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Abstract. We construct codimension-one, Loreatz geodesible foliations of closed
three-manifolds having Heegaard splittingfsgenus one. We prove that all the inner leaves
of a Reeb component of a codimension-one, totally geodesic foliation of a Lorentzian three-
manifold are spacelike, and the boundary leaf of a Reeb component is lightlike.

1. Introduction. Geodesibility of a given codimension-1 foliatidhhas been stud-
ied by several authors. Here geodesibility/6fmeans thatF is totally geodesic for some
complete Riemannian metric, and in this caBés called complete Riemannian geodesible.
Let us first recall a couple of results about@immension-1, totally geodesic foliatigh of
a complete Riemannian manifoldZ, g). Blumenthal and Hebda ([1]) showed that the uni-
versal covering oM is a productl. x R and the lift of 7 is the product foliatio{ L x {x}},
where L is the universal covering of the leaves Bt Oshikiri ([9], [10]) proved that any
Killing field with bounded length preservés Regarding codimension-1, complete Riemann-
ian geodesible foliations, we remark the following results. Carriére and Ghys ([3]) classified a
codimension-1, complete Riemannian geodesible foliation of a closed 3-manifold. Ghys ([5])
classified a codimension-1, complete Riemannian geodesible foliation of a closed manifold.
Thus a codimension-1, complete Riemannian geodesible foliation of a closed manifold is well
understood.

Now we consider codimension-1, Lorentzian geodesible foliations. Zeghib ([14]) con-
structed codimension-1, lightlike totally geodesic foliations. He constructed a lightlike totally
geodesic foliatior in the following cases:

(1) Fis defined by a locally free action with codimension-1 orbits of a Lie group with
a 1-dimensional normal subgroup.

(2) Fisthe suspension of a foliatiof of a Riemannian manifoldM, ¢) by a diffeo-
morphism ofM preservingl andg|y .

Although this construction gives an example of a codimension-1, Lorentzian geodesible fo-
liation, we do not know whether it is complete Lorentzian geodesible or not (for example,
consider a non-singular flow on a 2-torus with Reeb components and the following). Carriére
and Rozoy ([4]) proved that the canonical lightlike totally geodesic foliations of a lightlike
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complete Lorentzian 2-torus at@-linearizable. So there is a difference between complete
Lorentzian geodesible foliations and Lorentzian geodesible ones.

By the theorem of Blumenthal and Hebda ([1]), there exist no codimension-1, Riemann-
ian geodesible foliations of a closed manifold with finite fundamental group. We have the
following question.

QuEsTION 1.1. Does there exist a codimension-1, Lorentzian geodesible foliation of
a closed manifold with finite fundamental group?

Although a Riemannian metric on a closed manifold is always complete, a Lorentzian
metric on a closed manifold isot always complete. Hence it is a serious matter whether
to suppose completeness of Lorentzian metrics when we consider totally geodesic foliations
of closed manifolds. Recall that a geodesicaafincomplete Lorentzian metric on a closed
manifold has an infinite Riemannian length whenever it is not closed. Thus if we consider, for
example, an Ehresmann connection for a foliation ([2]) dbaed manifold, then it seems that
the assumption of completeness of the Loremzinetric is unnecessary. Therefore it seems
meaningful to consider totally geodesic foliations of closed Lorentzian manifolds without as-
suming completeness. Hence, first of all, we consider codimension-1, Lorentzian geodesible
foliations. However, completeness must be important. Actually, the present author proved
the following (see [12]): There exists no totally geodesic foliation of a lightlike complete
Lorentzian 2-torus which contains at least thinds of leaves among spacelike, timelike, and
lightlike ones. There is an example of a totally geodesic foliation of a lightlike incomplete
Lorentzian 2-torus which contains at least two kinds of leaves. We have a partial answer to
Question 1.1 as follows.

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it
has a codimension-1 Lorentzian geodesible foliation.

We prove this theorem by constructing examples in Section 3.2. Each example has space-
like and lightlike leaves. So the following question arises.

QUESTION 1.2. Does acodimension-1, totally geodesic foliation of a closed Lorentzian
manifold with finite fundamental group have lightlike leaves?

In Section 4, we consider totally geodesic foliations consisting of spacelike leaves of
compact Lorentzian manifold, and codimension-1, totally geodesic foliations consisting of
timelike leaves of Lorentzian 3-manifold. We do not assume completeness of Lorentzian
metrics. We then have the following.

PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F a totally ge-
odesic foliation of M consisting of spacelike leaves. Assume that F is tangent to aM and
(T F)* is completely integrable. Then the distribution (7F)* is an Ehresmann connection
for F.
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PROPOSITION 4.4. Let M bean orientable 3-manifold, ¢ atime-orientable Lorentzian
metric on M, and F an orientable, codimension-1, totally geodesic foliation of M consisting
of timelike |eaves. Denote the foliation determined by (7 )~ by . Then the following hold.

(1) Thelightlike vectorson T F determine two subfoliations Lo, £1 of F.

(2) Thedistribution TH @& T L; is completely integrable for i = 0, 1. Therefore, if H;
denotesthefoliation determinedby TH® T L;,i = 0, 1, then (F, Ho, H1) isatotal foliation
of M (Wecall it the total foliation associated with F).

In Section 5, we consider a Reeb component of a codimension-1, totally geodesic folia-
tion of a Lorentzian 3-manifold. Without assuming the completeness of metrics, we prove the
following

THEOREM 5.1. Let (M, g) be a Lorentzian 3-manifold and (D? x S1, Fz) a Reeb
component of a codimension-1, totally geodesic foliation F of M. Then all inner leaves of
Fr are spacelike, and the boundary leaf 9(D? x $1) islightlike.

The following corollary is an answer to Question 1.2 when the manifold is of dimension
three.

COROLLARY 5.9. Let (M, g) beaclosed Lorentzian 3-manifold with finite fundamen-
tal group and F a codimension-1, totally geodesic foliation of M. Then F consists of at least
two kinds of leaves among spacelike, timelike, and lightlike ones.

