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Abstract. The Euler class, which lies in thesond cohomology of the group of orien-
tation preserving homeomorphisms of the circle, is pulled back to the “smooth” Euler class in
the cohomology of the group of orientation predeg smooth diffeomorphisms of the circle.
Suppose a surface group(of genus> 1) is a normal subgroup of a group, so that we have
an extension o) = G/I" by I". We prove that if the canonical outer action @fon I" is
finite, then there is a canonical second cohomology clagg refstricting to the Euler class on
I" which is smoothly representable, that is, it is pulled back from the smooth Euler class by a
representation frony to the group of diffeomorphisms. Also, we prove that if the above outer
action is infinite, then any second cohomology clas€ @éstricting to the Euler class an is
not smoothly representable.

1. Introduction and statement of results. Let Diff SfSl denote the group of ori-
entation preserving smootlC¢°) diffeomorphisms of the circle. In this paper, we prove
several results on the representability of the Euler class of the Eilenberg-MacLane coho-
mology H2(Diff ©S1; Z) of the group Diff°st. The Euler class lies in the cohomology
of the group Homeps? of orientation preserving homeomorphisms of the circle and it is
pulled back toH 2(Diff ¥ S%; Z) by the inclusion Diff°S* < Homeo.S. The Euler class

in H2(Homeao_S%; Z) is defined as follows. We denote Bomeo, 51 the universal covering
group of Homeq St. Indeed, with respect to the identificati®y Z = S, Homeq, S is the

group of orientation preserving homeomorphisms of the realRireach of which has period
1:

Homeo, S* = {f € Homea.R | f(t +1) = f() + 1} .

We fix a set theoretical sectian : Homea,S* — Homea_S!. For a 2-simplex f, g) of
Homeo. S we definex (£, 9) = o (f¢9) 1o (f)o(g). Here, we identify each integer with the
translation ofR by the integer. Thus we have a 2-cochgaiwhich is in fact a 2-cocycle. This
2-cocycley represents th&uler class E and is called thé&uler cocycle. The Euler clas¥
does not depend on the choice of the sectioGhys [Gh1] showed that the Euler cocycle is
a bounded cocycle.

Now, suppose that a groupis given. A second cohomology class H2%(G; Z) is said
to berepresentableif there is a homomorhism : G — Homea, St such that = ¢*E. Inthe
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case wher&; is the fundamental group of a manifald with contractible universal covering,
c € H%(G; Z) = H*(M; Z) is representable if and onlydfis the Euler class of a topological
foliated circle bundle oveM. It was shown by Ghys [Gh1] that & is a countable discrete
group, there € H2(G; Z) is representable if and only if its Gromov note is less than or
equal to 1/2 inH2(G; R). In [My] we showed that there is a foliated circle bundle which is
not smoothable, namely, there is a homomorphisnG — Homeo, ST which never factors
through Diff?fSl even cohomological level. To be precise, the clgis8 does not come from
the Euler class i/ 2(Diff $°S%; Z). We call the Euler class itf?(Diff 2 $%; Z) the smooth
Euler classand denote it bye>°. The smooth Euler clags®™ is represented by the restriction
cocycle x | Diff fSl. Also, we say that a class € H%(G; Z) is smoothly representable if
there is a homomorphism : G — Diff 3_°Sl such that = ¢*E°.

Let X be a closed orientable surface of genus greater than 1. We denbtéhieyfunda-
mental group of with respect to a certain base point. kgte H?(I"; Z) be the Euler class
of X, that is,e is the class such thatr, [I']) = 2 — 2genusX’), where[I'] is the funda-
mental class iH(I"; Z) = Hy(X; Z) and(-, -) denotes the natural pairing. Now, consider
an extension of a group by I'":

1-T'->G—-> Q00— 1.

Given such an extension, there naturally arises an outer actionoofI” by the conjugation
with an element of;. More precisely, for any € Q, choose an elemegt € G which is
mapped ta;. Then conjugation by, y — Gy g1, defines an automorphism 6%. Different
choice of an element of7, which is mapped tg, determines another automorphism, and
these automorphisms differ by an inner automorphisii o ote thatl™ is not Abelian. Thus
we have an outer automorphism Bfdepending only og € Q. We denote this outer action
by u : O — Out(I"). Sincel” has the trivial center, an extension of a gray /" inducing
the given outer action, if any, is uniquely determined by the outer agtiop to equivalence.
For details, we refer to [Mac]. Suppose an extension of a g@uyy I”

1—>F—t>G£>Q—>1

is given. Then we have the following results.

