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Abstract. In this paper we study normal subgroups of Kleinian groups as well as dis-
crepancy groups (d-groups), that are Kleinian groups for which the exponent of convergence
is strictly less than the Hausdorff dimension of the limit set. We show that the limit set of a
d-group always contains a range of fractal subsets, each containing the set of radial limit points
and having Hausdorff dimension strictly less than the Hausdorff dimension of the whole limit
set. We then consider normal subgroupsG of an arbitrary non-elementary Kleinian groupH ,
and show that the exponent of convergence ofG is bounded from below by half of the exponent
of convergene ofH . Finally, we give a discussion of various examples of d-groups.

1. Introduction and statement of results. In this paper we investigate non-ele-
mentary Kleinian groupsG acting on(N + 1)-hyperbolic spaceDN+1 without torsion, which
have the property that their associated limit setL(G) has Hausdorff dimension strictly greater
than the exponent of convergence

δ(G) := inf

{
s ≥ 0

∣∣∣∣
∑
g∈G

e−sρ(0,g(0)) < ∞
}

.

(Here,L(G) refers to the set of accumulation points of someG-orbit, andρ to the hyper-
bolic distance inDN+1). Throughout, we shall refer to these groups as discrepancy groups,
abbreviated as d-groups.

In [6] it was shown that the limit set has positive 2-dimensional Lebesgue measure for
every finitely generated, geometrically infinite d-group which acts onD3. This result was
obtained via showing that for every arbitrary non-elementary Kleinian groupG one has that
δ(G) coincides with the hyperbolic dimension ofG, that is, the Hausdorff dimension of the
uniformly radial limit set ofG, or alternatively the Hausdorff dimension of the radial limit set
of G ([6], [26]). In this paper we consider arbitrary d-groupsG and discuss fractal properties
of certain subsets ofL(G), each of which contains the radial limit set ofG. These sets will be
referred to asκ-weakly recurrent limit sets. Our first main result is that forκ in a certain range,
the Hausdorff dimension of each of theseκ-weakly recurrent limit sets is strictly less than the
Hausdorff dimension ofL(G). In particular, this also allows to specify a range of subsets
of the transient limit set, the complement of the radial limit set, which have the property
that their Hausdorff dimension coincides with the Hausdorff dimension ofL(G). Our second
main result deals with the class of normal subgroupsG of some arbitrary non-elementary
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Kleinian groupH . For these groups it is well-known thatL(G) = L(H). Nevertheless, as
can for instance be seen in the second example of Section 3, the hyperbolic dimension of
G does not necessarily coincide with the hyperbolic dimension ofH . Here our main result
is that the exponent of convergence of such a normal subgroupG is always bounded from
below by half of the exponent of convergence ofH . Finally, in Section 3 we discuss various
examples of d-groups. These include the infinitely-punctured Riemann surfaces of Patterson’s
[19, Theorem 4.4]. This type of example is closely related to the constructions of Hopf [10]
and Pommerenke [22], and seems to have been the first example of a d-group in the literature.
Also, we discuss the case of a normal subgroupG of some convex cocompact Kleinian group
H . If H/G is non-amenable, then it follows by the work of Brooks [8] thatG is a d-group.
Eventually, based on the further work of Patterson [20], we outline a construction of infinitely
generated free d-groups of the first kind. Again, as in the normal subgroup example this
construction works in any dimension, and we also show that it can be employed to construct
special d-groups which have the property that the set of Jørgensen points has positiveN-
dimensional spherical Lebesgue measure. These special d-groups are groups of the first kind
such that the complement of their horospherical limit set contains a wandering set of positive
N-dimensional measure. Hence, these groups do not act conservatively, and therefore they
are not ergodic onSN in the sense that for eachof them there exists a bounded group-invariant
function which is hyperbolically harmonic.

In order to state the results in detail, we now first introduce the limit sets which are
relevant. Throughout, letG be some arbitrary non-elementary Kleinian group without torsion.
It is well-known thatL(G) can be decomposed into the setLr(G) of radial limit points and
the setLt(G) of transient limit points, where

• Lr(G) := {ξ ∈ L(G) | lim infT →∞ ∆(ξT ) < ∞},
• Lt(G) := {ξ ∈ L(G) | limT →∞ ∆(ξT ) = ∞}.