Theorem 3.1 is a part of the author’s doctoral thesis ([13]), which is not published else-
where. Throughout this paper, we assume that manifolds, foliations and metrics under con-
sideration are smooth.

2. Preliminaries. We recall several basic definitions and results about totally geo-
desic foliations of Lorentzian manifolds. Section 2.1 is devoted to basic definitions. Section
2.2 contains several results in [12] and a corollary. In Section 2.3 we recall the definition of
Heegaard splittings of genus one, which will be used in Section 3.

2.1. Definitions.

DEFINITION 2.1. LetM be a smooth orientable manifold. lLorentzian metric ¢ on
M is a nondegenerate, symmetric, covariant 2-tensor of signéture -, +, —). We call
(M, g) aLorentzian manifold.

DEFINITION 2.2. Letg be a Lorentzian metric. A subspaEec T, M is calledspace-
like (resp.timelike, lightlike) if the signature of the induced metri¢g is (+, - - -, +) (resp.
+,--,+,—), (+,---,+,0). Avectorv € T, M is calledspacelike (resp.timelike, light-
like) if g(v,v) > 0 (resp.g(v,v) <0, g(v, v) = 0).

For a Lorentzian manifold, it is well-known that there exists the Levi-Civita connection,
that is, a connection which is torsion-free and compatible with the metric (see [8]).
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DEFINITION 2.3. A Lorentzian metrigg on a manifoldM is calledtime-orientable if
there exists a non-singular, timelike vector field defined on eMirewhen we fix a non-
singular, timelike vector field” on M, a Lorentzian metrig is calledtime-oriented, and a
lightlike or timelike vectow € T, M satisfyingg(v, T) < 0 is calledpositive (in a usual term,
future-directed).

Positive lightlike or timelike vectors have the following good property (for a proof, see
[8]).
PROPOSITION 2.4 ([8]). Let (M, g) and T be as the above definition. Define

C(T|y) ={veTM]|vistimeikeand g(v, T|,) < 0},
C(T|y) ={v e T M | vistimelike or lightlike, and g(v, T'|,) < O} .

Then we have av + bw € C(T|,) (resp. C(T|y)) for any v, w € C(T|y) (resp. C(T|,)),
a>0andb > 0.

DEFINITION 2.5. A Lorentzian metrig is called(geodesically) complete if an affine
parameter of each geodesic can be defined on the éhti@eherwisey is called(geodesically)
incomplete. A Lorentzian metrig is calledlightlike (geodesically) complete if an affine pa-
rameter of each geodesic with a lightlike initial vector can be defined on the @ntire

REMARK 2.6. Even if a manifold is closed, a Lorentzian metric is not always com-
plete.

DEFINITION 2.7. A foliation 7 of a Riemannian or Lorentzian manifold/, g) is
calledtotally geodesic if each leafL of F is a totally geodesic submanifold, that is, a sub-
manifold with the property that any geodesic with any initial vectof'in is contained in
L.

DEFINITION 2.8. A foliation F of a manifold M is calledLorentzian geodesible if
there is a Lorentzian metrig on M for which F is totally geodesic. We calF complete
Lorentzian geodesible if we can chooseg to be a complete Lorentzian metric. We define a
lightlike complete Lorentzian geodesible foliation, in a natural fashion.

DEFINITION 2.9. LetL be a submanifold in a Lorentzian manifold?, ¢). We call
L spacelike (resp.timelike, lightlike) if the tangent spac&, L of L atx is a spacelikgresp.
timelike, lightlike) subspace ofy M for eachx € L.

We can easily prove the following proposition.

ProPOSITION 2.10. Everyleaf L of atotally geodesic foliation of a Lorentzian mani-
fold is a spacelike, timelike, or lightlike submanifold.

Based on this proposition, we can call a Idafa spacelike leaf, a timelike leaf, or a
lightlike leaf whenL is spacelike, timelike, or lightlike, respectively.
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We introduce the concept of “an element of isometric holonomy”, which was called “an
element of holonomy” in [12], and is a genbration of “an element of holonomy” stated in
[1].

DEFINITION 2.11. LetH be adistribution. A piecewise smooth cueve [0, 10] —> M
is called arH-curve if its tangent vectors lie if{. An element of isometric holonomy along
theH-curveo is a family of mapgy; : Vo) = Vo()lielo,10) Which satisfies the following:

(1) The setV, ) is a plaque of the leaf containing the point) for eachr € [0, fo].

(2) The mapy; is an isometry from(Vs (o), glv, ) 10 (Vo). glv,,) for eachr €
[0, fo].

(3) The curvey,(x) with parameter € [0, ro] is an’H-curve for eachx € V(g and
V(0 (0) = o).

(4) The mapyy is the identity map oV; ().

DEFINITION 2.12. LetF be afoliation ofM. A distributionD is called arEhresmann
connection for F if D satisfies the following:

1) TM=TFa®D.

(2) ForeveryF-curver : I — M and everyD-curveo : I — M with the same initial
pointo (0) = 7(0), there existsamap: I x I — M such that for every fixed the curve
8(-, s) is aD-curve and3(-, 0) = o (), and for every fixed the curves(z, -) is an F-curve
ands(0, ) = t(-).

2.2. Relevant results about totally geodesic foliations. We state several relevant re-
sults about totally geodesic foliations. We firecall an equation disitninating whether a
foliation is totally geodesic or not.

PrROPOSITION 2.13 ([12]). Let (M, g) bea pseudo-Riemannian manifold and F a codi-
mension k foliation of M. Then F istotally geodesic if and only if (Lx ¢)(Y, Z) = 0 for all
X € T(TFLY) and ¥, Z € I'(TF), where (T F)* is the distribution consisting of all
vectors perpendicular to T F.

Now we review the concept of the STL-decomposition.

DEFINITION 2.14. Let(M, g) be a Lorentzian manifold an#@ a codimensiork, to-
tally geodesic foliation of\f. Denote the union of all spacelike leaves, timelike ones, and
lightlike ones ofF by S, T andL, respectively. The decompositidth = S 1 T U L (disjoint
union) is called theSTL-decomposition of M by F.

