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THE WAVELET TRANSFORM OF DISTRIBUTIONS

RAM S. PATHAK
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Abstract. The continuous wavelet transform is extended to certain distributions and
continuity results are obtained. Boundedness results in a generalized Sobolev space, Besov
space and Lizorkin-Triebel space are given.

1. Introduction. The wavelet transform ofφ with respect to the waveletψ is defined
by

φ̃(b, a) = (Wφ)(b, a) =
∫

Rn

φ(t)ψ((t − b)/a)dt/an ,(1.1)

provided the integral exists, whereb ∈ Rn and a > 0. Sometimes it is assumed that
a ∈ R \{0}. If φ ∈ L2(Rn) andψ ∈ L2(Rn), then using the Parseval formula for Fourier
transforms, (1.1) can be written in the following form (cf. [2, p. 9]):

(Wφ)(b, a) = (2π)−n
∫

R n

ei(ω,b)ψ̂(aω)φ̂(ω)dω .(1.2)

This form of the wavelet transform is very similar to that of a pseudo-differential operator with

symbolσ(a, ω) = ψ̂(aω). Hence the theory of the wavelet transform (1.2) can be developed
in a manner similar to that of the pseudo-differential operator (cf. [11]).

A reconstruction formula for (1.1) is given by

φ(x) = W−1[φ̃(b, a)](x) = (Cψ)
−1

∫
R +

∫
R n

φ̃(b, a)ψ((x − b)/a)dadb/an+1 ,(1.3)

where

Cψ =
∫

Rn

|ψ̂(ω)|2|ω|−ndω > 0 .(1.4)

It has been proved by Perrier and Basdevant [6] that forψ satisfying the admissibility
condition (1.4) withn = 1, the wavelet transform is a linear bounded operator:

W : Lp(R) → Lp(R, L2(R+, da/a)) := Wp , 1< p < ∞ ,

and we have

‖f̃ (b, a)‖Wp :=
( ∫

R

( ∫
R +

|f̃ (b, a)|2da/a
)p/2

db

)1/p

≤ Ap‖f ‖Lp ,(1.5)
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where the constantAp depends onp andψ. Moreover, the inverse wavelet transform given
by (1.3) withn = 1 is a linear and bounded operator:

W−1 : Lp(R, L2(R+, da/a))→ Lp(R)

and we have for some constantD > 0,

‖f ‖Lp ≤ D‖f̃ (b, a)‖Wp , 1< p < ∞ .(1.6)

We shall use the following Parseval relation (cf. [6]). Forf ∈ Lp(R), g ∈ Lp
′
(R) with

1< p < ∞, 1/p + 1/p′ = 1 and real waveletψ satisfying (1.4) we have∫
R
f (x)g(x)dx = (Cψ)

−1
∫

R

( ∫
R +
f̃ (b, a)g̃(b, a)da/a

)
db .(1.7)

Now, we define the Schwartz spaceS(Rn). An infinitely differentiable complex valued
functionφ on Rn is said to belong to the test function spaceS(Rn) if

γm,β(φ) = sup
x∈Rn

|(1 + |x|)mDβx φ(x)| < ∞(1.8)

for all m ∈ N0 andβ ∈ Nn
0. HereDβx denotes(∂/∂x1)

β1(∂/∂x2)
β2 · · · (∂/∂xn)βn with β =

(β1, β2, . . . , βn). The dual of the spaceS is the spaceS′ of tempered distributions (cf. [5])
We also recall the definitions of the Besov spaceBsp,q and the Lizorkin-Triebel space

Fsp,q from [10, p. 45].
LetΦ(Rn) be the collection of all systems{φj }∞j=0 ∈ S(Rn) such that

{
suppφ0 ⊂ {x; |x| ≤ 2}
suppφj ⊂ {x; 2j−1 ≤ |x| ≤ 2j+1} , j = 1,2,3, . . .

that for every multiindexα there exists a positive numberCα with

2j |α||Dαφj (x)| ≤ Cα for all j = 0,1,2, . . . and all x ∈ Rn

and that
∞∑
j=0

φj (x) = 1 for every x ∈ Rn .