In here,ξT refers to the point on the ray from 0 toξ for which ρ(0, ξT ) = T , and∆(ξT )

refers to the hyperbolic distance ofξT to the orbitG(0), that is,∆(ξT ) := infg∈G ρ(ξT , g(0)).
Important subsets ofL(G) are the setLur(G) of uniformly radial limit points and the set
LJ(G) of Jørgensen limit points. These are given as follows (cf. [29], [17]).

• Lur(G) := {ξ ∈ L(G) | lim supT →∞ ∆(ξT ) < ∞}.
• LJ(G) refers to the set ofξ ∈ L(G) such that there exists a geodesic ray towardsξ

which is completely contained in some Dirichlet fundamental domain ofG.
One easily verifies thatLur(G) ⊂ Lr(G) and thatLJ(G) ⊂ Lt(G). Note that for ease of

exposition we have defined the setLJ(G) so that the set of bounded parabolic fixed points of
G is contained inLJ(G) (for the definition of a bounded parabolic fixed point we refer to [16,
p. 43]), and hence our definition ofLJ(G) here differs from the definition given in [17]. Also,
note thatLJ(G) corresponds to the dissipative part of the action ofG on the sphere at infinity
(cf. [30], [14]).

Finally, we introduce the setL(κ)
t (G) of κ-transient limit points and the setL

(κ)
r (G) of

κ-weakly recurrent limit points forκ > 0 as follows.
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• L
(κ)
r (G) := ⋃

c>0

{
ξ ∈ L(G)

∣∣∣∣ ξ ∈ b(Π(g(0)), ce−ρ(0,g(0))/(1+κ))

for infinitely manyg ∈ G

}
.

• L
(κ)
t (G) := L(G) \ L

(κ)
r (G).

In here,b(η, r) ⊂ SN refers to the ball centred atη ∈ SN of spherical radiusr, andΠ to the
shadow projection from zero to the boundarySN of the hyperbolic space. One easily verifies
that L(κ1)

t (G) ⊃ L
(κ2)
t (G) wheneverκ1 ≤ κ2, and thatLr(G) ⊂ L

(κ)
r (G) for all κ > 0.

Also, note thatLr(G) is a dense subset ofL(G), and hence so isL(κ)
r (G). Therefore, by a

standard result in fractal geometry (see e.g. [9]), it follows that the lower packing dimension
of L

(κ)
r (G) coincides with the lower packing dimension ofL(G), where the latter is always

greater than or equal to the Hausdorff dimension ofL(G). The following theorem shows that
the Hausdorff dimension ofL(κ)

r (G) relates in a more subtle way to the Hausdorff dimension
dimH(L(G)) of L(G). The theorem gives the first main result of the paper.

THEOREM 1. Let G be a d-group. With δ∗(G) := (dimH(L(G)) − δ(G))/δ(G), we
have for all 0 < κ < δ∗(G),

δ(G) ≤ dimH(L(κ)
r (G)) < dimH(L(G)) ,

and in particular

dimH(L
(κ)
t (G)) = dimH(L(G)) .

Note that by a result of Beardon ([2], [3]) the exponent of convergence of a non-elementa-
ry Kleinian group is strictly positive, which gives thatδ∗(G) is well-defined.

Our second main result considers normal subgroups of an arbitrary Kleinian group. We
refer to Section 3 (Example 2) for a discussion of some examples for d-groups of this type.

THEOREM 2. Let H be a non-elementary Kleinian group, and let G be a non-trivial
normal subgroup of H . We then have

δ(G) ≥ δ(H)

2
.

Before giving the proofs of these theorems, let us first show that they have some interest-
ing immediate implications. For the first recall that a Kleinian groupG is said to be ofδ(G)-
convergence type if

∑
g∈G e−δ(G) ρ(0,g(0)) converges. Also, letHs refer to thes-dimensional

Hausdorff measure. Note that the statement (i) in the following corollary generalizes a result
in [5, Corollary 5], where the case dimH(L(G)) = N has been considered.

COROLLARY 1. For each d-group G the following holds.

(i) If HdimH(L(G))
(L(G)) > 0, then HdimH(L(G))

(L
(κ)
t (G)) = HdimH(L(G))

(L(G)) for all
0 < κ < δ∗(G).