The STL-decomposition satisfies the following
PROPOSITION 2.15 ([12]). Thesets S and T areopenin M, and L isclosedin M.

Totally geodesic foliations of a lightlike complete Lorentzian 2-torus have the following
property.
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THEOREM 2.16 ([12]). Let (T2, g) be a lightlike complete Lorentzian 2-torus. There
exists no totally geodesic foliation containing at least two kinds of leaves among spacelike,
timelike, and lightlike ones.

We have an easy corollary of this theorem.

COROLLARY 2.17. Let (M, g) be a Lorentzian manifold. Assume that thereis atime-
like totally geodesic submanifold N diffeomorphic to the 2-torus such that there is a totally
geodesic foliation of N consisting of at least two kinds of leaves among spacelike, timelike,
and lightlike ones. Then g islightlike incomplete.

Finally, we review a result about an element of isometric holonomyAbt a totally
geodesic foliation of a Lorentzian manifo(d/, ¢g) andH the distribution perpendicular to
TF.

PROPOSITION 2.18 ([12]). If anH-curveo : [0, 1] — M intersects only spacelike or
timelike leaves, then there exists an element of isometric holonomy along o.

2.3. Heegaard splittings of genus one. We recall Heegaard splittings of genus one of
closed 3-manifolds. See [6] for further detail about Heegaard splittings.

Let V4 and V>, denote two copies of orientdd? x S1 ¢ C x C, whereD? denotes a 2-
disk. Letf : V2 — 9V; be an orientation reversing diffeomorphism. Consider a topological
spaceVy Uy V7 and give it a differentiable structure in a certain way. We call the resulting
manifold M. The couple(V1, V») is called aHeegaard splitting of genus one of M. Define
curvesl, m byl : t — (1,¢%) € D? x ST andm : t — (¢Z7!,1). A simple closed
curve ind(D? x SY) is called ameridian (resp.longitude) if it is homotopic tom (resp.!)
ond(D? x §1). The fundamental group; (3(D? x S1)) is isomorphic to(l | =) & (m | —),
where(l | —) denotes the free group generated by

Let (V1, V2) be a Heegaard splitting af and f : 9V, — 9V a gluing map defining/.
Let/; andm; be a longitude and a meridian In, respectively. It is known that i, (m2) =
pli+qmi € m1(dV1), then(p, g) = 1. Whenf,(m2) = pli+qm1, we denoteV by L(p, q).

It is known thatZ(0, 1) = §2 x St andL(1,0) = S3. WhenL(p, ¢) is diffeomorphic to
neithers? x St nor 3, it is called aens space of type (p, q).

3. Constructionsof Lorentzian geodesiblefoliations. The goal of this section is the
following

THEOREM 3.1. If a closed 3-manifold has a Heegaard splitting of genus one, then it
has a codimension-1 Lorentzian geodesible foliation.

3.1. Examples and propositions. First, we construct an example of a codimension-1,
Lorentzian geodesible foliation ¢f'~* x S,
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EXAMPLE 3.2. LetM = R"\ (0, ..., 0). Define the Lorentzian metrig on M by

) 1 n—1
g = Tlxz (de,' ® dx; —dx, ®dx,1> ,
=17

i=1

where(x1, ... ., x,) is the canonical coordinates &f. Define the vector field by
n
~ a
X = Xi—,

which is a Killing field on . The distributionT F defined by kef(X, -) is completely
integrable, and hence defines a totally geodesic foliafioby Proposition 21.3. The map
Vo (X1, ..., x0) = (2x1, ..., 2x,) is an isometry preserving. Thus we have a manifold
M = M /~, a Lorentzian metrig on M, and a codimension-1, totally geodesic foliati6rof
M. Clearly, M is diffeomorphic tos”~! x S1. HenceF is a Lorentzian geodesible foliation
of s7~1 x s1. O

REMARK 3.3. The Lorentzian manifol@V/, g) obtained above is lightlike incomplete,
becausgx; = - - = x,_2 = 0} /~ satisfies the assumption of Corollani 2.

Second, we construct a totally geodesic foliatiorDéf x S1.

ExampPLE 3.4. Recall Example.2. Consider the case when= 3, that is,

2
(R3 \ {0}, g = 231 2<de,- ® dx; — dx3®dx3>> .

i=1 xi i=1

Put
My = {(x1,x2,x3) | X3 +x5 —x5 < 0, x3> 0}.
Define the diffeomorphisn® : M, — D?(1) x R by

2x 2x
(x1, x2, x3) > ( V2 V2 > |Og\/xf+x§+x§) .

Va2 +x3+ a3 x4+ x3 + a3

The Lorentzian metri¢® —1)*§ on D%(1) x R is invariant by the additiveR-action. Hence
we have the Lorentzian metrig on D?(1) x R/27 Z.

Let (x, y, 1) denote coordinates dp%(1) x SI, where(x, y) and(r) are the canonical
coordinates oR? and R, respectively. We then have

12— x2/(4— 22— 2y%)  —xy/(4—2x2 = 2y?) x
g=| —wi@-22-2% 12— @a-22-2%) ’
X y X242 -1

where the right hand side is the matrix of componentg;ofvith respect to(x, y, 7). The
foliation defined by key; (3/0t, -) is totally geodesic by Proposition13. O
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Third, we changg; with a Lorentzian metrig; as follows. We change coordinates from
(x,y,t)to(r,0,t), wherex = r cost andy = r sind. Then we have
r>-1/r?-2 0 r
9= 0 r2/2 0
r 0 r2-1
with respect to(r, 0, t). Consider aC* monotone increasing functian : [0, 1] — [0, 1]
satisfying the following conditions:
(1) a(0) =0anda(l) =1.
(2) There exists an > 0 such that(r) = r forall r € [0, ¢).
(3) (d"a/dr™)(1) = 0Oforall integem > 0.
We change with a(r). The resulting metric is jusf in the next example.
ExAMPLE 3.5. ConsideD?(1) x S, whereD?(1) is the unit 2-disk inR? andS! =

R /27 Z. We denote the coordinates Bb2(1) x SI by (x, y, r), where(x, y) and(r) are the
canonical coordinates @2 andR, respectively. Define the Lorentzian metyichy

G G12 ax
2a® —2(x2+y?)?  2@®—-2(x®+yH? 3212
0 G12 G2 ay ’
20 =% +y??  2a* =P+ a2y 2
ax _ay a>_1

where

G11=2(a® — Dx* + (@* + 2(x? — Da? — 24%)y?,
G2 = xy(=a* + 2x? + y? + Da® - 2(x? +y?)) ,
G22 = az(az - 2).x2 + 2(02 - 1)y2(-x2 + yz) .

