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Abstract. The Euler class, which lies in the second cohomology of the group of orien-
tation preserving homeomorphisms of the circle, is pulled back to the “smooth” Euler class in
the cohomology of the group of orientation preserving smooth diffeomorphisms of the circle.
Suppose a surface groupΓ (of genus> 1) is a normal subgroup of a groupG, so that we have
an extension ofQ = G/Γ by Γ . We prove that if the canonical outer action ofQ on Γ is
finite, then there is a canonical second cohomology class ofG restricting to the Euler class on
Γ which is smoothly representable, that is, it is pulled back from the smooth Euler class by a
representation fromG to the group of diffeomorphisms. Also, we prove that if the above outer
action is infinite, then any second cohomology class ofG restricting to the Euler class onΓ is
not smoothly representable.

1. Introduction and statement of results. Let Diff ∞+ S1 denote the group of ori-
entation preserving smooth (C∞) diffeomorphisms of the circle. In this paper, we prove
several results on the representability of the Euler class of the Eilenberg-MacLane coho-
mologyH 2(Diff ∞+ S1; Z) of the group Diff∞+ S1. The Euler class lies in the cohomology
of the group Homeo+S1 of orientation preserving homeomorphisms of the circle and it is
pulled back toH 2(Diff ∞+ S1; Z) by the inclusion Diff∞+ S1 ↪→ Homeo+S1. The Euler class

in H 2(Homeo+S1; Z) is defined as follows. We denote bỹHomeo+S1 the universal covering

group of Homeo+S1. Indeed, with respect to the identificationR/Z = S1, H̃omeo+S1 is the
group of orientation preserving homeomorphisms of the real lineR each of which has period
1:

H̃omeo+S1 = {f ∈ Homeo+R | f (t + 1) = f (t)+ 1} .
We fix a set theoretical sectionσ : Homeo+S1 → H̃omeo+S1. For a 2-simplex(f, g) of
Homeo+S1 we defineχ(f, g) = σ(f g)−1σ(f )σ(g). Here, we identify each integer with the
translation ofR by the integer. Thus we have a 2-cochainχ which is in fact a 2-cocycle. This
2-cocycleχ represents theEuler class E and is called theEuler cocycle. The Euler classE
does not depend on the choice of the sectionσ . Ghys [Gh1] showed that the Euler cocycle is
a bounded cocycle.

Now, suppose that a groupG is given. A second cohomology classc ∈ H 2(G; Z) is said
to berepresentable if there is a homomorhismϕ : G → Homeo+S1 such thatc = ϕ∗E. In the
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case whereG is the fundamental group of a manifoldM with contractible universal covering,
c ∈ H 2(G; Z) = H 2(M; Z) is representable if and only ifc is the Euler class of a topological
foliated circle bundle overM. It was shown by Ghys [Gh1] that ifG is a countable discrete
group, thenc ∈ H 2(G; Z) is representable if and only if its Gromov norm|c| is less than or
equal to 1/2 inH 2(G; R). In [My] we showed that there is a foliated circle bundle which is
not smoothable, namely, there is a homomorphismϕ : G → Homeo+S1 which never factors
through Diff∞+ S1 even cohomological level. To be precise, the classϕ∗E does not come from
the Euler class inH 2(Diff ∞+ S1; Z). We call the Euler class inH 2(Diff ∞+ S1; Z) thesmooth
Euler class and denote it byE∞. The smooth Euler classE∞ is represented by the restriction
cocycleχ |Diff ∞+ S1. Also, we say that a classc ∈ H 2(G; Z) is smoothly representable if
there is a homomorphismϕ : G → Diff ∞+ S1 such thatc = ϕ∗E∞.

LetΣ be a closed orientable surface of genus greater than 1. We denote byΓ the funda-
mental group ofΣ with respect to a certain base point. LeteΓ ∈ H 2(Γ ; Z) be the Euler class
of Σ, that is,eΓ is the class such that〈eΓ , [Γ ]〉 = 2 − 2genus(Σ), where[Γ ] is the funda-
mental class inH2(Γ ; Z) = H2(Σ; Z) and〈·, ·〉 denotes the natural pairing. Now, consider
an extension of a groupQ by Γ :

1 → Γ → G → Q → 1 .

