Weyl group W :

$$
\begin{equation*}
\tilde{W}:=\left\{w \in W \mid \omega^{*} w=w \omega^{*}\right\} \tag{2.2.2}
\end{equation*}
$$

We know from [FRS, Proposition 3.3] that the group \tilde{W} is a Coxeter group with the canonical generator system $\left\{w_{i} \mid i \in \breve{I}\right\}$, where for $i \in \breve{I}$,

$$
w_{i}:= \begin{cases}\prod_{k=0}^{N_{i} / 2-1}\left(r_{\omega^{k}(i)} r_{\omega^{k+N_{i} / 2}(i)} r_{\omega^{k}(i)}\right) & \text { if } \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1 \tag{2.2.3}\\ \prod_{k=0}^{N_{i}-1} r_{\omega^{k}(i)} & \text { if } \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=2\end{cases}
$$

Here we note that if $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1$, then N_{i} is an even integer. We denote the length function of the Coxeter system ($\tilde{W},\left\{w_{i} \mid i \in \breve{I}\right\}$) by

$$
\begin{equation*}
\hat{\ell}: \tilde{W} \rightarrow \boldsymbol{Z} \tag{2.2.4}
\end{equation*}
$$

We also recall from [FRS, Equation (1) on page 529] that for a symmetric weight $\lambda \in\left(\mathfrak{h}^{*}\right)^{0}$ and $i \in \breve{I}$,

$$
\begin{equation*}
w_{i}(\lambda)=\lambda-\frac{2 s_{i}\left(\lambda \mid \alpha_{i}\right)}{\left(\alpha_{i} \mid \alpha_{i}\right)} \sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)} \tag{2.2.5}
\end{equation*}
$$

where $s_{i}:=2 / \sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}$.
If $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ is a symmetric, dominant integral weight, then each element $\beta \in$ $\mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$ can be written in the form $\beta=\sum_{i \in \hat{I}} k_{i} \beta_{i}$, where $\beta_{i}:=\sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)} \in\left(\mathfrak{h}^{*}\right)^{0}$ and $k_{i}=0,1$ for $i \in \hat{I}$. For such a $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$, we set

$$
\begin{equation*}
\widehat{\mathrm{ht}}(\beta):=\sum_{i \in \hat{I}} k_{i} \tag{2.2.6}
\end{equation*}
$$

Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. We know from [FRS, Proposition 3.5] that for every $w \in \tilde{W}$,

$$
\begin{equation*}
w\left(\operatorname{ch}^{\omega}(L(\Lambda))\right)=\operatorname{ch}^{\omega}(L(\Lambda)) \tag{2.2.7}
\end{equation*}
$$

since the \mathfrak{g}-module $L(\Lambda)$ is integrable. Moreover, we have
THEOREM 2.2.1 ([FRS, Theorem 3.1]). Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. Then

$$
\begin{aligned}
& \sum_{w \in \tilde{W}}(-1)^{\hat{\ell}(w)+\widehat{\mathrm{ht}}(\beta)} e((w, \beta) \circ \Lambda) \\
& \operatorname{ch}^{\omega}(L(\Lambda))=\frac{\substack{w \in \tilde{W} \\
\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}{\sum_{\substack{w \in \tilde{W} \\
\beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)+\hat{\mathrm{ht}}(\beta)} e((w, \beta) \circ 0)} .
\end{aligned}
$$

3. Twining character formula for $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$.
3.1. Some lemmas. Since the inverse $\omega^{-1}: \mathfrak{g} \rightarrow \mathfrak{g}$ of the diagram automorphism $\omega: \mathfrak{g} \rightarrow \mathfrak{g}$ stabilizes \mathfrak{n}_{-}, i.e., $\omega^{-1}\left(\mathfrak{n}_{-}\right)=\mathfrak{n}_{-}$, it induces an algebra automorphism

$$
\bigwedge^{*} \omega^{-1}: \bigwedge^{*} \mathfrak{n}_{-} \rightarrow \bigwedge^{*} \mathfrak{n}_{-}
$$

of the exterior algebra $\bigwedge^{*} \mathfrak{n}_{-}$of \mathfrak{n}_{-}. The restriction of the $\bigwedge^{*} \omega^{-1}: \bigwedge^{*} \mathfrak{n}_{-} \rightarrow \bigwedge^{*} \mathfrak{n}_{-}$to each homogeneous subspace $\bigwedge^{j} \mathfrak{n}_{-}$for $j \geq 0$ is denoted by

$$
\bigwedge^{j} \omega^{-1}: \bigwedge^{j} \mathfrak{n}_{-} \rightarrow \bigwedge^{j} \mathfrak{n}_{-}
$$

Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $\tau_{\omega}: L(\Lambda) \rightarrow$ $L(\Lambda)$ be the linear automorphism in Section 2.1. We define a linear automorphism

$$
\begin{equation*}
\Phi:=\left(\bigwedge^{*} \omega^{-1}\right) \otimes \tau_{\omega}:\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \rightarrow\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \tag{3.1.1}
\end{equation*}
$$

and for $j \geq 0$, we define a linear automorphism

$$
\begin{equation*}
\Phi_{j}:=\left(\bigwedge^{j} \omega^{-1}\right) \otimes_{\tau_{\omega}}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \tag{3.1.2}
\end{equation*}
$$

REMARK 3.1.1. Let $j \geq 0$. It is easily seen that

$$
\Phi_{j}(h v)=\omega^{-1}(h) \Phi_{j}(v)
$$

for $h \in \mathfrak{h}$ and $v \in\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$. It also follows that for $h \in \mathfrak{h}$ and $v \in\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$,

$$
\Phi(h v)=\omega^{-1}(h) \Phi(v)
$$

The follwing lemma immediately follows from the definitions of d_{j} and $\Phi_{j}, j \geq 0$.