Here,a is the functiona(y/x2 + y2) defined above, the right hand side denotes the matrix
of components of the metric with respect to coordingtesy, t), and we assume that the
numerator is divided by the denominator in<0,/x2 4+ y2 < & in each component of the
matrix.

The vector fieldd/a: is a Killing field, because all the components of the matrix are
independent of. Since

@/, ) = —2 g+ —2 4y 4 (4%~ Dyar,

N RN

the foliation defined by kép1(d/dt, -)) is totally geodesic by Proposition13. This foli-
ation is a Reeb foliation. Clearly(D? x S1) is a lightlike leaf, and the other leaves are
spacelike. m]

Fourth, we want to glue two copies of Example 3.5 together. Since it is not possible in
general, we adopt the following tricks to accomplish it.
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PROPOSITION 3.6. Let (M;, g;) be a Lorentzian manifold with boundary, N; a con-
nected component of dM;, and h; : N; x [0,1] — M; a collar neighborhood such that
hi(N; x 0) = N; (i = 1,2). Let f: N1 — N> be a diffeomorphism. Denote M3 Uf M by
M . Define a differentiable structure on M such that

h:Nyx[-1,1 — M:M]_Usz

hi(x,t) fort>0
(x, 1) = {hz(f(x),—t) fort <0

is a diffeomorphism into M in a certain way. Assume that for all x € Nj there exists
a local coordinate system (x1, ..., x,—1) around x such that the local coordinate system
(X1, ..., xy—1,1) INh(N1 x [—1, 1]) C M satisfies the following:
(1) The (i, j)-component of g1 equalsthe (i, j)-component of g» on (N1 x 0) for all
iand ;.
(2) Thereexistsane; > 0 such that all the components of g1 are functions depend on
only r on 2(N1 x [0, £1)), and their differentials of order > 1 vanish on (N1 x 0).
(3) Thereexistsan ez > 0 such that all the components of g, are functions depending
onlyont onh(N1 x (—e2,0]), and their differentials of order > 1 vanish on 2(N1 x 0).
Then
gponMiCM
- {gz onM; c M

isa C* Lorentzian metric on M.

PROPOSITION 3.7. Let V1 and V>, be oriented manifoldswith compact connected bound-
ary. Let f : 9V, — 9V1 be an orientation reversing diffeomorphism. Put M = Vp Uf Vo.
Consider 9V1 x [0, 1], and regard idyy, and f as

idgy, : V1 — V1 x0 and f:0Vo— 0Vyx 1.

If we take the orientation of V1 x [0, 1] suchthat f : V2 — 9V1 x 1isorientation revers-
ing, then themap id : 3V1 — 9Vy x O isorientation reversing, and M is diffeomorphic to
V]_ Uid(3V1 X [0, 1]) Uf V2.

3.2. The proof of Theorem.B. We will construct a totally geodesic foliation of
L(p, q). Let V1 andV> be two copies of an orientad?(1) x S1. ConsidenV;, 1), whereg;
is the Lorentzian metric defined in Example 3.5. We change coordinategffom, ¢;) € V;
to (r;, 6;, t;), wherex; = r; cosd; andy; = r; sind;. We regard the;-direction as a “collar
direction,” that is, the collar neighborhood is defined by

hi 10V x[0,el = Vi, (6i,ti,8)—~ (L—1s;,0;,1).

Consider the gluing mayp : 9V> = R%/27Z? — 9V1 = R?/27 Z? defined by

/
f:(92)|—><q r,><92) forsomer’, s’ € Z,
12 p s 2
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wheregs’ — pr’ = —1. Note thatf determined.(p, ¢). In general, we cannot glué’1, g1)
and (V2, g1) by using only Proposition 3.6. So we use Proposition 3.7 to get a Lorentzian
metric and a totally geodesic foliation &f( p, ¢g). We will carry out this by several steps.

Sep 1. Denote coordinates @y x [0, 1] by (0,1, s), whered = 61 andt = 1;.
Consider the glued manifolds | J;4(d V1 x [0, 1]) Uf Vo.

LEMMA 3.8. Wecanjointhemetric restricted on 9V; x 0tothemetricondVy x 1 s0
that the constructed metric ¢’ on 8 V1 x [0, 1] satisfies the following conditions:

(1) All the components of ¢’ with respect to (9, ¢, s) depend onlyon s € [0, 1].

(2) Themanifold 0V1 x {s} islightlikefor all s € [0, 1].

PrRoOF Note that

@?>-1/w@?-2 0 a
g = 0 a?/2 0 ,
1

a 0 a? —

where the right hand side is the matrix of components;ofith respect tar;, 6;, t;) € V;.