Given such an extension, there naturally arises an outer action ofQ onΓ by the conjugation
with an element ofG. More precisely, for anyq ∈ Q, choose an element̃q ∈ G which is
mapped toq. Then conjugation bỹq, γ �→ q̃γ q̃−1, defines an automorphism ofΓ . Different
choice of an element ofG, which is mapped toq, determines another automorphism, and
these automorphisms differ by an inner automorphism ofΓ . Note thatΓ is not Abelian. Thus
we have an outer automorphism ofΓ depending only onq ∈ Q. We denote this outer action
byµ : Q → Out(Γ ). SinceΓ has the trivial center, an extension of a groupQ byΓ inducing
the given outer action, if any, is uniquely determined by the outer actionµ up to equivalence.
For details, we refer to [Mac]. Suppose an extension of a groupQ by Γ

1 → Γ
ι→ G

π→ Q → 1

is given. Then we have the following results.

THEOREM I. If the image of the outer action µ(Q) is a finite subgroup of Out(Γ ),
then either

(i) there is a canonical class e ∈ H 2(G; Z) with ι∗e = eΓ , which is smoothly repre-
sentable,
or

(ii) there are a subgroupQ′ ⊂Q of index 2and a canonical class e′ ∈ H 2(π−1(Q′); Z)

with ι∗e′ = eΓ , which is smoothly representable.

THEOREM II. If µ(Q) is an infinite subgroup of Out(Γ ), then no class e ∈ H 2(G; Z)

with ι∗e = eΓ is smoothly representable.
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COROLLARY 1 ([My]). Let Σ ↪→ M → S1 be a smooth orientable surface bundle
over S1, whose monodromy diffeomorphism is not isotopic to any diffeomorphism of finite
order. Then the Euler class e ∈ H 2(M; Z) of the tangent bundle to the fibres of the surface
bundle is representable but is not smoothly representable.

COROLLARY 2. Let Σ ↪→ M → B be a smooth orientable surface bundle over a
manifold B. Assume that the monodromy group of the surface bundle is finite and the second
homotopy group π2(B) is trivial. Then the Euler class e ∈ H 2(M; Z) of the tangent bundle
to the fibres of the surface bundle is smoothly representable.

In Section 2, we review relevant results on faithful representations and the mapping class
group of a hyperbolic surface. The proofs of our theorems are given in Section 3.

2. Faithful representations of a hyperbolic surface and the Nielsen realization
problem. Since we assume that the genus of the surfaceΣ is greater than 1, the surface
Σ admits a hyperbolic metric, that is, a metric of constant negative curvature−1. Suppose
a hyperbolic metricρ on the surfaceΣ is given. Then it induces a faithful representation
ϕ : Γ → PSL(2,R) of the fundamental groupΓ of Σ. As the group of (orientation-
preserving) isometries,PSL(2,R) acts on the hyperbolic planeH2, and the action naturally
extends to the circle at infinity, so thatPSL(2,R) can be considered as a subgroup of Diff∞+ S1.
It is clear thateΓ = ϕ∗E∞. Indeed, this faithful representation is the extreme case admitted
by the Milner-Wood inequality (see [Mil], [W], [My]). Conversely, Ghys’ rigidity theorem
asserts that in this extreme case the Euler classcharacterizes the conjugate class of the repre-
sentation. Two representationsψ1, ψ2 : Γ → Diff r+S1 are said to beCr conjugate if there
existsf ∈ Diff r+S1 such thatψ1(γ ) = f ◦ ψ2(γ ) ◦ f−1 for anyγ ∈ Γ .

THEOREM 1 ([Gh2]). Suppose that ψ : Γ → Diff r+S1 (3 ≤ r ≤ ∞) is a homomor-
phism with ϕ∗E∞ = eΓ . Then there exists an injective homomorphism ϕ : Γ → PSL(2,R)
whose image is a discrete subgroup such that ψ is Cr conjugate to ϕ.

Next, let Diff∞Σ (resp. Diff∞+Σ) denote the group of smooth diffeomorphisms (resp.
orientation preserving smooth diffeomorphisms) ofΣ. If we fix a hyperbolic metricρ onΣ,
we have the group of isometries Isom(Σ, ρ) (resp. Isom+(Σ, ρ)) of the hyperbolic surface
as a subgroup of Diff∞Σ (resp. Diff∞+Σ). The following is well known.

LEMMA 1. The group Isom(Σ, ρ) is finite.