(ii) If G is of δ(G)-convergence type, then H(1+κ)δ(G)
(L

(κ)
r (G)) = 0 for all 0 < κ ≤

δ∗(G).
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The following corollary represents the main theorem of [5]. We remark that the work
in this paper was originally inspired by this result of Bishop. We also refer to Lundh’s paper
[11].

COROLLARY 2. For every non-elementary Kleinian group G we have

dimH(L(G)) = max

(
δ(G), dimH

( ⋃
κ>0

L
(κ)
t (G)

))
.

Finally, let us briefly comment on the way our results relate to horospherical limit sets
(recall thatξ ∈ L(G) is called a horospherical limit point if every horoball atξ contains
infinitely many elements ofG(0)). In [31] Tukia introduced the so-called big horospherical
limit set, which consists of limit pointsξ ∈ L(G) for which there exists a horoball atξ
containing infinitely many elements ofG(0). One can verify that every horospherical limit
point is contained in the big horospherical limit set, and thatL

(1)
r (G) coincides with the big

horospherical limit set (see the proof of Lemma 2). A straightforward adaptation of the proof
of Theorem 1 (where one has to replaceL(G) by L

(1)
r (G)) then gives rise to the following

proposition.

PROPOSITION. Let G be a non-elementary Kleinian group such that δ(G) <

dimH(L
(1)
r (G)). We then have for all 0 < τ < (dimH(L

(1)
r (G)) − δ(G))/δ(G),

dimH(L(τ)
r (G)) < dimH(L(1)

r (G)) .

We would like to thank the Department of Mathematics at the University of Helsinki
for warm hospitality and financial support. Also, we are grateful to Pekka Tukia for helpful
conversations on the construction of certain d-groups, as well as to the referee for his/her
careful reading of the original manuscript and for the helpful comments which significantly
improved the paper. Finally, the second author would like to thank the Mathematical Institute
and the Institute for Mathematical Stochastics at the University of Göttingen for hospitality
and excellent working conditions.

2. Proofs.
2.1. Upper bounds for the Hausdorff dimension of weakly recurrent limit sets.
PROOF OFTHEOREM 1. Letσ > 0 be given. By definition,L(σ)

r (G) can be written
as a union of limsup-sets as follows

L(σ)
r (G) =

⋃
c>0

lim sup{b(Π(g(0)), c e−ρ(0,g(0))/(1+σ)) | g ∈ G}.

For eachc > 0 the family{b(Π(g(0)), ce−ρ(0,g(0))/(1+σ)) | g ∈ G} represents a covering of
lim sup{b(Π(g(0)), ce−ρ(0,g(0))/(1+σ)) | g ∈ G}. For the radii of these covering balls we have
by the definition ofδ(G) that∑

g∈G

(ce−ρ(0,g(0))/(1+σ))s < ∞ for all s > (1 + σ)δ(G) .
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Therefore, thes-dimensional Hausdorff measure of the limsup-set associated withc is finite
for all s > (1 + σ)δ(G), which gives

dimH(lim sup{b(Π(g(0)), ce−ρ(0,g(0))/(1+σ)) | g ∈ G}) ≤ (1 + σ)δ(G) .

Sincec was chosen to be arbitrary, the latter estimate clearly holds for everyc > 0. By the
monotonicity of Hausdorff dimension (see e.g. [9, p.29]), we therefore have

dimH(L(σ)
r (G)) ≤ (1 + σ)δ(G) .

This immediately implies that for everyσ with (1 + σ)δ(G) < dimH(L(G)), or what is
equivalent for everyσ < δ∗, we have

dimH(L(σ)
r (G)) < dimH(L(G)) .

This proves the first assertion of the theorem. The second assertion is an immediate conse-
quence of the first. Namely, as we have just shown dimH(L

(κ)
r (G)) < dimH(L(G)) for all

0 < κ < δ∗, and hence forκ in this range we have

dimH(L(G)) = dimH(L(G)\L(κ)
r (G)) = dimH(L

(κ)
t (G)) . �

PROOFS OFCOROLLARIES. Corollary 2 is an immediate consequence of Theorem 1.
For Corollary 1 (i), Theorem 1 gives dimH(L

(κ)
r (G)) < dimH(L(G)), for all 0 < κ <

δ∗(G). Forκ in this range we thus have that ifHdimH(L(G))
(L(G))>0, thenHdimH(L(G))

(L(G))=
HdimH(L(G))

(L
(κ)
t (G)) > 0.