Hence we have
a?/2 0 0
g1 = 0 a®—1 —a
0 —a  (a®=1)/(?*-2)
with respect to the collar coordinatés, 1;, s;) € 9V; x [0, €]. Since
1/2 0 0
g1 = 0 0o -1
0O -1 o0
onaV; x 0C aV; x [0, €], the metricordVy x 0 C V1 x [0, 1] is represented by
1 0 O 12 0 0 1 0 O 12 0 0
01 O 0 0o -1 01 O = 0O 0 1
0 0 -1 O -1 O 0 0 -1 0O 1 0
with respect to the coordinaté€8, ¢, s) € 9Vy x [0, 1]. Note that the inverse maﬁ—1 :

aV1 x 1 — 9Vais represented by
—s r
< P —q ) '
Hence we have

- p 0 /2 0 0 —s' 0 522 —r's'j2 —p
7 —q O 0 0 -1 p —q 0 - _r/s//z r/2/2 g
0 0 1 0 -1 0 0 0 1 —p q 0

onaVy x 1 C aVy x [0, 1] with respect tad, 7, s) € aV1 x [0, 1]. (See Figure 1.)
Consider &> GL(2, R)-valued function

by ¢
<ds ks)’ s €10,1]
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sy
aVy x0CVy
4
9 vy x [0, 1]
as
id~! l
Vi x0cC Vv

dsy

FIGURE 1. fandid.

satisfying
bo co\_(1 O 1 O
(do k0>_(0 —1)6(0 —1)GL+(2’R)

by c1\_( —=s 1 1 0
(5 2)-(5 2)e(d SJonaem

Note that such a function exists. Put

and

by dy O /2 0 0 by ¢ O
g =1 ¢ k O 0O 0 -1 d, ki O
0 0 1 0 -1 0 0 0 1

b?/2  bycy/2  —dy
= | bses/2 22—k
—d; —kg 0
Note that signature of this matrix{s-, +, —). Thus we regarg’ as the matrix of components
of the Lorentzian metric with respect {6, ¢, s) € 0V1 x [0, 1].
Now we show thay’ satisfies the conditio(2). We have

| _( /2 bses/2
9 1aVix{s} bycs /2 652/2

with respect ta#, t) € dVy x {s}. ThusaVy x {s} is lightlike. This proves Lemma 3.8. O

REMARK 3.9. The foliation{o V1 x {s}}sc[0,17 is a totally geodesic foliation ab V1 x
[0, 1], ¢) by (1), (2) and Proposition 23.

Sep 2. We change the parameterf each component of’ to u(s), whereu is a
function satisfying the following:

(1) The functioru : [0, 1] — [0, 1] is aC* monotone increasing function.

(2) (d"u/ds")(0) = (d"u/ds")(1) = 0O for all integem > 0.
We denote a new metric by the same symgol
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Sep 3. Put
g1 on Vi,
g=149 on 9dVyx[01],
g1 on V.

Note thatg is aC* Lorentzian metric orV1 | ;4 (8 V1 x [0, 1]) Uf V2 by Proposition 3.6. We
define the desired foliatioft by

ker(g1(9/911,-))  on Vi,
F =11{0Vix{stlseoy oOn V1 x[0,1],
ker(g1(3/dt2,-)) on V.
Note thatF is aC totally geodesic foliation. Hence we have a Lorentzian geodesible folia-
tion of L(p, ¢q). This completes the proof.

4. Some properties of totally geodesic foliations.  In this section, we study totally
geodesic foliations consisting gpacelike leaves, and codimension-1, totally geodesic foli-
ations consisting ofimelike leaves of Lorentzian 3-manifolds. We do not assume the com-
pleteness of Lorentzian metrics.

First, we consider totally geodesic foliations consisting of spacelike leaves.

PROPOSITION 4.1. Let (M, g) bea Lorentzian manifold with or without boundary and
F a codimension-k, totally geodesic foliation consisting of spacelike leaves. Assume that 7
istangent to 9 M and the distribution (7 F)* isintegrable. Then for an arbitrary metric 4 on
(T F)*, thefoliation F istotally geodesic with respect to the Riemannian metric |7 + h.

PROOF. By the assumption, we hateM = TF & (T F)*. Putggr = gl + h. Then
the distribution7 F is perpendicular tq7 )+ with respect togg. Let H be the foliation
determined by 7T F)*L. SinceF is totally geodesic, we have

(Lxg)(Y,Z)=0 forall Xe '(TH) andY,Z e I'(TF).

There exists a product neighborhobidx V for eachx € M, whereU is a plaque ofF and
V is a plaque ofH. Hence there exist linear independeftpreserving, non-singular local
vector fieldsX1, ..., Xy € I'(TH). If we describeX € I'(TH) asX = ) a; X;, then we
have

Lxgr) (Y, Z) = (Liyax) 90X, Z)
= Zai {Xi(gr(Y, 2)) — gr([Xi, Y1, Z) — gr(Y, [Xi, Z])}
= Zai{xi((glrf)(Y, 2)) = lrA)UXi, Y], Z) = (glr P)(X, [Xi, Z])}
= Zai{xi(g(Y, 2)) —g(Xi, Y1, Z) — g(¥, [Xi, Z]}
=Y ai(Lx,9)(Y, Z) =0.
ThereforeF is totally geodesic with respect ig. O

If M is closed, by Proposition 4.1 and [1] we can prove the following
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PROPOSITION 4.2. Let (M, g) be a compact Lorentzian manifold and F be a totally
geodesic foliation consisting of spacelike leaves. Assumethat F istangent to 9 M and (T F)+
is completely integrable. Then the distribution (7 F)~ is an Ehresmann connection for F.

PROOF Let ™ be the foliation determined by" F)*. CoverM by a product foliation
charts{U; x V;}_;, whereU; is an F-plaque andV; is an’/{-plaque. Leth be a metric on
(T F)*, and define the Riemannian metig by g|7 = + h. We haveT F L (T F)* with
respect tagg. Letd be the distance determined by. Consider a Lebesgue numhervith
respecttqU; x V;}7 ;, thatis, any set with the diameter p is contained ir/; x V; for some
i. Hence anyF-plagueP with the diametex p with respect tgjr|p is contained inJ; x V;
for somei.

Leto : [0, 1] — M be an arbitraryH-curve andr : [0, 1] — M be anF-curve with the
length< p/2. We will constructa map : [0, 1] x [0, 1] — M satisfying Definition 2.12 (2).
Decomposg0, 1] = [1g, 1] U [t1, 2] U - -- U [;_1, ] so thattg = O, ; = 1, ando ([t;—1, t;])
has the length< p/2 for all i. The curveo ([tg, t1]) U 7([0, 1]) has the length< p. Hence
there exists atp such that ([, 11]) U 7([0, 1]) C Uiy x Vj,.