Let M denote the mapping class group ofΣ. The groupM can be defined as the
group of connected components of Diff∞+Σ with C∞-topology, that is,M = π0(Diff ∞+Σ).
It is well-known thatπ0(Diff ∞Σ) is isomorphic to Out(Γ ). Therefore, we may consider
the groupM is a subgroup of Out(Γ ) of index 2. The following is Kerckhoff’s solution to
the celebrate Nielsen realization problem. We denote byπ : Diff ∞Σ → π0(Diff ∞Σ) the
natural quotient homomorphism.
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THEOREM 2 ([Ke]). For any finite subgroup F of π0(Diff ∞Σ), there exists a
hyperbolic metric ρ on Σ such that Isom(Σ, ρ) ⊂ Diff ∞Σ is isomorphic to F and
π(Isom(Σ, ρ)) = F .

The following are key lemmas for the proof of Theorem II. Suppose thatΣ̃ → Σ is the
universal covering ofΣ. ThenΣ̃ is diffeomorphic to the open unit disk inC. It is well-known
that for anyf ∈ Diff ∞+Σ, a lifted diffeomorphismf̃ : Σ̃ → Σ̃ naturally extends to the circle
at infinity S1∞ ≈ ∂D. We refer to [CB] for the details. We denote this extension (and its
restriction) toS1∞ by f̃ |S1∞. Then we have the following homotopy invariance of the induced
action on the circle at infinity.

LEMMA 2. Let h1 and h2 be homotopic homeomorphisms of Σ . Suppose a lift h̃1 :
Σ̃ → Σ̃ is given. Then there exists a lift h̃2 : Σ̃ → Σ̃ of h2 such that h̃1|S1∞ = h̃2|S1∞.

For the proof, we refer to [CB]. The following lemma is a characterization of the smooth
action onS1∞ induced from a diffeomorphism ofΣ. See also [I].

LEMMA 3. The homeomorphism f̃ | S1∞ is a smooth diffeomorphism if and only if f is
isotopic to an isometry with respect to a hyperbolic metric on Σ .

PROOF. The action onS1∞ induced from an isometry is automatically smooth. Thus,
with Lemma 2, “if part” is clear. Conversely, suppose that an arbitrary hyperbolic metricρ

onΣ is given andf is not isotopic to an isometry of(Σ, ρ). For any loop
 in Σ, there is a
unique closed geodesic, denoted by
̂, which is freely homotopic to
. By the assumption on
f , there is a closed geodesicg in (Σ, ρ) such that length(g) 
= length(f̂ (g)). Let γ andf∗γ
denote the isometries corresponding tog andf̂ (g) respectively, by the faithful representation.
In other words,γ is a hyperbolic translation with its axis a liftg̃ of g, andf∗γ is that with its
axis a lift of f̂ (g).

Supposex ∈ S1∞ is a fixed point ofγ . Then it is easy to see that length(g) = logγ ′(x)
and length(f̂ (g)) = log(f∗γ )′(f̃ (x)), wheref̃ is the lift of f such thatf∗γ = f̃ ◦ γ ◦ f̃−1

onS1∞. We claim that iff̃ is differentiable atx, thenf̃ ′(x) = 0. Assume, to the contrary, that
f̃ ′(x) 
= 0. Then, sincef̃ ◦ γ = f∗γ ◦ f̃ onS1∞, we have

exp(length(g)) = γ ′(x)
= (f̃−1 ◦ f∗γ ◦ f̃ )′(x)
= (f̃−1)′(f̃ (x)) · (f∗γ )′(f̃ (x)) · f̃ ′(x)
= (f∗γ )′(f̃ (x))

= exp(length(f̂ (g))) ,

which is a contradiction. �

LEMMA 4. Any infinite subgroup H of Out(Γ ) has an element of infinite order.

PROOF. Suppose that every element ofH is of finite order. Then, sinceH is infi-
nite, we have an increasing sequence of finite subgroupsH1 ⊂ H2 ⊂ · · · ⊂ H such that
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H = ⋃∞
k=1Hk. Out(Γ ) ∼= π0(Diff ∞Σ) acts properly discontinuously onT , the Teichmüller

space of all hyperbolic metrics onΣ. By Kerckhoff’s theorem (Theorem 2), every subgroup
Hk acting onT fixes some point inT . ThereforeH fixes a point in the Thurston boundary∂T
of the Teichmüller spaceT (for the details, we refer to [Th] and [FLP]). This implies that a
representativef ∈ Diff ∞Σ of any element ofH (considered as a subgroup ofπ0(Diff ∞Σ))
preserves the same (arational) measured foliation(F , µ) onΣ up to isotopy (preserving the
measured foliation):f (F , µ) = (F , µ). However, it is easy to see that the group of isotopy
classes of diffeomorphisms preserving an arational measured foliation is finite (see exposé 9
in [FLP]). This contradicts the assumption thatH is infinite. �

3. Proof of Theorems I and II. Now suppose that an extension ofQ by Γ

1 → Γ
ι→ G

π→ Q → 1

is given. First we give the proof of Theorem I.