THEOREM I. If the image of the outer action u(Q) is a finite subgroup of Out(I"),
then either

() thereisa canonical classe € H%(G; Z) with t*e = e, which is smoothly repre-
sentable,
or

(i) thereareasubgroup Q' c Q ofindex 2 andacanonical classe’ € H2(x~1(Q"); Z)
with (*¢’ = e, which is smoothly representable.

THEOREM II.  If «(Q) isaninfinite subgroup of Out(I"), thennoclasse € H2(G; Z)
with t*e = e is smoothly representable.
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COROLLARY 1 ([My]). Let ¥ < M — S be a smooth orientable surface bundle
over S, whose monodromy diffeomorphism is not isotopic to any diffeomorphism of finite
order. Then the Euler classe € H2(M; Z) of the tangent bundle to the fibres of the surface
bundleis representable but is not smoothly representable.

COROLLARY 2. Let ¥ — M — B be a smooth orientable surface bundle over a
manifold B. Assume that the monodromy group of the surface bundleis finite and the second
homotopy group 2(B) istrivial. Then the Euler classe € H2(M; Z) of the tangent bundle
to the fibres of the surface bundle is smoothly representable.

In Section 2, we review relevant results on faithful representations and the mapping class
group of a hyperbolic surface. The proofs of our theorems are given in Section 3.

2. Faithful representations of a hyperbolic surface and the Nielsen realization
problem. Since we assume that the genus of the surf8ds greater than 1, the surface
X admits a hyperbolic metric, that is, a metric of constant negative curvatliréSuppose
a hyperbolic metriqp on the surfaceX is given. Then it induces a faithful representation
¢ : I' - P3L(2, R) of the fundamental groug™ of ¥. As the group of (orientation-
preserving) isometrie®SL (2, R) acts on the hyperbolic plan€?, and the action naturally
extends to the circle atinfinity, so thaBL(2, R) can be considered as a subgroup of Qiﬁl.

Itis clear thater = ¢*E®. Indeed, this faithful representation is the extreme case admitted
by the Milner-Wood inequality (see [Mil], [W], [My]). Conversely, Ghys’ rigidity theorem
asserts that in this extreme case the Euler ahasacterizes the conjugate class of the repre-
sentation. Two representatiofis, > : I" — Diff 7_S* are said to b&” conjugate if there
existsf e Diff 7, §* such thaty1(y) = f o ya(y) o f~Lforanyy e I'.

THEOREM 1 ([Gh2]). Supposethat ¢ : I — Diff iSl (3 < r < 00) isahomomor-
phismwith ¢* E> = . Then there exists an injective homomorphisme : I' — PS.(2, R)
whose image is a discrete subgroup such that ¢ is C" conjugate to ¢.

Next, let Diff* X' (resp. Diff}® X') denote the group of smooth diffeomorphisms (resp.
orientation preserving smooth diffeomorphismspafif we fix a hyperbolic metrigpp on X,
we have the group of isometries Is6R, p) (resp. Isom (X, p)) of the hyperbolic surface
as a subgroup of Dif ' (resp. Diff{° ¥). The following is well known.

LEMMA 1. Thegrouplsom(X, p) isfinite.

Let M denote the mapping class group bf The groupM can be defined as the
group of connected components of DI with C*°-topology, that is M = mo(Diff °X).
It is well-known thatzo(Diff °°X) is isomorphic to Out"). Therefore, we may consider
the groupM is a subgroup of O¢f™) of index 2. The following is Kerckhoff’s solution to
the celebrate Nielsen readition problem. We denote by : Diff X — no(Diff *°X) the
natural quotient homomorphism.
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THEOREM 2 ([Ke]). For any finite subgroup F of mo(Diff *°X), there exists a
hyperbolic metric p on X such that Isom(¥, p) < Diff X is isomorphic to F and
rw(lsom( ¥, p)) = F.

The following are key lemmas for the proof of Theorem Il. SupposeXhat X is the
universal covering of. ThenX is diffeomorphic to the open unit disk i@. It is well-known
that for anyf e Diff ° X, a lifted diffeomorphismyf : £ — ¥ naturally extends to the circle
at infinity S3, ~ aD. We refer to [CB] for the details. We denote this extension (and its
restriction) toS, by f|S§O. Then we have the following homotopy invariance of the induced
action on the circle at infinity.

LEMMA 2. Let iy and hy be homotopic homeomorphisms of X. Suppose a lift 47 :
¥ — X isgiven. Thenthereexistsalift /ip : £ — X of hp such that ii1|S%, = ho|SL..

For the proof, we refer to [CB]. The following lemma is a characterization of the smooth
action onsZ, induced from a diffeomorphism of. See also [I].

LEMMA 3. The homeomorphism f | Sgo isa smooth diffeomorphismif and only if f is
isotopic to an isometry with respect to a hyperbolic metric on X.