LEMMA 3.1.2. We have the following commutative diagram for each $j \geq 0$:

$$
\begin{array}{cc}
\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \xrightarrow{\Phi_{j}}\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \\
d_{j} \downarrow \\
\left(\bigwedge^{j-1} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \xrightarrow[\Phi_{j-1}]{ }\left(\bigwedge^{j-1} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)
\end{array}
$$

where $d_{j}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j-1} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$ is the boundary operator in Section 1.2.

By Lemma 3.1.2, the linear automorphism $\Phi_{j}:\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda) \rightarrow\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$ induces in the usual way a linear automorphism

$$
\begin{equation*}
\bar{\Phi}_{j}: H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \tag{3.1.3}
\end{equation*}
$$

for $j \geq 0$. Notice that for $j \geq 0$ and $h \in \mathfrak{h}, v \in H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$,

$$
\begin{equation*}
\bar{\Phi}_{j}(h v)=\omega^{-1}(h) \bar{\Phi}_{j}(v) \tag{3.1.4}
\end{equation*}
$$

by Remark 3.1.1.
Now we state an easy but useful lemma, which will be often used later. Let V and V^{\prime} be \mathfrak{h}-modules which decompose into a direct sum of finite-dimensional weight spaces:

$$
V=\bigoplus_{\chi \in \mathfrak{h}^{*}} V_{\chi} \quad \text { and } \quad V^{\prime}=\bigoplus_{\chi \in \mathfrak{h}^{*}} V_{\chi}^{\prime}
$$

We further assume that there exist linear automorphisms $\tau_{\omega}: V \rightarrow V$ and $\tau_{\omega}^{\prime}: V^{\prime} \rightarrow V^{\prime}$ such that for $h \in \mathfrak{h}$,

$$
\tau_{\omega}(h v)=\omega^{-1}(h) \tau_{\omega}(v) \text { for } v \in V, \text { and } \quad \tau_{\omega}^{\prime}(h v)=\omega^{-1}(h) \tau_{\omega}^{\prime}(v) \text { for } v \in V^{\prime}
$$

Then the linear automorphism

$$
\tau_{\omega} \otimes \tau_{\omega}^{\prime}: V \otimes_{\boldsymbol{C}} V^{\prime} \rightarrow V \otimes_{\boldsymbol{C}} V^{\prime}
$$

obviously satisfies

$$
\left(\tau_{\omega} \otimes \tau_{\omega}^{\prime}\right)(h v)=\omega^{-1}(h)\left(\tau_{\omega} \otimes \tau_{\omega}^{\prime}\right)(v)
$$

for $h \in \mathfrak{h}$ and $v \in V \otimes_{\boldsymbol{C}} V^{\prime}$. We can easily show
Lemma 3.1.3. In the notation above, we have

$$
\operatorname{Tr}_{V \otimes V^{\prime}}\left(\tau_{\omega} \otimes \tau_{\omega}^{\prime}\right) \exp =\left(\operatorname{Tr}_{V} \tau_{\omega} \exp \right) \cdot\left(\operatorname{Tr}_{V^{\prime}} \tau_{\omega}^{\prime} \exp \right)
$$

3.2. Main result. We define the twining character $\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)$ of the Lie algebra homology module $H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ for each $j \geq 0$ by

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right):=\operatorname{Tr}_{H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)} \bar{\Phi}_{j} \exp , \tag{3.2.1}
\end{equation*}
$$

where $\bar{\Phi}_{j}: H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right) \rightarrow H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)$ is as in Section 3.1.

Proposition 3.2.1. Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $j \geq 0$. Then

$$
\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)=\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{H}^{*}\right)^{0} \\ \ell(w)+\mathrm{ht}(\beta)=j}} c_{(w, \beta)} e((w, \beta) \circ \Lambda),
$$

where the scalar $c_{(w, \beta)} \in \boldsymbol{C}$ is defined by

$$
c_{(w, \beta)}:=\operatorname{Tr}\left(\left.\bar{\Phi}_{j}\right|_{\left.\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{(w, \beta)\lrcorner \Lambda}\right)}\right)
$$