DEFINITION 1.1. Let−∞ < s < ∞ and 0< q ≤ ∞. Assume that{φj (x)}∞j=0 ∈
Φ(Rn).

(i) If 0 < p ≤ ∞, then

Bsp,q(R
n) = {f ; f ∈ S′(Rn), ‖f |Bsp,q(Rn)‖ = ‖2sjF−1φjFf |�q(Lp(Rn))‖ < ∞} .

(ii) If 0 < p < ∞, then

Fsp,q(R
n) = {f ; f ∈ S′(Rn), ‖f |Fsp,q(Rn)‖ = ‖2sjF−1φjFf |Lp(Rn, �q)‖ < ∞} .

For further properties of these spaces we refer to [10].
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Imposing suitable conditions on̂ψ we investigate the continuity of the wavelet transform
(1.2) and define the generalized wavelet transform of certain tempered distributions in Section
2. Using inequalities (1.5) and (1.6) we investigate the wavelet transform of certain(DLp)

′-
type distributions of Schwartz in Section 3. Using the definition (1.2) we study in Section 4
the wavelet transform on a certainLp-Sobolev space. In Section 5 a multiplier theorem of
Triebel is applied to (1.2) to obtain some boundedness results for the wavelet transform in the
Besov spaceBsp,q and the Triebel-Lizorkin spaceFsp,q for all s ∈ R and 0< p, q ≤ ∞. The
paper extends some of the results of Perrier and Basdevant [6] and Moritoh [4].

The author would like to express his sincere gratitude to the referee for his valuable
advice.

2. The wavelet transform of tempered distributions. In this section we need the
test function spacẽS(Rn × R+) defined to be the space of all functionsφ ∈ C∞(Rn × R+)
such that for�, k ∈ N0 andα, β ∈ Nn

0,

γ�,α,k,β(φ) = sup
(b,a)∈Rn×R +
�+|α|≤k+|β|

|a�bα(∂/∂a)kDβb φ(b, a)| < ∞ .(2.1)

Clearly, the Schwartz spaceS(Rn × R+) is contained inS̃(Rn × R+).

THEOREM 2.1. Let ψ ∈ S(Rn). Then the wavelet transform (Wφ)(b, a) is a continu-
ous linear map of S(Rn) into S̃(Rn × R+).

PROOF. For�, k ∈ N0 andα, β ∈ Nn
0, we have after differentiation and integration by

parts,

a�bα(∂/∂a)kD
β
b (Wφ)(b, a)

= (2π)−nbαDβb
∫

Rn

ei(b,ω)φ̂(ω){a�(∂/∂a)kψ̂(aω)}dω

= (2π)−nbα
∫

R n

ei(b,ω)(iω)βφ̂(ω)i�+k
(
ω−�

∫
Rn

ei(ω,ay)(Dy)
�[(ω, y)kψ(y)]dy

)
dω

= (2π)−nbα
∫

R n

ei(b,ω)i |β|+�+kωβ−�φ̂(ω)
(∫

Rn

ei(ω,ay)D�y

[ ∑
|λ|=k

(k!/λ!)ωλyλψ̄(y)
]
dy

)
dω

= (2π)−ni�+k+|α+β|
∫

Rn

ei(b,ω)
∑
|λ|=k

(k!/λ!)
∑
δ≤α

(
α

δ

)
(Dω)

α−δ(ωβ+λ−�φ̂(ω))

×
( ∫

R n

(iay)δ(Dy)
�[yλψ(y)]ei(ω,ay)dy

)
dω

= (2π)−ni�+k+|α+β+2δ|
∫

Rn

ei(b,ω)
∑
|λ|=k

(k!/λ!)
∑ (

α

δ

)
ω−δDα−δ

ω (ωβ+λ−�φ̂(ω))
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×
∫

R n

(Dy)
δyδ(Dy)

�(yλψ̂(y))ei(ω,ay)dydω

= (2π)−ni�+k+1+|α+β+2δ| ∑
|λ|=k

(k!/λ!)
∑
δ

(
α

δ

) ∑
ρ

(
α − δ

ρ

)

×
∫

R n

ei(b,ω)A(β, �, λ, ρ)ωβ+λ−�−ρ−δDα−δ−ρ
ω φ̂(ω)

×
( ∑
γ≤δ

(
δ

γ

)
A′(δ, γ )

∫
Rn

yδ−γD�+δ−γy (yλψ̄(y))ei(ω,ay)dy

)
dω .