LEMMA 4.3. We can construct an element of isometric holonomy along o |4,
W 2 Vo0 = Vo telronl
sothat V) = Uiy, x 0(0) and V, ;) = Ujy x o (2).

PROOF. Letp : Uy x Vi, — V;, be the projection. Define the vector field on
p o o ([to, t1]) tangent toV;, by

d
Ypoo(r) = E(P 00)
t

Define the vector field( on U;, x o ([1o, t1]) tangent toH by p,.X = Y. The vector field
X is F-preserving and tangent td. Hence a local one-parameter group generate& by
determines an element of isometric holonomy alemg, ;,;

Wi 1 Uiy x 0(0) = Uiy x 0(8)}refig,] - |
Define the mapy : 10, 11] x [0, 1] — M by
81(2,8) = Y (T(s)) -
Putzi(s) = 81(z1, s). By the definition of elements of isometric holonomy, the curvéas
the length< p/2. Construct, : [r1, t2] x [0, 1] — M by applying the same argument as
above tao ([11, 2]) U 71([0, 1]). Repeat this process and define[0, 1] x [0, 1] — M by
8(t,s) =8;i(t,s) whenrel[t_1,4].

This$ satisfies Definition 2.12 (2). Therefof& )= is an Ehresmann connection 6t This
proves the proposition. O

Now we consider codimension-1, totally geodesic foliations consisting of timelike leaves
of Lorentzian 3-manifolds.
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PROPOSITION 4.4. Let M bean orientable 3-manifold, ¢ atime-orientable Lorentzian
metric on M, and F an orientable, codimension-1, totally geodesic foliation consisting of
timelike leaves. Denote the foliation determined by (7 )+ by . Then the following hold.

(1) Thelightlike vectorson T F determine two subfoliations Lo, £1 of F.

(2) Thedistribution TH & T L; is completely integrable for i = 0, 1. Therefore, if H;
denotes thefoliation determinedby TH® T L;,i = 0, 1,then (F, Ho, H1) isatotal foliation
of M (We call it the total foliation associated with F).

PROOF. Fix orientations ofM and F. By the assumption of, there exists a non-
singular, timelike vector field” on M. Since all the leaves af are timelike, we have a
splittingTM = TF®TH. Letr : TM — T F denote the projection defined by the splitting
TM = TF & T'H. By straight computationg (7') is non-singular and timelike. Hence for
all L € F we can regardL, g|) as an oriented, time-oriented, Lorentzian 2-manifold by
7 (T)|.. Fix aleafL of F and a pointe € L. Define two lightlike subspaceé’ Lo, T L1 of
Ty L by the following: Take linear independent, positive, lightlike vectggsV1 on 7, L so
that{Vp, V1} equals the orientation df, L, and putl, Lo = SpariVp} and7, L1 = SparV1}.
Define distributions" Lo, T L1 by

TLo = U T.Lo, TLy= U T.L1,
xeM xeM
which areC* subdistributions of" F, proving(1).

We will prove thatT'H & T L; is completely integrable far= 0, 1. Leto : [0, 1] > M
be an arbitrary{-curve. Let{y; : V50 = Vo (1) }iefo,11 be an element of isometric holonomy
alongo. Sincey, is an isometry, the map, preserveLo andL;. Define the vector fieldd
defined or J, V5 (1) by

d
Hy,(p) = alﬁz(}?) .

LetL; € I'(TLily,v,,,) be aframe. We havie?, L;] = [; L; for some function;. Therefore
TH & TL; is integrable. This proves the proposition. m]

5. Reeb components of totally geodesic foliations of Lorentzian 3-manifolds. In
this section, we study Reeb components of codimension-1, totally geodesic foliations of
Lorentzian 3-manifolds. We do not assume the completeness of metrics under consideration.
We have the following

THEOREM 5.1. Let (M, ¢g) be a Lorentzian 3-manifold and (D? x S, Fz) a Reeb
component of a codimension-1, totally geodesic foliation & of M. Then all inner leaves of
Fr are spacelike, and the boundary leaf 3(D? x S1) islightlike.

PROOF. By taking a finite covering oM, we can assume that is orientable,g is
time-orientable, ancF is orientable. By the property of the STL-decompositionvbby F
(Proposition 2.15), we have the following three cases:

() The setL N (D? x S1) is empty.
(i) The setL N (D? x S1) containsd(D? x $1) and does not equak D? x S1).
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(i) The setL N (D? x S1) equalsd(D? x S1).
Consequently, we have the following five cases:
(1) Allthe leaves ofFy are spacelike.
(2) Allthe leaves ofFy are timelike.
(3) The boundary lea$(D? x S1) and at least one of the inner leaves are lightlike.
(4) Allthe inner leaves ofFr are timelike and the boundary is lightlike.
(5) Allthe inner leaves ofFr are spacelike and the boundary is lightlike.

We will prove that the case (1) through the case (4) do not occur in the following propo-

sitions. Therefore only the case (5) occurs. O

PROPOSITION 5.2. The case (1) does not occur, that is, there exists no Reeb compo-
nent (D? x S, Fr) of a codimension-1, totally geodesic foliation such that all the leaves of
Fr are spacelike.

PROOF. Assume that there is a Reeb compon@nt x S1, F) consisting of spacelike
leaves. By Proposition 4.2, the distributiofl Fz)- is an Ehresmann connection f@z.
But an inner leaf never cover the boundary leaf for any normal distributigfzofwhich is
contradiction. O

PROPOSITION 5.3. The case (2) does not occur, that is, there exists no Reeb compo-
nent (D? x S, Fr) suchthat all the leaves of F aretimelike.

We need two lemmas to prove Proposition 5.3.

LEMMA 5.4. Let (M;, g;) beapseudo-Riemannian manifold,i = 0, 1,and ¢ : (Mo, go)
— (M1, g1) be anisometry. Then the following hold:

(@ dp(VxY) = Vyex)de(Y) forall X, Y e I'(T Mop), where V intheleft (resp. right)
hand sideis the Levi-Civita connection of go (resp. g1).