Proof. Let $w \in W$ and $\beta \in \mathcal{S}(\Lambda)$ with $\ell(w)+\operatorname{ht}(\beta)=j$. Set $\mu:=(w, \beta) \circ \Lambda$. Let us show that $\omega^{*}(\mu)=\mu$ if and only if $w \in \tilde{W}$ and $\beta \in\left(\mathfrak{h}^{*}\right)^{0}$. Because $\omega^{*} r_{i}\left(\omega^{*}\right)^{-1}=r_{\omega^{-1}(i)}$ for $i \in I^{\mathrm{re}}$, we see that $\omega^{*} w\left(\omega^{*}\right)^{-1} \in W$. If we set $w^{\prime}:=\omega^{*} w\left(\omega^{*}\right)^{-1} \in W$, then we have

$$
\begin{aligned}
\omega^{*}(\mu) & =\omega^{*}(w(\Lambda+\rho-\beta)-\rho) \\
& =\omega^{*}(w(\Lambda+\rho-\beta))-\omega^{*}(\rho) \\
& =\omega^{*} w(\Lambda+\rho-\beta)-\rho \\
& =w^{\prime} \omega^{*}(\Lambda+\rho-\beta)-\rho \\
& =w^{\prime}\left(\omega^{*}(\Lambda+\rho-\beta)\right)-\rho \\
& =w^{\prime}\left(\Lambda+\rho-\omega^{*}(\beta)\right)-\rho,
\end{aligned}
$$

since $\omega^{*}(\Lambda)=\Lambda$ and $\omega^{*}(\rho)=\rho$. Now assume that $\omega^{*}(\mu)=\mu$, i.e., that $w^{\prime}(\Lambda+\rho-$ $\left.\omega^{*}(\beta)\right)=w(\Lambda+\rho-\beta)$. Then, since $(\Lambda+\rho-\beta)\left(h_{i}\right) \geq 1$ and $\left(\Lambda+\rho-\omega^{*}(\beta)\right)\left(h_{i}\right) \geq 1$ for all $i \in I^{\mathrm{re}}$, we deduce that $\Lambda+\rho-\omega^{*}(\beta)=\Lambda+\rho-\beta$ (i.e., $\omega^{*}(\beta)=\beta$) and that $w^{\prime}=w$ (i.e., $\left.\omega^{*} w\left(\omega^{*}\right)^{-1}=w\right)$ by the proof of [K, Proposition 3.12 a) and b)]. Conversely, $\omega^{*} w\left(\omega^{*}\right)^{-1}=$ w and $\omega^{*}(\beta)=\beta$ immediately imply that $\omega^{*}(\mu)=\mu$. Therefore, the proposition follows directly from Theorem 1.2 .1 and the definition (3.2.1) of $\operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)$.

We see from the comments just below Theorem 1.2.1 that for $w \in \tilde{W}$ and $\beta \in \mathcal{S}(\Lambda) \cap$ $\left(\mathfrak{h}^{*}\right)^{0}$ with $\ell(w)+\operatorname{ht}(\beta)=j$,

$$
\begin{align*}
c_{(w, \beta)} & =\operatorname{Tr}\left(\left.\bar{\Phi}_{j}\right|_{\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)_{(w, \beta) \circ \Lambda}}\right) \\
& =\operatorname{Tr}\left(\left.\bar{\Phi}_{j}\right|_{\boldsymbol{C}} ^{\bar{v}_{(w, \beta)}}\right) \\
& =\operatorname{Tr}\left(\Phi_{j} \mid \boldsymbol{C} v_{(w, \beta)}\right) \tag{3.2.2}\\
& =\operatorname{Tr}\left(\left.\Phi_{j}\right|_{\left(\left(\wedge^{j} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{(w, \beta) \circ \Lambda}}\right) .
\end{align*}
$$

To determine the scalar $c_{(w, \beta)} \in \boldsymbol{C}$, we define the twining character $\operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}}\right.$ $L(\Lambda))$ of $\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)$ by

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right):=\operatorname{Tr}_{\left(\Lambda^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)} \Phi \exp \tag{3.2.3}
\end{equation*}
$$

where $\Phi=\left(\bigwedge^{*} \omega^{-1}\right) \otimes \tau_{\omega}$ is as in Section 3.1. The following is our key proposition.

Proposition 3.2.2. Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight. For every $w \in \tilde{W}$, we have

$$
w\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)\right)=(-1)^{\ell(w)-\hat{\ell}(w)}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)\right)
$$

Proof. It follows from Lemma 3.1.3 that

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \cdot \operatorname{ch}^{\omega}(L(\Lambda)) \tag{3.2.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{-}\right):=\operatorname{Tr}_{\Lambda^{*} \mathfrak{n}_{-}} \omega^{-1} \exp \tag{3.2.5}
\end{equation*}
$$

Furthermore, we know from (2.2.7) that for $w \in \tilde{W}$,

$$
w\left(\operatorname{ch}^{\omega}(L(\Lambda))\right)=\operatorname{ch}^{\omega}(L(\Lambda))
$$

Hence we may assume that $\Lambda=0$.
It is well-known that $(-1)^{\ell\left(w w^{\prime}\right)}=(-1)^{\ell(w)}(-1)^{\ell\left(w^{\prime}\right)}$ for $w, w^{\prime} \in W$, and $(-1)^{\hat{\ell}\left(w w^{\prime}\right)}=$ $(-1)^{\hat{\ell}(w)}(-1)^{\hat{\ell}\left(w^{\prime}\right)}$ for $w, w^{\prime} \in \tilde{W}$. Thus, we may assume that $\hat{\ell}(w)=1$, i.e., $w=w_{i}$ for some $i \in \breve{I}$.