Therefore, for|β| + k ≥ |α| + �, we can write

|a�bα(∂/∂a)kDβb Wφ(b, a)|
≤ (2π)−n

∑
|λ|=k

(k!/λ!)
∑
δ≤α

(
α

δ

) ∑
ρ≤α−δ

(
α − δ

ρ

) ∑
γ≤δ

(
δ

γ

) ∑
τ≤�+δ−γ

(
�+ δ − γ

τ

)

× |A(β, �, λ, ρ)| |A′(δ, γ )| |A′′(λ, τ, ψ)|
×

∫
R n

(1 + |ω|)|β|+k−�−|ρ|−|δ|+n+1|Dα−δ−ρ
ω φ̂(ω)|dω/(1 + |ω|)n+1

×
∫

R n

(1 + |y|)k+|δ|−|τ |−|γ |+n+1|D�+δ−γ+τ
y ψ̄(y)|dy/(1+ |y|)n+1 ,

so that

γ�,γ,k,β(Wφ) ≤
∑
|λ|=k

(k!/λ!)
∑
δ≤α

(
α

δ

) ∑
ρ≤α−δ

(
α − δ

ρ

) ∑
γ≤δ

(
δ

γ

) ∑
τ≤�+δ−γ

(
�+ δ − γ

τ

)

× B(α, β, γ, τ, λ, δ, ρ, �, n)γ|β|+k−�−|ρ|−|δ|+n+1,α−δ−ρ(φ̂)
× γk+|δ|−|γ |−|τ |+n+1,�+δ+τ−γ (ψ) .

ThusWφ(b, a) ∈ S̃(Rn × R+), and from the above inequality the continuity ofWφ also
follows.

In view of the above theorem the generalized wavelet transformW ′T of T ∈ S̃′, the dual
of S̃(Rn × R+), can be defined by

〈W ′T , φ〉 = 〈T ,Wφ〉 , φ ∈ S(Rn) .(2.2)

Using duality arguments we have:

THEOREM 2.2. The generalized wavelet transformW ′ : S̃′ → S′ is linear and contin-
uous.

We can also analyse the wavelet transform by imposing a condition on the Fourier trans-
form of the waveletψ as follows:

Assume thatψ̂ ∈ C∞(Rn) such that

‖ψ̂‖m,ρα = sup
ξ

(1 + |ξ |)−m+ρ|α||Dαψ̂(ξ)| < ∞ ,(2.3)
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wherem ∈ R, 0 ≤ ρ ≤ 1, α ∈ Nn
0. Let us define the function spaceS1(Rn × R+) to be the

set of allC∞-functionsφ onRn × R+ such that for�, k ∈ N0 andα, β ∈ Nn
0,

γ�,α,k,β(φ) = sup
(b,a)∈Rn×R +
�+|α|≤k+|β|
�+|α|≤m

|a�bα(∂/∂a)kDβb φ(b, a)| < ∞ .(2.4)

THEOREM 2.3. Assume that the wavelet ψ satisfies (2.3). Then the wavelet transform
W is a continuous linear map of S(Rn) into S1(Rn× R+), and the generalized wavelet trans-
form is a continuous linear map of S′

1(R
n × R+) into S′(Rn).