PROOF OFTHEOREM I. Sinceπ0(Diff ∞Σ) ∼= Out(Γ ) andµ(Q) is a finite subgroup
of Out(Γ ), by Kerckhoff’s theorem (Theorem 2) we have a hyperbolic metricρ onΣ such
that the outer actionµ : Q → Out(Γ ) lifts to µ̃ : Q → Isom(Σ, ρ) ⊂ Diff ∞Σ. We assume
thatµ̃(Q) ⊂ Diff ∞+Σ. Otherwise, setQ′ = µ̃−1(Isom(Σ, ρ) ∩ Diff ∞+Σ) and then replacing
Q with Q′ in the following, we obtain (ii) of the theorem. From now on, we identifyΓ with
the image of the faithful representationΓ → PSL(2,R) with respect to the hyperbolic metric
ρ. Consider an extension

E : 1 → Γ → N(Γ ) → Isom(Σ, ρ) → 1 ,

whereN(Γ ) denotes the normalizer ofΓ in PSL(2,R). Let µ̃∗E be an extension obtained by
pulling backE by the homomorpism̃µ : Q → Isom(Σ, ρ). Then, sinceµ(Q) is isomorphic
to Isom(Σ, ρ) and both of the outer actions are identical, the extensionµ̃∗E is isomorphic to
the extension

1 → Γ → G → Q → 1 .

Here, recall that an extension ofQ by Γ is determined by its outer action up to equivalence.
Therefore, we have the following commutative diagram:

1 → Γ → G → Q → 1

‖ ↓ ↓
1 → Γ → N(Γ ) → Isom(Σ, ρ) → 1 .

Thus, we have a homomorphismG → N(Γ ) induced fromµ̃ : Q → Isom(Σ, ρ), which is
an epimorphism. SinceN(Γ ) is a subgroup ofPSL(2,R) and it acts on the circle at infinity
S1∞, we have the desired conclusion. �

For the proof of Theorem II, we need the following.
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LEMMA 5. Let ϕ : G → Diff ∞+ S1 be a homomorphism such that ι∗ϕ∗E∞ = eΓ . If
there is q ∈ Q such that µ(q) is an element of infinite order in Out(Γ ), then, for any element
q̃ ∈ G such that π(q̃) = q ∈ Q, ϕ(q̃) is also an element of infinite order in Diff ∞+ S1.

PROOF. By the assumptionι∗ϕ∗E∞ = eΓ , applying Ghy’s rigidity theorem (Theorem
1), we can assume thatϕ ◦ ι : Γ → Diff ∞+ S1 is an injective homomorphism onto a discrete
subgroup ofPSL(2,R) by conjugatingϕ with aC∞ diffeomorphism of the circle, if necessary.
For anyq ∈ Q, choose an element̃q ∈ G such thatπ(q̃) = q ∈ Q. By the definition,
µ(q) ∈ Out(Γ ) is defined to be the equivalence class determined by conj(q̃) ∈ Aut(Γ ),
where conj(q̃) denotes the automorphism ofΓ defined by conj(q̃)(γ ) = q̃ · γ · q̃−1 for any
γ ∈ Γ . Sinceµ(q) is of infinite order in Out(Γ ), conj(q̃) is also of infinite order in Aut(Γ ).

Now assume thatϕ(q̃) is of finite order. Thus, there is a natural numbern such that
ϕ(q̃)n = 1. Then we have

ϕ(conj(q̃)n(γ )) = ϕ(q̃nγ q̃−n)
= ϕ(q̃)nϕ(γ )ϕ(q̃)−n

= ϕ(γ )

for any γ ∈ Γ . However, since conj(q̃)n 
= 1, conj(q̃)n(γ ) 
= γ for someγ ∈ Γ . This
implies thatϕ|Γ = ϕ ◦ ι is not injective, a contradiction. �

Now we give the proof of Theorem II.