We set

$$
\begin{equation*}
\Delta_{i}:=\Delta_{+} \cap\left(\sum_{k=0}^{N_{i}-1} \boldsymbol{Z} \alpha_{\omega^{k}(i)}\right), \quad \Delta(i):=\Delta_{+} \backslash \Delta_{i} \tag{3.2.6}
\end{equation*}
$$

and correspondingly

$$
\begin{equation*}
\mathfrak{n}_{i}:=\bigoplus_{\alpha \in \Delta_{i}} \mathfrak{g}_{-\alpha}, \quad \mathfrak{n}(i):=\bigoplus_{\alpha \in \Delta(i)} \mathfrak{g}_{-\alpha} . \tag{3.2.7}
\end{equation*}
$$

When $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=2$, we have

$$
\Delta_{i}=\left\{\alpha_{\omega^{k}(i)}\right\}_{k=0}^{N_{i}-1}
$$

We call this case "Case (a)". When $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}=1$, we have

$$
\Delta_{i}=\left\{\alpha_{\omega^{k}(i)}\right\}_{k=0}^{N_{i}-1} \sqcup\left\{\alpha_{\omega^{k}(i)}+\alpha_{\omega^{\left(N_{i} / 2\right)+k}(i)}\right\}_{k=0}^{N_{i} / 2-1}
$$

We call this case "Case (b)". Since $\mathfrak{n}_{-}=\mathfrak{n}_{i} \oplus \mathfrak{n}(i)$, we have an isomorphism of \mathfrak{h}-modules:

$$
\bigwedge^{*} \mathfrak{n}_{-} \cong\left(\bigwedge^{*} \mathfrak{n}_{i}\right) \otimes_{\boldsymbol{C}}\left(\bigwedge^{*} \mathfrak{n}(i)\right)
$$

Here we note that $\omega^{*}\left(\Delta_{i}\right)=\Delta_{i}$ and $\omega^{*}(\Delta(i))=\Delta(i)$. Then, since $\omega^{-1}\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{\omega^{*}(\alpha)}$ for $\alpha \in \Delta$, we get that

$$
\left(\bigwedge^{*} \omega^{-1}\right)\left(\bigwedge^{*} \mathfrak{n}_{i}\right)=\bigwedge^{*} \mathfrak{n}_{i}
$$

$$
\left(\bigwedge^{*} \omega^{-1}\right)\left(\bigwedge^{*} \mathfrak{n}(i)\right)=\bigwedge^{*} \mathfrak{n}(i)
$$

Therefore, we can apply Lemma 3.1 .3 to the \mathfrak{h}-module $\bigwedge^{*} \mathfrak{n}_{-} \cong\left(\bigwedge^{*} \mathfrak{n}_{i}\right) \otimes_{\boldsymbol{C}}\left(\bigwedge^{*} \mathfrak{n}(i)\right)$ to obtain that

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{-}\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right) \tag{3.2.8}
\end{equation*}
$$

where $\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)$ and $\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right)$ are defined by

$$
\begin{gather*}
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right):=\operatorname{Tr}_{\wedge^{*} \mathfrak{n}_{i}} \bigwedge^{*} \omega^{-1} \exp \tag{3.2.9}\\
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right):=\operatorname{Tr}_{\wedge^{*} \mathfrak{n}(i)} \bigwedge^{*} \omega^{-1} \exp \tag{3.2.10}
\end{gather*}
$$

STEP 1. First, we show that

$$
\begin{equation*}
w_{i}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right)=(-1)^{\ell\left(w_{i}\right)-\hat{\ell}\left(w_{i}\right)}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right) \tag{3.2.11}
\end{equation*}
$$

To show this, as an ordered basis of \mathfrak{n}_{i} we take $\left\{f_{\omega^{k}(i)}\right\}_{k=0}^{N_{i}-1}$ in Case (a), and $\left\{f_{\omega^{k}(i)}\right\}_{k=0}^{N_{i}-1} \sqcup$ $\left\{\dot{f}_{\omega^{k}(i)}\right\}_{k=0}^{N_{i} / 2-1}$ with $\dot{f}_{\omega^{k}(i)}:=\left[f_{\omega^{k}(i)}, f_{\omega^{\left(N_{i} / 2\right)+k}(i)}\right]$ for $0 \leq k \leq\left(N_{i} / 2\right)-1$ in Case (b).
Case (a): We can easily deduce that the only basis vectors of $\bigwedge^{*} \mathfrak{n}_{i}$ which make a contribution to the trace of $\bigwedge^{*} \omega^{-1}$ are the following two vectors:

$$
1 \in \bigwedge^{0} \mathfrak{n}_{i}=\boldsymbol{C} \quad \text { and } \quad f_{i} \wedge f_{\omega(i)} \wedge \cdots \wedge f_{\omega^{N_{i}-1}(i)}
$$

Hence we immediately obtain that

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)=1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right) \tag{3.2.12}
\end{equation*}
$$

where $\beta_{i}=\sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)}$. Now we use Equation (2.2.5) to see that $w_{i}(\rho)=\rho-\beta_{i}$. So we have

$$
\begin{aligned}
w_{i}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right) & =w_{i}\left(e(\rho) \cdot\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right)\right) \\
& =e\left(\rho-\beta_{i}\right) \cdot\left(1+(-1)^{N_{i}-1} e\left(\beta_{i}\right)\right) \\
& =(-1)^{N_{i}-1} e(\rho) \cdot\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right) \\
& =(-1)^{N_{i}-1} e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right) \\
& =(-1)^{\ell\left(w_{i}\right)-\hat{\ell}\left(w_{i}\right)}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right)
\end{aligned}
$$

since it is seen from the form (2.2.3) of w_{i} that $w_{i}\left(\beta_{i}\right)=-\beta_{i}$ and $\ell\left(w_{i}\right)=N_{i}$.