PROOF. Proceeding as in the proof of Theorem 2.1 we can write

|a�bα(∂/∂a)kDβb (Wφ)(b, a)|
≤ (2π)−na�

∫
Rn

∑
|λ|=k

(k!/λ!)
∑
γ≤α

(
α

γ

)
|[DγuDλuψ̂(u)]u=aω|a|γ ||ω||λ|

×
∑

δ≤α−γ

(
α − γ

δ

)
A(β, δ)|ω||β−δ||Dα−γ−δ

ω φ̂(ω)|dω

≤ (2π)−n
∑
|λ|=k

(k!/λ!)
∑
γ≤α

∑
δ≤α−γ

(
α

γ

) (
α − δ

δ

)
A(β, δ)a|γ |+�

×
∫

R n

|ω||λ|+|β−δ|(1 + a|ω|)m−ρ(|γ |+|λ|)|Dα−γ−δ
ω φ̂(ω)|dω

≤ (2π)−n
∑
|λ|=k

∑
γ≤α

∑
δ≤α−γ

(k!/λ!)
(
α

γ

) (
α − δ

δ

)
A(β, δ)

×
∫

R n

(1 + a|ω|)|γ |+�+m−ρ(|γ |+k)|ω|k+|β|−|δ|−|γ |−�|Dα−γ−δ
ω φ̂(ω)|dω

≤ (2π)−n
∑
|λ|=k

∑
γ≤α

∑
δ≤α−γ

(k!/λ!)
(
α

γ

) (
α − δ

δ

)
A(β, δ)

×
∫

R n

(1 + a|ω|)k+|β|−|δ|−|γ |−�+n+1|Dα−γ−δ
ω φ̂(ω)|dω(1 + |ω|)−n−1

for |γ | + � +m− ρ(|γ | + k) < 0. Therefore, form < −�− |α| and�+ |α| ≤ k + |β|, we
have

|a�bα(∂/∂a)kDβb (Wφ)(b, a)| ≤ (2π)−n
∑
|λ|=k

∑
γ≤α

∑
δ≤α−γ

(k!/λ!)
(
α

γ

) (
α − γ

δ

)

× A(β, δ, n)γk+|β|+|δ|−|γ |−�+n+1,α−γ−δ(φ̂) .
(2.5)

From this we conclude that the wavelet transform is a continuous linear map ofS(Rn) into
S1(Rn × R+).

As in Theorem 2.1 we define the generalized wavelet transformW ′ of T ∈ (S1)
′, the

dual ofS1(Rn × R+), by (2.2) and get the second part of the theorem.
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3. The wavelet transform of (DLp)′-type distributions. In this section, to simplify
the analysis, we consider the wavelet transform (1.1) forb ∈ R anda > 0. We define a
suitable test function space.

An infinitely differentiable complex-valued functionφ on R is said to belong to the test
function spaceFp(R) if

γ
p

k (φ) =
( ∫

R
|(x∂/∂x)kφ(x)|pdx

)1/p

< ∞ , 1 ≤ p < ∞(3.1)

for everyk ∈ N0. A variant ofFp(0,∞), denoted byFp,0(0,∞) was studied by McBride
[3].

Another space with which we shall be concerned isGp(R×R+), defined forb ∈ R, a ∈
R+ and 1≤ p < ∞, by

Gp(R × R+) =
{
φ ∈ C∞(R × R+) ; βpk (φ) =
( ∫

R

∫
R+
(|(a∂/∂a + b∂/∂b + 1)kφ(b, a)|2da

a

)p/2
db

)1/p

< ∞(3.2)

for all k ∈ N0

}
.

Here we note that a differentiable functionψ satisfies the partial differential equation

(a∂/∂a + b∂/∂b+ 1)[ψ((x − b)/a)/a] = −x∂/∂x[ψ((x − b)/a)/a] ,(3.3)

and therefore, in general, we have

(a∂/∂a + b∂b + 1)k[ψ((x − b)/a)/a]
= (−1)k(x∂/∂x)k[ψ((x − b)/a)/a] , k ∈ N0 .

(3.4)

Now, we prove the following:

THEOREM 3.1. Let φ ∈ Fp(R) and ψ ∈ S(R) with (1.4). Then, for 1 < p < ∞, the
wavelet transform Wφ defined by (1.1) is a one-to-one linear continuous map from Fp(R)
ontoGp(R × R+) and W−1 is given by (1.3).