PROOF OF THEOREM II. To the contrary, assume that we have a homomorphism
ϕ : G → Diff ∞+ S1 such thate = ϕ∗E∞. As in the proof of Lemma 5, by Ghys’ rigid-
ity theorem (Theorem 1) we can assume thatϕ ◦ ι = ϕ |Γ is the faithful representation
Γ → PSL(2,R) with respect to a hyperbolic metric on the surfaceΣ. From now on, we
identify the fundamental groupπ1(Σ) = Γ with the image of this faithful representation.
By the assumption, Lemmas 4 and 5, we haveq ∈ Q such thatϕ(q̃) is of infinite order in
Diff ∞+ S1, whereq̃ ∈ G is an element such thatπ(q̃) = q. Note that ifµ(q) is “orientation-
reversing”, then we may considerq2 ∈ Q instead ofq ∈ Q. Then, conj(q̃) ∈ Aut(Γ ) is
a representative ofµ(q) ∈ Out(Γ ). Note thatΓ is identified with a subgroup (a Fuchsian
group) ofPSL(2,R), the group of isometries ofH2. Recall that for any liftf̃ : H2 → H 2 of
any diffeomorphismf ∈ Diff ∞+Σ, f̃ naturally extends to a homeomorphism on the circle at
infinity S1∞ (see [CB] for example).

CLAIM 1. There exists a diffeomorphism f ∈ Diff ∞+Σ such that, as a homeomor-
phism on S1∞, conj(q̃)(γ ) = f̃ ◦ γ ◦ f̃−1 for any γ ∈ Γ, where f̃ : S1∞ → S1∞ is the
extension of a lift of f .

PROOF. Since the mapping class groupM is isomorphic to a subgroup of Out(Γ ) of
index 2, we have a diffeomorphismf ∈ Diff ∞+Σ whose isotopy class[f ] ∈ M corresponds
to µ(q) ∈ Out(Γ ) through the isomorphism. Moreover, we can assume that the diffeomor-
phismf fixes a base point∗ ∈ Σ and the induced homomorphismf∗ : π1(Σ, ∗) → π1(Σ, ∗)
is equal to conj(q̃) ∈ Aut(Γ ) (with the identificationΓ = π1(Σ, ∗) ). From now on, we use
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the Poincaré disk modelD instead of the upper half plane modelH 2. Thus we have the uni-
versal coveringπ : D → Σ. Choose a base point ofD, also denoted by∗ ∈ D, which is a
lift of the base point∗ ∈ Σ. For anyγ ∈ π1(Σ, ∗), we choose a loopg at∗ ∈ Σ represent-
ing γ . Then we have the lift̃g 0 of g begining at∗ ∈ D. We also have the lifts̃g1 and g̃−1

of g, which begin at the terminal point of̃g 0 and end at the initial point of̃g 0, respectively.
Iterating this procedure repeatedly forward and backward, we have two limit points on the
circle at infinity. Denote the backward limit point byxαg and the forward limit point byxωg .

Namely, we choose the component ofπ−1(g) passing the base point∗ ∈ D and then we have
its limit point xαg , x

ω
g ∈ S1∞. Now we choose a unique lift̃f of f such thatf̃ (∗) = ∗ and

f̃ (g̃) = f̃ (g), wheref̃ (g) is the lift of the loopf (g) in Σ begining at∗ ∈ D. It is now clear
that the extension of̃f to S1∞ sendsxαg to xαf (g) andxωg to xωf (g). Therefore, as an action on

S1∞, we have conj(q̃)(γ ) = f∗(γ ) = f̃ ◦ γ ◦ f̃−1. �

CLAIM 2. Suppose that homeomorphisms h1 and h2 of S1∞ satisfy h1 ◦ γ ◦ h−1
1 =

h2 ◦ γ ◦ h−1
2 for any γ ∈ Γ . Then h1 = h2.

PROOF. Seth = h−1
1 ◦ h2. Then the hypothesis implies thatγ ◦ h = h ◦ γ for any

γ ∈ Γ onS1∞. Eachγ ∈ Γ is a hyperbolic translation and it fixes exactly two points onS1∞.
Sinceγ ◦ h = h ◦ γ , h also fixes the fixed points of eachγ ∈ Γ . It can be easily seen that the
union of the fixed point sets of allγ ∈ Γ is dense inS1∞. Thereforeh is the identity. �

Now, with the identification ofΓ with the Fuchsian group inPSL(2,R), ϕ sends̃q·γ ·q̃−1

to ϕ(q̃) · γ · ϕ(q̃)−1. Thus, by Claim 2,ϕ(q̃) ∈ Diff ∞+ S1 is equal tof̃ |S1∞. However, since
f cannot be isotopic to a diffeomorphism of finite order, there is no hyperbolic metric onΣ

which makesf an isometry (cf. Lemma 1). By Lemma 3, this implies thatf̃ |S1∞ cannot be a
diffeomorphism of the circle. This is a contradiction. �
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