Case (b): We can easily deduce that the only basis vectors of $\bigwedge^{*} \mathfrak{n}_{i}$ which make a contribution to the trace of $\bigwedge^{*} \omega^{-1}$ are the following four vectors:

$$
1 \in \bigwedge^{0} \mathfrak{n}_{i}=\boldsymbol{C}, f_{i} \wedge f_{\omega(i)} \wedge \cdots \wedge f_{\omega^{N_{i}-1}(i)}, \dot{f}_{i} \wedge \dot{f}_{\omega(i)} \wedge \cdots \wedge \dot{f}_{\omega^{\left(N_{i} / 2\right)-1}(i)}
$$

and

$$
f_{i} \wedge \cdots \wedge f_{\omega^{N_{i}-1}(i)} \wedge \dot{f_{i}} \wedge \cdots \wedge \dot{f}_{\omega^{\left(N_{i} / 2\right)-1}(i)}
$$

Hence we immediately obtain that

$$
\begin{align*}
\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right) & =\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right)\left(1+(-1)(-1)^{\left(N_{i} / 2\right)-1} e\left(-\beta_{i}\right)\right) \tag{3.2.13}\\
& =\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right)\left(1+(-1)^{N_{i} / 2} e\left(-\beta_{i}\right)\right)
\end{align*}
$$

where $\beta_{i}=\sum_{k=0}^{N_{i}-1} \alpha_{\omega^{k}(i)}$. Now we use Equation (2.2.5) to see that $w_{i}(\rho)=\rho-2 \beta_{i}$. So we have

$$
\begin{aligned}
& w_{i}(e\left.e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right) \\
& \quad=w_{i}\left(e(\rho) \cdot\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right)\left(1+(-1)^{N_{i} / 2} e\left(-\beta_{i}\right)\right)\right) \\
& \quad=e\left(\rho-2 \beta_{i}\right) \cdot\left(1+(-1)^{N_{i}-1} e\left(\beta_{i}\right)\right)\left(1+(-1)^{N_{i} / 2} e\left(\beta_{i}\right)\right) \\
& \quad=e(\rho) \cdot(-1)^{(3 / 2) N_{i}-1}\left(1+(-1)^{N_{i}-1} e\left(-\beta_{i}\right)\right)\left(1+(-1)^{N_{i} / 2} e\left(-\beta_{i}\right)\right) \\
& \quad=(-1)^{(3 / 2) N_{i}-1} e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right) \\
& \quad=(-1)^{\ell\left(w_{i}\right)-\hat{\ell}\left(w_{i}\right)}\left(e(\rho) \cdot \operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}_{i}\right)\right)
\end{aligned}
$$

since it is seen from the form (2.2.3) of w_{i} that $w_{i}\left(\beta_{i}\right)=-\beta_{i}$ and $\ell\left(w_{i}\right)=3 \cdot\left(N_{i} / 2\right)=$ (3/2) N_{i}.

Step 2. Second, we show that

$$
\begin{equation*}
w_{i}\left(\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right)\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right) \tag{3.2.14}
\end{equation*}
$$

which completes the proof of the proposition. Notice that $a_{\omega^{k}(i), \omega^{k}(i)}=2$ for all $0 \leq k \leq$ $N_{i}-1$, since $i \in \breve{I}$ implies $\sum_{k=0}^{N_{i}-1} a_{i, \omega^{k}(i)}>0$ by definition. Hence, the operators ad $e_{\omega^{k}(i)}$ and ad $f_{\omega^{k}(i)}$ are locally nilpotent on \mathfrak{g} for all $0 \leq k \leq N_{i}-1$. We define linear automorphisms of \mathfrak{g} by

$$
\begin{equation*}
x_{k}^{\text {ad }}:=\left(\exp \left(\operatorname{ad} f_{\omega^{k}(i)}\right)\right)\left(\exp \left(-\operatorname{ad} e_{\omega^{k}(i)}\right)\right)\left(\exp \left(\operatorname{ad} f_{\omega^{k}(i)}\right)\right) \tag{3.2.15}
\end{equation*}
$$

for $0 \leq k \leq N_{i}-1$, and then by

$$
X_{i}^{\mathrm{ad}}:= \begin{cases}\prod_{k=0}^{N_{i}-1} x_{k}^{\mathrm{ad}} & \text { in Case (a) } \tag{3.2.16}\\ \prod_{k=0}^{N_{i} / 2-1}\left(x_{k}^{\mathrm{ad}} x_{\left(N_{i} / 2\right)+k}^{\mathrm{ad}} x_{k}^{\mathrm{ad}}\right) & \text { in Case (b) }\end{cases}
$$