(b) If exp, X isdefined, then p(exp, X) = exp,(,, dp(X).

PROOF. (a) DefineVyY = dgo*l(de(X)dgo(Y)) for X,Y € I'(T Mp). By a straight
computation, we see thatis the Levi-Civita connection. Hende = V.
(b) We can easily prove this byg). O

LEMMA 5.5. Theidentity component of SO(1,1) is

(5 o)

CER},

/2]
the eigenvalues of ( CC+ ! «/CZC? ) arev/c? + 1+cand+/c? + 1—c, and the eigen-

vectorsare (1, 1) and /(1, —1) (these are lightlike). Moreover,

Ve24+1l4+ce>1>vVc2+1—c(c>0)),
V2+1l—c>1>vV2+1+c(c<0).
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Fr Lo € Hy < an H-leaf
Z
R/2
Hy
Lan L-leaf
No
FIGURE 2. A half Reeb component . FIGURE 3. Lgand™ onLg.

PROOF OFPROPOSITIONS.3.  Let(Fg, Ho, H1) be the total foliation associated with
Fr. We use the same notation as in Proposition 4.4. By [11], there exists a half Reeb compo-
nentHg/2 in Ho and an annular ledfp € H§/2 (see Figure 2). The foliatiofirNLo = Lo,
is a Reeb foliation. Sinc&Ho = TH & T Lo, there is the foliatiort{|,, on Lo. Take an ar-
bitrary pointz € dLo. Start fromz along’H and consider the limit{-leaf c. The leafc is
closed. Put

No=c¢ U (the connected component b \ ¢ containingz) .

All the H-leaves inNp \ ¢ approachc (see Figure 3). Fix an arbitrary point € ¢. By
parametrizing:, we define arH{-curve

o:[0,1] > D?x St, 0(0) =0o(1) = x,

assuming that proceeds in the direction where all theleaves inNg \ ¢ leave frome. Let
L1 € Hj be the leaf passing through Consider a tubular neighborho@dof ¢ in L1, and
let N1 be the subset df which intersectﬁg/z. All the H-leaves near in N1 leave frome
alongo (see Figure 4).

Consider an element of isometric holonomy aleng

Y1 : Vo0 = Vo hieron) s
whereV, ) is anFg-plaque. Let denote O or 1. Note that the s&t N V(g is a subset of
anz;-leaf. Fix a pointy® € N; N V(o) \ {x}. Leta be the geodesic satisfyirg” (0) = x
anda” (1) = y@. The vectorx (0) is lightlike andy” = exp, @ (0). The mapy is an
isometry from(V; (0), 91v,,) 0 Vo), 9lv, ). By Lemma 5.4 and1(x) = x, we have

Y1(y?) = exp, dy1(a?(0)) .

All the H-leaves near in N; leave frome alongo. Hencey1(y®) is farther thary® from
x (see Figure 5).
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FIGURE 4. The setV;.

¥

Vo (1)

FIGURE 5. The map/1.

Thus there exists a constdnt> 1 such that
dyr1 (¢ (0) =1 ¢(0),

which is a contradiction by Lemma 5.5. Thewed there exists no Reeb component consisting
of timelike leaves. O

PROPOSITION 5.6. The case (3) does not occur, that is, there exists no Reeb compo-
nent (D? x S, F) such that the boundary leaf (D? x $1) and at least one of the inner
leaves are lightlike.

PrROOF. Assume that there is a Reeb compor{@& x §1, Fr) such that the boundary
leafd(D? x S1) and one of the inner leaves &% are lightlike. PutFy = 3(D? x S1). Let F»
be a lightlike leaf 0fF gy p2x 51)- LEtN; be the foliation ofF; determined by the lightlike
vectors fori = 1, 2. By [14], the one-dimensional foliation determined by the lightlike vectors
of a lightlike leaf F is a Riemannian foliation of’. Since the foliation\V/ is a Riemannian
foliation of F1 = T2, we have the following two cases:

(c) Allthe leaves of\ are closed.

(d) Allthe leaves of\; are dense.
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Let! andm be a longitude and a meridian @f, respectively.

Case1l. Thereexistsa C™ closed curvec : ST — Fj which is transverse to N7 and
homotopic to m. (This case occurs except the case (c) where the homology class of a leaf
L € Ny isequal to [m].)

We extend: to aC>® embedding : ST x [0, &) — D?x ST which satisfies the following:

(1) The set(St x {r}) is on anFg-leaf for all € [0, ¢).

(2) &é(s,0) =c(s) foralls e ST.

Since the curve is spacelike, there exists an € (0, ] such that the curvé., o) is spacelike
for all 1o € [0, e1). Since the leafF,; approachedi, there exists a; € (0, e1) such that
é(S1 x {r1}) N F» # @. Hence the curvé(., r1) on F» is transverse to the foliatioN>. One
of the connected componentsBf \ é(S1 x {r1}) is a 2-disk, which is a contradiction by the
standard Euler class argument.

Case2. The case (c) wherethe homology class of aleaf L € N7 isegual to [m].

Fix a Riemannian metriz on D? x S1. Letj\/l.L be the foliation ofF; perpendicular to
N; with respect td: for i = 1, 2. Fix a leafL € N1 and parametrizé. by a diffeomorphism
¢ : S — L c Fi1. The curvec is transverse toVi-. We extende to a C>® embedding
¢: 81 % [0,e) > D? x ST which satisfies the following:

(1) The set(St x {t}) is on anFg-leaf for allz € [0, ¢).

(2) é(s,0) =c(s) foralls e SL.