Corollary 1 (ii) is proved by way of contradiction. Assume thatH(1+κ)δ(G)
(L

(κ)
r (G)) > 0

for 0 < κ ≤ δ∗(G). Using Frostman’s lemma (cf. [15]), it follows that there exists a finite
Radon measureνκ with compact support inL(κ)

r (G), such thatνκ(b(η,R)) ≤ R(1+κ)δ(G) for
all η ∈ SN , R > 0. Using the definition ofδ(G) and the fact thatG is of δ(G)-convergence
type, it follows for allc > 0,∑

g∈G

νκ(b(Π(g(0)), ce−ρ(0,g(0))/(1+κ))) < ∞ .

By the Borel-Cantelli lemma, we hence have for allc > 0,

νκ (lim sup{b(Π(g(0)), ce−ρ(0,g(0))/(1+κ))}) = 0 .

This impliesνκ (L
(κ)
r (G)) = 0, and hence gives a contradiction. �

2.2. A lower bound for the exponent of convergence of normal subgroups.
In order to prepare for the proof of Theorem 2 we give the following elementary geomet-

ric estimates. In hereB(z, r) refers to the open hyperbolic ball centred atz ∈ DN+1 of radius
r, and|Π(E)| := |{ξ ∈ SN | ξT ∈ E for someT > 0}| denotes the spherical diameter of
the shadow projectionΠ(E) of E ⊂ DN+1 from zero to the boundarySN of the hyperbolic
space. Also, we use the common conventiona 	 b to describe that the ratio of two positive
real numbersa andb is uniformly bounded away from zero and infinity.
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FIGURE 1. The setting of Lemma 1.

LEMMA 1. Let κ > 0 be given. For all z ∈ DN+1 such that ρ(0, z) is sufficiently large,
we have ∣∣∣∣Π

(
B

(
z,

κ

1 + κ
ρ(0, z)

))∣∣∣∣ 	 e−ρ(0,z)/(1+κ) .

PROOF. Defineθ := κρ(0, z)/(1+ κ), and letzθ refer to the point of tangency of some
geodesic ray which starts at the origin and which is tangential to the boundary ofB(z, θ).
Consider the right-angled triangle with vertices 0,z andzθ , and letα denote its angle at 0 (see
Figure 1). Using the ‘hyperbolic cosine rule’ [4, p. 148] we have

eρ(0,zθ ) 	 eρ(0,z) e−θ = eρ(0,z) e−κρ(0,z)/(1+κ) = eρ(0,z)/(1+κ) .

Also, by the ‘hyperbolic tangent rule’ for right-angled triangles [4, p. 147] we have

tanhθ = sinhρ(0, zθ ) tanα .

Furthermore, note that forρ(0, z) sufficiently large so thatα is bounded away fromπ/2, we
have

|Π(B(z, θ))| 	 tanα .

Combining these three observations, we deduce

|Π(B(z, κρ(0, z)/(1 + κ)))| 	 tanα = tanhθ

sinhρ(0, zθ )
	 e−ρ(0,zθ ) 	 e−ρ(0,z)/(1+κ) .

�

For the proof of Theorem 2 we also require the following result of Matsuzaki [13, The-
orem 6], for which we include a proof. Lemma 2 shows in particular that the radial limit set
of any arbitrary Kleinian groupH is always a subset of the big horospherical limit set of any
normal subgroup ofH , since it is implicit from the proof that the big horospherical limit set
of any Kleinian groupG coincides withL(1)

r (G).
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LEMMA 2. Let H be a non-elementary Kleinian group, and let G be a non-trivial
normal subgroup of H . We then have

Lr(H) ⊂ L(1)
r (G) ⊂ L(H) .

PROOF. We clearly have thatL(1)
r (G) is a subset ofL(G). SinceL(G) = L(H), it is

therefore sufficient to show thatLr(H) ⊂ L
(1)
r (G). For this, letξ be some arbitrary element

of Lr(H). Then there exists a sequence(hn) of elementshn ∈ H such thathn(0) approaches
ξ conically, that is,hn(0) tends toξ and there existsc > 0 such thatξ ∈ Π(B(hn(0), c)) for
all n ∈ N. With g0 ∈ G \ {id.} referring to some fixed element, we have thathng0h

−1
n ∈ G,

for all n ∈ N. Using the triangle inequality, we obtain

ρ(hn(0), hng0h
−1
n (0)) = ρ(0, g0h

−1
n (0)) ≤ ρ(0, g0(0)) + ρ(0, hn(0)) .