By [K, Lemma 3.8] we see that $X_{i}^{\text {ad }}\left(\mathfrak{g}_{\alpha}\right)=\mathfrak{g}_{w_{i}(\alpha)}$ for $\alpha \in \Delta$. Moreover, we immediately see that

$$
\begin{equation*}
\omega^{-1}\left(X_{i}^{\mathrm{ad}}(v)\right)=\left(\omega^{-1} X_{i}^{\mathrm{ad}}\right)\left(\omega^{-1}(v)\right) \tag{3.2.17}
\end{equation*}
$$

for $v \in \mathfrak{g}$, where the linear automorphism $\omega^{-1} X_{i}^{\text {ad }}$ of \mathfrak{g} is defined by

$$
\omega^{-1} X_{i}^{\mathrm{ad}}:= \begin{cases}\prod_{k=0}^{N_{i}-1} x_{k-1}^{\mathrm{ad}} & \text { in Case (a) } \tag{3.2.18}\\ \prod_{k=0}^{N_{i} / 2-1}\left(x_{k-1}^{\mathrm{ad}} x_{\left(N_{i} / 2\right)+k-1}^{\mathrm{ad}} x_{k-1}^{\mathrm{ad}}\right) & \text { in Case (b) }\end{cases}
$$

with $x_{-1}^{\mathrm{ad}}:=x_{N_{i}-1}^{\mathrm{ad}}$. We see easily that $\omega^{-1} X_{i}^{\text {ad }}=X_{i}^{\text {ad }}$, since, in Case (b),

$$
\begin{aligned}
x_{-1}^{\mathrm{ad}} x_{\left(N_{i} / 2\right)-1}^{\mathrm{ad}} x_{-1}^{\mathrm{ad}} & =x_{N_{i}-1}^{\mathrm{ad}} x_{\left(N_{i} / 2\right)-1}^{\mathrm{ad}} x_{N_{i}-1}^{\mathrm{ad}} \\
& =x_{\left(N_{i} / 2\right)-1}^{\mathrm{ad}} x_{N_{i}-1}^{\mathrm{ad}} x_{\left(N_{i} / 2\right)-1}^{\mathrm{ad}}
\end{aligned}
$$

(see, for example, $[\mathrm{KP}]$). Thus we get the commutative diagram for $\alpha \in \Delta_{+}$:

where $\omega^{*} w_{i}(\alpha)=w_{i} \omega^{*}(\alpha)$.
Because we see from Equation (2.2.5) that $w_{i}(\Delta(i))=\Delta(i)$, we deduce that

$$
\begin{equation*}
X_{i}^{\mathrm{ad}}(\mathfrak{n}(i))=\mathfrak{n}(i) \tag{3.2.20}
\end{equation*}
$$

By extending the linear automorphism $X_{i}^{\text {ad }}: \mathfrak{g} \rightarrow \mathfrak{g}$ to the linear automorphism

$$
\bigwedge^{*} X_{i}^{\text {ad }}: \bigwedge^{*} \mathfrak{g} \rightarrow \bigwedge^{*} \mathfrak{g}
$$

in the usual way, we finally obtain the following commutative diagram from (3.2.19) and (3.2.20):

$$
\begin{gather*}
\Lambda^{*} \mathfrak{n}(i) \xrightarrow{\Lambda^{*} X_{i}^{\text {ad }}} \Lambda^{*} \mathfrak{n}(i) \\
\Lambda^{*} \omega^{-1} \downarrow \tag{3.2.21}\\
\Lambda^{*} \mathfrak{n}(i) \xrightarrow[\Lambda^{*} X_{i}^{\text {ad }}]{ } \Lambda^{*} \mathfrak{n}(i) .
\end{gather*}
$$

Let $\chi \in\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric weight. Since $\omega^{*} w_{i}(\chi)=w_{i} \omega^{*}(\chi)=w_{i}(\chi)$, the following diagram commutes:

$$
\begin{align*}
& \left(\Lambda^{*} \mathfrak{n}(i)\right)_{\chi} \xrightarrow{\stackrel{\Lambda^{*} X_{i}^{\mathrm{ad}}}{\longrightarrow}}\left(\Lambda^{*} \mathfrak{n}(i)\right)_{w_{i}(\chi)} \tag{3.2.22}\\
& \Lambda^{*} \omega^{-1} \downarrow \\
& \left(\Lambda^{*} \mathfrak{n}(i)\right)_{\chi} \xrightarrow[\Lambda^{*} X_{i}^{\text {ad }}]{ }\left(\Lambda^{*} \mathfrak{n}(i)\right)_{w_{i}(\chi)}
\end{align*}
$$

It follows from this commutative diagram that for $\chi \in\left(\mathfrak{h}^{*}\right)^{0}$,

$$
\begin{equation*}
\operatorname{Tr}\left(\left(\bigwedge^{*} \omega^{-1}\right) \mid\left(\bigwedge^{*} \mathfrak{n}(i)\right)_{\chi}\right)=\operatorname{Tr}\left(\left(\bigwedge^{*} \omega^{-1}\right) \mid\left(\bigwedge^{*} \mathfrak{n}(i)\right)_{w_{i}(x)}\right) \tag{3.2.23}
\end{equation*}
$$

Therefore, we conclude that

$$
w_{i}\left(\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right)\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{*} \mathfrak{n}(i)\right)
$$

This proves the proposition.
Corollary 3.2.3. Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $w \in \tilde{W}$ and $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$. Then

$$
c_{(w, \beta)}=(-1)^{\ell(w)-\hat{\ell}(w)} \cdot(-1)^{\mathrm{ht}(\beta)-\widehat{\mathrm{ht}}(\beta)}
$$