PROOF. The action onsy, induced from an isometry is automatically smooth. Thus,
with Lemma 2, “if part” is clear. Conversely, suppose that an arbitrary hyperbolic metric
on X is given andf is not isotopic to an isometry @f, p). For any loop¢ in X, there is a
unique closed geodesic, denotedéywvhich is freely homotopic té. By the assumption on
f, there is a closed geodesijdn (X, p) such that lengtty) # Iength@). Lety and f.y
denote the isometries corresponding mndf/(B respectively, by the faithful representation.
In other wordsy is a hyperbolic translation with its axis a lijtof ¢, and f,.y is that with its
axis a lift of £ (g).

Supposer € S(}o is a fixed point ofy. Then it is easy to see that lengih = logy’(x)
and lengtlif (9)) = log(f.y) (£ (x)), where f is the lift of £ such thatf,y = foy o f~1
on Sgo. We claim that iff is differentiable ak, then /’(x) = 0. Assume, to the contrary, that
f'(x) # 0. Then, sincef o y = fiy o f on Sk, we have

explength(g)) = y'(x)
=(ftofivo H®
= (YT - ) F) - F'@)
= (fr) (f )
= expllength( (9)))
which is a contradiction. |
LEMMA 4. Anyinfinite subgroup H of Out(I") has an element of infinite order.

PROOF. Suppose that every element #f is of finite order. Then, sincé/ is infi-
nite, we have an increasing sequence of finite subgrélips H, C --- C H such that
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H = ;24 Hx. Out(I") = mo(Diff ) acts properly discontinuously 6h, the Teichmdiller
space of all hyperbolic metrics afi. By Kerckhoff's theorem (Theorem 2), every subgroup
Hy, acting on7 fixes some pointir¥ . ThereforeH fixes a point in the Thurston boundary

of the Teichmuiller spac@& (for the details, we refer to [Th] and [FLP]). This implies that a
representativg’ € Diff °° X of any element off (considered as a subgroup-af(Diff > X))
preserves the same (arational) measured foliatfon) on X' up to isotopy (preserving the
measured foliation)f (F, u) = (F, u). However, it is easy to see that the group of isotopy
classes of diffeomorphisms preserving artiaral measured foliation is finite (see exposé 9
in [FLP]). This contradicts the assumption tHatis infinite. i

3. Proof of Theorems| and II.  Now suppose that an extension@fby I
1T 5>G650->1

is given. First we give the proof of Theorem I.

PROOF OFTHEOREM |. Sincerq(Diff *°X) = Out(I") andu(Q) is a finite subgroup
of Out(I"), by Kerckhoff’'s theorem (Theorem 2) we have a hyperbolic metran X' such
that the outer actiop : Q — Out(I') liftsto & : O — Isom(X, p) C Diff *°X. We assume
that/i(Q) c Diff °X. Otherwise, seQ’ = i~ l(som X, p) N Diff ¥ %) and then replacing
Q with Q' in the following, we obtain (ii) of the theorem. From now on, we idenfifywith
the image of the faithful representatioh— PSL(2, R) with respect to the hyperbolic metric
o. Consider an extension

E:1->T —>NU)—lsomX, p) -1,

whereN (I') denotes the normalizer éf in PSL(2, R). Let i*E be an extension obtained by
pulling backE by the homomorpisn : Q — Isom(X, p). Then, since«(Q) is isomorphic
to Isom( X, p) and both of the outer actions are identical, the extengiahis isomorphic to
the extension

1-T"'->G—- Q00— 1.

Here, recall that an extension ¢f by I" is determined by its outer action up to equivalence.
Therefore, we have the following commutative diagram:

1 - I - G - 0 - 1

l \ \
1 - I' - NUI) — lIsomX,p) — 1.

Thus, we have a homomorphisth— N(I") induced fromix : O — Isom(X, p), which is
an epimorphism. Sinc#& (") is a subgroup oPSL(2, R) and it acts on the circle at infinity
5%, we have the desired conclusion. O

For the proof of Theorem Il, we need the following.
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LEMMA 5. Letg : G — Diff St be a homomorphism such that (*¢*E® = e. If
thereisq € Q suchthat 1 (g) isan element of infinite order in Out(I™), then, for any element
G € Gsuchthat 7(§) = q € Q, ¢(§) isalso an element of infinite order in Diff °St.