Hence, withHξ referring to the horoball atξ such that 0∈ Hξ and that 0 has hyperbolic
distancec0 := ρ(0, g0(0)) + 2c to the horospherical boundary ofHξ , the latter estimate
implies that{hng0h

−1
n (0) | n ∈ N} ⊂ Hξ . Now observe that, by Lemma 1 and by a well-

known estimate concerning hyperbolic geometry within horoballs (see e.g. [25, Lemma 2]),
we have that a hyperbolic ball, which is tangential to the ray from the origin toξ and which is
centred at some arbitraryz ∈ Hξ , must have hyperbolic radius not exceedingc0 + ρ(0, z)/2.
Therefore,

ξ ∈ Π

(
B

(
hng0h

−1
n (0),

ρ(0, hng0h
−1
n (0))

2
+ c0

))
for all n ∈ N .

Using Lemma 1, it then follows thatξ ∈ L
(1)
r (G). �

PROOF OFTHEOREM 2. ForG such thatδ(G) = dimH(L(G)) the statement of the
theorem is trivial. Hence, we can assume without loss of generality thatG is a d-group.
Assume by way of contradiction that there existsτ > 0 such that 2δ(G) + τ < δ(H). Let
ε > 0 be sufficiently small so thatτ − 2ε > 0, and then chooseσ so that 0< σ < τ − 2ε.
With these choices we have thatδ(G) + ε < (δ(H) − σ)/2, and therefore∑

g∈G

(e−ρ(0,g(0))/2)δ(H)−σ ≤
∑
g∈G

(e−ρ(0,g(0)))δ(G)+ε < ∞ .

Hence, we have for allc > 0,

dimH(lim sup{b(Π(g(0)), ce−ρ(0,g(0))/2) | g ∈ G}) ≤ δ(H) − σ ,

which gives dimH(L
(1)
r ) ≤ δ(H) − σ . Using Lemma 2, it now follows

δ(H) = dimH(Lr(H)) ≤ dimH(L(1)
r (G)) ≤ δ(H) − σ ,

which gives a contradiction. �

3. Some examples. In this section we discuss some examples of d-groups. For further
interesting examples of d-groups we refer to [12].
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EXAMPLE 1. (‘Infinitely-punctured Riemann surfaces’) The first example represents
a simply connected Riemann surface with infinitely many punctures. The example is due to
Patterson [19, Theorem 4.4], and to our knowledge it has been the first example of a d-group
in the literature. Here, we only give a brief description of the construction of this type of
Fuchsian groups, and we refer to [19] for the proof that these groups are in fact d-groups
(the proof in [19] uses uniformization theory in combination with perturbation theory of the
Laplacian).

Let G0 be a cocompact Fuchsian group acting onD2 without elliptic elements. Then
(D2\G0(0))/G0 is a compact Riemann surface with onepuncture, and hence it is conformally
isomorphic toD2/G1, for some cofinite FuchsianG1 with exactly one parabolic element.
Consider the canonical group homomorphismφ : G1 → G0, and letG := ker(φ). Clearly,
G is a normal subgroup ofG1 and uniformizesD2 \ G0(0). In [19] it was shown thatG is a
group of the first kind for whichδ(G) < 1. Hence, it follows thatG is a d-group.

EXAMPLE 2. (‘Normal subgroups’) The second example is mainly based on an ap-
plication of a beautiful result of Brooks in [8], who gave a significant extension of results of
Rees [23], [24] (see also [32] and the discussion in [21]).

Let G0 andG1 be two non-elementary convex cocompact Kleinian groups acting on
DN+1 with (open) fundamental domainsF0 andF1, respectively, such that̄F0 ∩ F̄1 = ∅. For
simplicity, we assume thatG0 is freely generated by hyperbolic automorphismsg1, . . . , gk ,
and likewise thatG1 is freely generated by hyperbolic automorphismsgk+1, . . . , gk+n (for
k, n > 1). With H := G0 ∗ G1 referring to the free product ofG0 andG1, we also assume
thatδ(H) > N/2. Letϕ : H → G1 denote the canonical group homomorphism, and define
G := ker(ϕ). It is easily verified thatG = 〈hgih