Let X : &(ST x [0, £)) — T F be aC™ non-singular vector field satisfying

d
Xlaey L & (5) forall (s,7) € ST x [0, &)

with respect to:. The vector fieldX|, 1, is spacelike and tangent ;. So there exists an
g1 € (0, £] such that the vector fielﬁ|5(slx[ogel)) is spacelike. Since the le@, approaches
F1, there exists & € (0, £1) such that'(S? x {r1}) c F». Since the vector field |51 gy
is spacelike, it is transverse 1d,. Hence the orthogonal compleme{ﬁlpariX})L|5(51X{,1})
in T F, with respect td: is transverse t(zvzi. Therefore the curvé(-, r1) is transverse wzi,
which is a contradiction. ]

PROPOSITION 5.7. The case (4) does not occur, that is, there exists no Reeb compo-
nent (D? x S1, Fr) such that all the inner leaves of F are timelike and the boundary is
lightlike.

PROOF. By the assumption of time-orientability @f we fix a non-singular, timelike
vector field7 e I'(T(D? x S$1)). There exist two subfoliationSo, £1 0f Fg | p2xst) by
Proposition 4.4. There exists the foliatidfi determined by the lightlike vectors @iD? x
1) e Fg. Three foliationsCo, £1, N are orientable.

LEMMA 5.8. For all point p € 9(D? x S1), there exists a neighborhood v, around p
in D? x ST and a non-singular, Fg-tangent vector field X”) defined on V,, which satisfies
the following:

D XDy ypaxst iSpositiveand lightlike.
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(2) X(p)|V[,mnt(D2><Sl) |S pOSItlveand t|m|ke

PROOF. Fix an arbitrary poinp in 8(D?x $%). Lety : U, — R?x[0, c0) be afoliation
chartaroungy, where we assume thatd (D% x S1)NU,) C R?x {0} and thaty~*(R? x {x})
is anFg-plaque. We regard the standard coordirfaiexy, x3) € R?x R as alocal coordinate
of R? x [0, 00). Let (gij) be the matrix of components gfwith respect ta(x, x2, x3). Fix
a positive lightlike vectoo, at p. We can assume thaj, equalsd/oxy + b(p)d/dx2, where
b(p) € R is a constant. We then have

d d J d
O=g (8_x1 +b(p)8_x2’ a_xl +b(p)8_x2)
= q11(p) + 2b(p) g12(p) + (b(P))g22(p) -

Consider the equation
1) g1+ 2bgio+b%g2=0.

Since all the leaves afk are timelike or lightlike, we have

911922 — gfz <0.

Now we will prove that there exists a neighborhogl C U, aroundp such that the
function go5 is positive onV,. Sinced/dx1 + b(p)d/dxz is lightlike andg11(p) g22(p) —
(q12(p))% = 0, we haveya(p) # 0. Sinceg|Tp(a(DzX51)) is positive indefinite, we have

d J\ () >0
gp axz ’ 8X2 = g22(p) = .
Thus g22(p) > 0. Therefore there exists a neighborhodgl C U, aroundp such that

g22lv, > 0.
Sincegz, # 0 onV,, we can solve the equation (1) as

b= (—g12£/ 9122 — 911922/ 922.-
Define the vector fieldk (”) defined onV,, by
a — a
492 9

xw» - _° )
0x1 g22 0x2

This is anFg-tangent, non-singular vector field. We then have

g(XP, XP) = (g11 922 — 912°)/ 922

Hengex(l’)wpmawzxsl) is positive and lightlike, and(‘”|y, - np2xs1) is positive and
timelike. O

Fix a collar neighborhood : 3(D? x §1) x [0, 1] — D? x ST, whereC(3(D? x S1) x
{0})) = 8(D? x Sh). Forall p € 3(D? x §%), define an open subs¥f, C 9(D? x S*) and a
constant, > 0 such that

peV,CHD*xSHNV,, C(V,x[0,&))CV,.
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Put Vp = C(VI{7 x [0,&p)). We haveUpEa(szsl) VIQ O 9(D? x S1). Hence there exist
pointsps, ..., px € 3(D? x S) such that_J*_, Vv, = 3(D?x 1. Let{p;}{_, be a partition
of unity subordinate to the coverir{g/l’,l_ }f.‘zl. We extendp; to the functionp; defined on
Vp, = C(V), x [0,€),)) by

pri.

—1 )
C(Vl/jr x [0’ 8pi)) < Vl/71 X [07 8p,‘) I V/ L) [O, 1]

pi

Pute = min;¢(1,... k) €p;- Then we have > 0 and

k
C@OD? x 1 x[0.8) | JVp -
i=1

Puto = C(3(D? x $1) x [0, ¢)) and

k
X=) nX"Np 0).
i=1

By Proposition 2.4, the vector field is a non-singularfz-tangent vector field o® which
satisfies the following:

(1) Xlspaxsy) is positive and lightlike.

(2)  Xlinyp2xstyn o is positive and timelike.

Now, let N be a non-singulai;o-tangent, positive, lightlike vector field on ({2 x S1).
Put

Uy = C((D? x Y x [0, ¢)),
Us = D? x ST\ C(3(D? x %) x [0, £/2]).

The family {U1, U} is an open covering ob? x SI. Let {11, Ao} be a partition of unity
subordinate tqUi, Uz}. PutX = A1X + A»N. Then the vector fiel( is a non-singular,
Fr-tangent vector field ow? x S* which satisfies the following:

(1) Xlyp2xsy is positive and lightlike.

(2)  Xlinyp2xst) is positive.
Let ' be the subfoliation ofFx determined byX. So we have’ffla(Dszl) = N. By [11],
the restriction of any subfoliation oF to 3(D? x S1) has Reeb components. So the foliation
Nla(szsl) has Reeb components. Henkehas Reeb components. Howev&f,must be a
Riemannian foliation ol (D? x S1) by [14], which is a contradiction. Therefore there exists
no Reeb componenD? x S1, Fr) such that all the inner leaves &f; are timelike and the
boundary is lightlike. a

We have an easy corollary of Theorem 5.1.

COROLLARY 5.9. Let (M, g) beaclosed Lorentzian 3-manifold with finite fundamen-
tal group and F a codimension-1, totally geodesic foliation of M. Then F consists of at least
two kinds of leaves among spacelike, timelike, and lightlike ones.
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PROOF. By [7], the foliationF has a Reeb component. Therefdfeonsists of at least
two kinds of leaves. O
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