PROOF. By the assumptiorip*E>® = e, applying Ghy’s rigidity theorem (Theorem
1), we can assume thato ¢ : I — Diff 3’:’51 is an injective homomorphism onto a discrete
subgroup oPSL(2, R) by conjugatingy with aC* diffeomorphism of the circle, if necessary.
For anyg € Q, choose an elemeigt € G such thatr(g) = ¢ € Q. By the definition,
u(g) € Out(I") is defined to be the equivalence class determined by(gprg Aut(l"),
where conjj) denotes the automorphism Bfdefined by conig)(y) = G - y - g1 for any
y € I'. Sincew(q) is of infinite order in Owt"), conj(q) is also of infinite order in Aut’").

Now assume thap(g) is of finite order. Thus, there is a natural numhesuch that
¢(¢@)" = 1. Then we have

poni@"(y) = e@"yq™")
=@ "e()e@)™"
=o(y)

for anyy € I'. However, since co§)" # 1, confg)"(y) # y for somey € I'. This
implies thatp|I" = ¢ o ¢ is not injective, a contradiction. m]

Now we give the proof of Theorem II.

PROOF OF THEOREM Il. To the contrary, assume that we have a homomorphism
¢ . G — Diff 3’:’51 such thate = ¢*E®°. As in the proof of Lemma 5, by Ghys’ rigid-
ity theorem (Theorem 1) we can assume that « = ¢ | I" is the faithful representation
I' — PSL(2, R) with respect to a hyperbolic metric on the surfaCe From now on, we
identify the fundamental group1(X) = I" with the image of this faithful representation.
By the assumption, Lemmas 4 and 5, we have Q such thaty(g) is of infinite order in
Diff 3’:’51, whereg € G is an element such that(g) = ¢. Note that ifi(¢) is “orientation-
reversing”, then we may considgf € Q instead of; € Q. Then, conjg) € Aut(I') is
a representative gf(¢) € Out(I"). Note thatl" is identified with a subgroup (a Fuchsian
group) ofPSL(2, R), the group of isometries dif2. Recall that for any liftf : H> — H? of
any diffeomorphismy” e Diff X, f naturally extends to a homeomorphism on the circle at
infinity S (see [CB] for example).

CLAIM 1. There exists a diffeomorphism f e Diff X such that, as a homeomor-
phismon SL, conig)(y) = foyo flforanyy e I', where f : S — SL isthe
extension of alift of f.

PROOF. Since the mapping class groud is isomorphic to a subgroup of Qut) of
index 2, we have a diffeomorphisyh e Diff 2 whose isotopy classf] € M corresponds
to u(g) € Out(I") through the isomorphism. Moreover, we can assume that the diffeomor-
phism f fixes a base point € X and the induced homomorphisfp : 71(X, %) — 71(X, %)
is equal to cong) € Aut(I") (with the identificationl” = 71(X, %) ). From now on, we use
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the Poincaré disk modd) instead of the upper half plane mod#&P. Thus we have the uni-
versal coveringr : D — X. Choose a base point &, also denoted by € D, which is a
lift of the base point € X. For anyy € m1(X, %), we choose a loop atx € X represent-
ing y. Then we have the lif§, of ¢ begining atx € D. We also have the lift§; andg_;

of g, which begin at the terminal point gfy and end at the initial point o, respectively.
Iterating this procedure repeatedly forgtaand backward, we have two limit points on the
circle at infinity. Denote the backward limit point bc)g and the forward limit point bycg’.
Namely, we choose the componentwof!(g) passing the base poiate D and then we have
its limit point x7, x7’ € S1.. Now we choose a unique liff of 7 such thatf(x) = % and

(@) = ﬁ};/), wheref@/) is the lift of the loopf(g) in X begining atx € D. Itis now clear

that the extension of to S%, sendsrg to x% ) andxy to x7 ). Therefore, as an action on

S, we have corj)(y) = fu(y) = foyo fL O
CLAIM 2. Suppose that homeomorphisms 1 and hy of S%, satisfy h1 0 y o hIl =
haoy ohyforanyy € I'. Thenhy = hy.

PROOF. Seth = h[l o hp. Then the hypothesis implies thato 4 = h o y for any
y € I'onSL . Eachy e I' is a hyperbolic translation and it fixes exactly two pointssgn
Sincey oh = ho y, h also fixes the fixed points of eaghe I'. It can be easily seen that the
union of the fixed point sets of all € I" is dense inSC}o. Thereforeh is the identity. O

Now, with the identification of " with the Fuchsian group iRSL(2, R), ¢ sendsj-y-§*
to¢(§) - v - ¢(@)~L. Thus, by Claim 2¢(§) € Diff °S* is equal tof|S2,. However, since
f cannot be isotopic to a diffeomorphism of finite order, there is no hyperbolic metri on
which makesf an isometry (cf. Lemma 1). By Lemma 3, this implies tifas% cannot be a
diffeomorphism of the circle. This is a contradiction. O
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