−1 | i = 1, . . . , k, h ∈ G1〉, and thatG is the
normal subgroup ofH generated byG0 in H . Hence, it follows thatH/G is isomorphic to
G1. In order to see thatG is a d-group, recall that Brooks [8] has shown that ifΓ2 is a non-
trivial normal subgroup of a convex cocompact Kleinian groupΓ1 with δ(Γ1) > N/2, then we
have thatδ(Γ1) = δ(Γ2) if and only if Γ1/Γ2 is amenable (for the notion ‘amenable’ see e.g.
[7], [34]). Observe that in our example here we have thatH/G contains a free subgroup on
two generators, and thereforeH/G is not amenable (note that every group which contains a
free group with two generators is necessarily non-amenable (see e.g. [33])). Hence, applying
the result of Brooks, it follows thatG is a d-group.

EXAMPLE 3. (‘Cantor-tree endings made of cylinders’) The third example gives an
infinitely generated d-group of the first kind which acts onDN+1. In particular, these groups
give rise for instance to geometrically infinite hyperbolic(N + 1)-manifolds without cusps,
which consist of a ‘cocompact root’ and an attached ending which is basically an ‘infinite
capstan of hyperbolic cylinders’ (see Figure 2). Our construction gives a slight modification
of the construction of Patterson in [20] (see also [1]). We have simplified the original con-
struction in [20] (paragraph 5) in order to make the ideas more transparent.
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FIGURE 2. Cantor-tree endings made of hyperbolic cylinders.

Let us first recall from [20] the following observation relating the exponent of conver-
gence of a convex cocompact Kleinian groupΓ to the exponent of convergence of the free
productΓ ∗ 〈γ 〉, for some suitably chosen hyperbolic transformationγ .

For ξ ∈ SN , let Hξ denote the set of all hyperbolic automorphisms ofDN+1 which
haveξ as a fixed point. Forγ ∈ Hξ , let Fγ refer to the Dirichlet fundamental domain for
〈γ 〉 (constructed with respect to 0∈ Fγ ). We then have thatFγ is bounded by two disjoint
hyperplanesH1(γ ) andH2(γ ) of codimension one, and we letH∗

ξ denote the set of those
elements ofHξ for which these two hyperplanes are of equal Euclidean size.

Let F be the Dirichlet fundamental domain for the convex cocompact groupΓ (con-
structed with respect to 0∈ F ). Then fix some arbitrary pointω contained in some connected
componentΩ of F̄ ∩ SN , and letH∗

ω(Ω) refer to the set of elementsγ ∈ H∗
ω for which

Π(H1(γ ) ∪ H2(γ )) ⊂ Ω . With these preparations we then have (cf. [20])

δ(Γ ∗ 〈γ 〉) → δ(Γ ) for γ ∈ H∗
ω(Ω) such that|Π(H1(γ ))| → 0 .

The idea of the proof of this statement is roughly as follows (we refer to [20] for the details).
Recall that the limit setL(Γ ) is constructed very much like a Cantor set generated by a
certain set of contractions. Likewise,L(Γ ∗ 〈γ 〉) is generated by the same set of contractions
together with some additional contractions, which correspond toγ andγ −1. It is intuitively
clear that for|Π(H1(γ ))| → 0, the amount of contraction of these additional generators
becomes arbitrarily large, and therefore, in thelimit the Hausdorff dimension cannot increase.

With this preliminary observation we can now construct the following class of d-groups.
Let G0 be some fixed convex cocompact Kleinian group acting onDN+1 such thatτ0 :=
δ(G0) < N . Fix some numberτ0 < τ < N , as well as some strictly increasing sequence
(τk)k=0,1,2,... of numbersτk such that limτk = τ . With F0 referring to a Dirichlet fundamental



580 K. FALK AND B. STRATMANN

domain ofG0 (constructed with respect to 0∈ F0), we letO0 denote the set of connected
components ofF̄0 ∩ SN . Also, fix some countable setX = {ξ1, ξ2, . . . } which is dense in⋃

Ω∈O0
Ω . That is, we letX ⊂ ⋃

Ω∈O0
Ω andX̄ = ⋃

Ω∈O0
Ω̄ .

We can then construct a sequence(Gk)k=0,1,... of convex cocompact groupsGk by way
of induction as follows. In here,Fk refers to the Dirichlet fundamental domain ofGk (con-
structed with respect to 0∈ Fk), andOk denotes the set of connected components ofF̄k ∩SN .
Now, if Gk−1 is given for somek ∈ N, thenGk is obtained as follows.