Proof. First, we show that

$$
\begin{equation*}
\operatorname{Tr}\left(\left.\Phi\right|_{\left(\left(\wedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{\Lambda-\beta}}\right)=(-1)^{\mathrm{ht}(\beta)-\widehat{h t}(\beta)} \tag{3.2.24}
\end{equation*}
$$

The element $\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}$ can be written in the form $\beta=\sum_{k=1}^{l} \beta_{i_{k}}$, where $\beta_{i_{k}}=$ $\sum_{r=0}^{N_{i_{k}}-1} \alpha_{\omega^{r}\left(i_{k}\right)}$ for $1 \leq k \leq l$. Then obviously $\widehat{\mathrm{ht}}(\beta)=l$ and $\mathrm{ht}(\beta)=\sum_{k=1}^{l} N_{i_{k}}$. Recall from (1.2.5) that we have

$$
\begin{equation*}
\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)_{\Lambda-\beta}=\boldsymbol{C} v_{(1, \beta)} \tag{3.2.25}
\end{equation*}
$$

where $v_{(1, \beta)}=\hat{f_{i_{1}}} \wedge \hat{f_{i_{2}}} \wedge \cdots \wedge \hat{f_{i_{l}}} \otimes v_{\Lambda}$ with $\hat{f_{i_{k}}}:=f_{i_{k}} \wedge f_{\omega\left(i_{k}\right)} \wedge \cdots \wedge f_{\omega^{N_{i_{k}}-1}{ }_{\left(i_{k}\right)}}$ for $1 \leq k \leq l$. Then it follows that

$$
\begin{align*}
\Phi\left(v_{(1, \beta)}\right) & =\left(\bigwedge^{*} \omega^{-1}\right)\left(\hat{f_{i_{1}}} \wedge \cdots \wedge \hat{f_{i_{l}}}\right) \otimes v_{\Lambda} \\
& =\left(\bigwedge^{*} \omega^{-1}\right)\left(\hat{f_{i_{1}}}\right) \wedge \cdots \wedge\left(\bigwedge^{*} \omega^{-1}\right)\left(\hat{f_{i_{l}}}\right) \otimes v_{\Lambda} \tag{3.2.26}
\end{align*}
$$

Because for each $1 \leq k \leq l$,

$$
\left(\bigwedge^{*} \omega^{-1}\right)\left(\hat{f}_{i_{k}}\right)=(-1)^{N_{i_{k}}-1} \hat{f}_{i_{k}}
$$

we deduce that

$$
\Phi\left(v_{(1, \beta)}\right)=(-1)^{\left(\sum_{k=1}^{l} N_{i_{k}}\right)-l} v_{(1, \beta)}=(-1)^{\mathrm{ht}(\beta)-\widehat{\mathrm{ht}}(\beta)} v_{(1, \beta)}
$$

Thus we have shown that

$$
\operatorname{Tr}\left(\left.\Phi\right|_{\left(\left(\wedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{\Lambda-\beta}}\right)=(-1)^{\mathrm{ht}(\beta)-\widehat{h t}(\beta)}
$$

Now we set $j:=\ell(w)+\operatorname{ht}(\beta)$. Then the scalar

$$
\begin{align*}
c_{(w, \beta)} & =\operatorname{Tr}\left(\left.\Phi_{j}\right|_{\left(\left(\wedge^{j} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{(w, \beta) \circ \Lambda)}}\right) \tag{3.2.27}\\
& =\operatorname{Tr}\left(\left.\Phi\right|_{\left(\left(\wedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{(w, \beta) \circ \Lambda)}}\right)
\end{align*}
$$

is the coefficient of $e(w(\Lambda+\rho-\beta))$ in $e(\rho) \cdot \operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)$, which is, by Proposition 3.2.2, equal to the coefficient of $e(\Lambda-\beta)$ in $\operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)$ multiplied by $(-1)^{\ell(w)-\hat{\ell}(w)}$. But the coefficient of $e(\Lambda-\beta)$ in $\operatorname{ch}^{\omega}\left(\left(\bigwedge^{*} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)$ is by definition $\operatorname{Tr}\left(\left.\Phi\right|_{\left(\left(\wedge^{*} \mathfrak{n}_{-}\right) \otimes_{C} L(\Lambda)\right)_{\Lambda-\beta}}\right)$. Thus, we obtain from (3.2.24) just proved that

$$
c_{(w, \beta)}=(-1)^{\ell(w)-\hat{\ell}(w)} \cdot(-1)^{\mathrm{ht}(\beta)-\widehat{\mathrm{ht}}(\beta)}
$$

as desired. This completes the proof.
Combining Proposition 3.2.1 with Corollary 3.2.3, we obtain our main result.
THEOREM 3.2.4. Let $\Lambda \in P_{+} \cap\left(\mathfrak{h}^{*}\right)^{0}$ be a symmetric, dominant integral weight, and let $j \geq 0$. Then

$$
\begin{aligned}
& \operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)= \sum_{\substack{w \in \tilde{W} \\
\beta \in \mathcal{S}\left(\Lambda \Lambda \cap\left(\mathfrak{h}^{*}\right)^{0} \\
\ell(w)+\operatorname{ht}(\beta)=j\right.}}(-1)^{-(\ell(w)+\mathrm{ht}(\beta))} \cdot(-1)^{\hat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ \Lambda) \\
&= \sum_{\substack{w \in \tilde{W} \\
\beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)+\widehat{h \mathrm{ht}}(\beta)-j} e((w, \beta) \circ \Lambda) \\
& \ell(w)+\mathrm{ht}(\beta)=j
\end{aligned}
$$

3.3. Application. As an application of Theorem 3.2.4, we give a new proof of the twining character formula (Theorem 2.2.1) for $L(\Lambda)$ of symmetric, dominant integral highest weight Λ.