If ξk ∈ L(Gk−1), then we letGk = Gk−1. Otherwise, i.e. forξk /∈ L(Gk−1), there exist
gk ∈ Gk−1 andΩ ∈ Ok−1 such thatgk(ξk) ∈ Ω . Hence, by the observation above, there
existsγk ∈ H∗

gk(ξk)
(Ω) such thatδ(Gk−1 ∗ 〈γk〉) ≤ τk. In this situation, we then let

Gk = Gk−1 ∗ 〈γk〉 .

In this way we obtain the sequence(Gk) of convex cocompact groups, and we define

G :=
∞⋃

k=0

Gk .

In order to see thatG is a d-group, recall that Sullivan ([28]; see also Remark 1 below) has
shown that ifΓ1 ⊂ Γ2 ⊂ · · · ⊂ Γk ⊂ · · · is an increasing sequence of subgroups of the
Kleinian groupΓ = ⋃

k Γk, then it follows thatδ(Γ ) = supk δ(Γk). Applying this result to
our sequence(Gk) here, we obtain

δ(G) = δ

( ⋃
Gk

)
= supδ(Gk) ≤ supτk = τ .

Also note that by construction we have that{ξ1, . . . , ξk} ⊂ L(Gk) ∩ ⋃
Ω∈O0

Ω , for each
k ∈ N. This implies thatX ⊂ L(G) ∩ ⋃

Ω∈O0
Ω , and hence, sinceX is dense in

⋃
Ω∈O0

Ω

(and thusG0(X) is dense inSN ), it follows thatL(G) is dense inSN . Using the fact that
L(G) is closed, it then follows thatL(G) = SN , and hence thatG is a Kleinian group of the
first kind. Summarizing the above, we now have that

δ(G) ≤ τ < N = dimH(L(G)) ,

which gives thatG is a d-group.

REMARK 1 (see also [27]). The proof in [28] of Sullivan’s result which we employed
in Example 3 mainly uses the conformality of the Patterson measure. It seems worth men-
tioning that this result can be derived alternatively by purely elementary means as follows.
One easily verifies that

⋃
k Lur(Γk) ⊂ Lur(Γ ). On the other hand, ifξ ∈ Lur(Γ ), then

there exists an infinite pathpξ in the Cayley graph ofΓ such that the ray from the origin
to ξ is fully contained in some fixed hyperbolic neighbourhood ofpξ , and that the hyper-
bolic lengths of the geodesic segments ofpξ are uniformly bounded from above. Therefore
Lur(Γ ) = ⋃

k Lur(Γk). Using the monotonicity of Hausdorff dimension (see e.g. [9]) and the
fact thatδ(H) = dimH(Lur(H)) for every non-elementary Kleinian groupH ([6], [26]), it
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follows that

δ(Γ ) = dimH(Lur(Γ )) = dimH

( ⋃
k

Lur(Γk)

)

= sup
k

dimH(Lur(Γk)) = sup
k

δ(Γk) .

REMARK 2. It is straightforward to refine the latter construction to obtain a d-
group G which has the property that theN-dimensional spherical Lebesgue measure
λN(LJ(G)) of the set of Jørgensen points is strictly positive. In order to obtain such a group,
one proceeds as follows. Let(θk)k∈N denote some sequence of positive numbers such
that

∑
k∈N θk < 1/2. Using the notation introduced in Example 3, letγk be specially

chosen so thatλN(Π(H1(γk))) ≤ θk λN (
⋃

Ω∈O0
Ω), for eachk ∈ N. By construction we

haveλN(Π(H1(γk))) = λN(Π(H2(γk))) for all k, and that{Π(Hi(γk)) | k ∈ N, i = 1, 2}
is a family of mutually disjointN-dimensional spherical discs contained in

⋃
Ω∈O0

Ω .
Therefore,

λN

( ⋃
Ω∈O0

Ω \ LJ(G)

)
≤

∑
k∈N

∑
i=1,2

λN (Π(Hi(γk)))

≤ 2
∑
k∈N

θk λN

( ⋃
Ω∈O0

Ω

)
< λN

( ⋃
Ω∈O0

Ω

)
,

which shows thatLJ(G) is of positiveN-dimensional spherical Lebesgue measure.
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