By virtue of Lemma 3.1.2, we can apply an Euler-Poincaré principle to deduce that

$$
\begin{equation*}
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)=\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right) \tag{3.3.1}
\end{equation*}
$$

Also, by Lemma 3.1.2, we have for each $j \geq 0$,

$$
\begin{equation*}
\operatorname{ch}^{\omega}\left(\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right)=\operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \cdot \operatorname{ch}^{\omega}(L(\Lambda)) \tag{3.3.2}
\end{equation*}
$$

Hence we get

$$
\begin{aligned}
\sum_{j \geq 0}(-1)^{j} & \operatorname{ch}^{\omega}\left(\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(\Lambda)\right) \\
& =\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \cdot \operatorname{ch}^{\omega}(L(\Lambda)) \\
& =\operatorname{ch}^{\omega}(L(\Lambda)) \cdot\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\bigwedge^{j} \mathfrak{n}_{-}\right)\right) \\
& =\operatorname{ch}^{\omega}(L(\Lambda)) \cdot\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(\left(\bigwedge^{j} \mathfrak{n}_{-}\right) \otimes_{\boldsymbol{C}} L(0)\right)\right) \\
& =\operatorname{ch}^{\omega}(L(\Lambda)) \cdot\left(\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(0)\right)\right)\right)
\end{aligned}
$$

since $L(0)=\boldsymbol{C}$ and $\operatorname{ch}^{\omega}(L(0))=e(0)=1$. Here, in the last equality above, we have used an Euler-Poincaré principle again.

On the other hand, we obtain from Theorem 3.2.4 that

$$
\begin{equation*}
\sum_{j \geq 0}(-1)^{j} \operatorname{ch}^{\omega}\left(H_{j}\left(\mathfrak{n}_{-}, L(\Lambda)\right)\right)=\sum_{\substack{w \in \tilde{W} \\ \beta \in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)+\widehat{\mathrm{ht}}(\beta)} e((w, \beta) \circ \Lambda) . \tag{3.3.3}
\end{equation*}
$$

Putting all the above together, we conclude that

$$
\begin{aligned}
& \sum_{\substack{w \in \tilde{W} \\
\in \mathcal{S}(\Lambda) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ \Lambda) \\
& \quad=\operatorname{ch}^{\omega}(L(\Lambda)) \cdot\left(\sum_{\substack{w \in \tilde{W} \\
\beta \in \mathcal{S}(0) \cap\left(\mathfrak{h}^{*}\right)^{0}}}(-1)^{\hat{\ell}(w)+\widehat{h t}(\beta)} e((w, \beta) \circ 0)\right) .
\end{aligned}
$$

Thus, we have given a new proof of Theorem 2.2.1.

REFERENCES

[B] R. E. Borcherds, Generalized Kac-Moody algebras, J. Algebra 115 (1988), 501-512.
[FRS] J. Fuchs, U. Ray and C. Schweigert, Some automorphisms of generalized Kac-Moody algebras, J. Algebra 191 (1997), 518-540.
[FSS] J. Fuchs, B. Schellekens and C. Schweigert, From Dynkin diagram symmetries to fixed point structures, Comm. Math. Phys. 180 (1996), 39-97.
[GL] H. GARLAND AND J. LePOWSKY, Lie algebra homology and the Macdonald-Kac formulas, Invent. Math. 34 (1976), 37-76.
[K] V. G. KAC, Infinite Dimensional Lie Algebras (3rd edition), Cambridge Univ. Press, Cambridge, 1990.
[KP] V. G. Kac and D. H. Peterson, Defining relations of certain infinite-dimensional groups, Astérisque Numéro Hors Série (1985), 165-208.
[KK] S.-J. KANG AND J.-H. Kwon, Graded Lie superalgebras, supertrace formula, and orbit Lie superalgebras, Proc. London Math. Soc. 81 (2000), 675-724.
[N1] S. Naito, Kostant's formula for a certain class of generalized Kac-Moody algebras, Tôhoku Math. J. 44 (1992), 567-580.
[N2] S. Naito, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. I-The existence of the resolution - Publ. Res. Inst. Math. Sci. 29 (1993), 709-730.
[N3] S. Naito, The strong Bernstein-Gelfand-Gelfand resolution for generalized Kac-Moody algebras. II—An explicit construction of the resolution, J. Algebra 167 (1994), 778-802.
[N4] S. Naito, Twining character formula of Kac-Wakimoto type for affine Lie algebras, Represent. Theory 6 (2002), 70-100.

Institute of Mathematics
University of Tsukuba
Tsukuba, Ibaraki 305-8571
Japan
E-mail address: naito@math.tsukuba.ac.jp

[^0]: 2000 Mathematics Subject Classification. Primary 17B67; Secondary 17B10, 17 B55.