PROOF. Let us assume that the real waveletψ ∈ S(R) ⊂ L1(R) ∩ L2(R) andφ ∈
Fp(R) ⊂ Lp(R). Then differentiating under the integral sign in (1.1) withn = 1, and using
the relation (3.3) and integrating by parts we can show that

(a∂/∂a + b∂/∂b+ 1)W(b, a) =
∫

R
(a∂/∂a + b∂/∂b + 1)ψ((x − b)/a)a−1φ(x)dx

= −
∫

R
(x∂/∂x)ψ((x − b)/a)a−1φ(x)dx

=
∫

R
(x∂/∂x + 1)φ(x)ψ((x − b)/a)a−1dx .
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Therefore, in general, we have

(a∂/∂a + b∂/∂b + 1)kW(b, a) = (a∂/∂a + b∂/∂b+ 1)k(Wφ)(b, a)

= W [(x∂/∂x + 1)kφ](b, a) .(3.5)

Now, we apply the inequality (1.5) and get

β
p

k (Wφ) =
( ∫

R

( ∫
R+

|W [(x∂/∂x + 1)kφ](b, a)|2da
a

)p/2
db

)1/p

≤ Ap‖(x∂/∂x + 1)kφ‖Lp ≤ Ap

n∑
r=0

(
n

r

)
‖(x∂/∂x)rφ‖Lp ,

(3.6)

where the constantAp depends onp andψ. From (3.6) we conclude thatW is a continuous
linear mapping fromFp(R) intoGp(R × R+).

Next, differentiating (1.3) with respect tox within the integral sign, using formula (3.3)
and integrating by parts we obtain

(x∂/∂x)kφ(x) = (Cψ)
−1

∫
R

∫
R +
(a∂/∂a + b∂/∂b + 1)kW(b, a)ψ((x − b)/a)a−2dadb .

Therefore, in view of the inequality (1.6) we obtain the following estimate, for 1< p < ∞,

‖(xd/dx)kφ(x)‖Lp

≤ (D/Cψ)

(∫
R

( ∫
R+

|(a∂/∂a + b∂/∂b + 1)kW(b, a)|2a−1da

)p/2
db

)1/p

.
(3.7)

From (3.7) we conclude thatW−1 is a continuous linear mapping ofGp(R×R+) intoFp(R).
To prove thatW is one-to-one, assume thatWφ = 0 for φ ∈ Fp ⊂ Lp. Operating on

both sides of this equation byW−1 we getW−1Wφ = 0. Thusφ = 0. SoWφ = 0 implies
thatφ = 0.

Now, we show thatW is onto. Letφ ∈ Fp ⊂ Lp. ThenWφ ∈ Gp(R × R+), butW−1

(Wφ) = φ. Therefore, for everyφ ∈ Fp there existsWφ ∈ Gp(R × R+) that is mapped by
W−1 to φ. Consequently,W is onto also.

Clearly,W is a one-to-one and onto mapping fromFp(R) ontoGp(R × R+). Therefore,
W−1 is defined onGp(R × R+). SinceW−1Wφ = φ for all φ ∈ Fp it follows thatW−1 is
given by (1.3).

In analogy to the Parseval relation (1.7) for the classical wavelet transformW , we define
the generalized wavelet transformW ′f of f ∈ F ′

p by the relation

〈f (x), φ(x)〉 = 1

Cψ
〈(W ′f )(b, a), (Wφ)(b, a)〉 ,(3.8)

whereφ ∈ Fp(R) andCψ is given by (1.4) withn = 1.
ClearlyW ′ is a linear functional onGp(R × R+); its continuity follows from Theorem

3.1. ThusW ′f ∈ G′
p.
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Applying duality arguments to Theorem 3.1 we can also define the transformW ˆg of
g ∈ G′

p(R × R+) by

〈W ˆg, φ〉 = 〈f,Wφ〉 ,
whereφ ∈ Fp. ThenW ˆg is a continuous linear map onFp . If we setg = W ′f , then
W ˆg = f = (W ′)−1g, the inverse of the generalized wavelet transform ofg ∈ G′

p.
Thus we have the following:

THEOREM 3.2. Let f ∈ F ′
p and ψ ∈ S(R) satisfy (1.4) with n = 1. Then, for 1 <

p < ∞, the generalized wavelet transform W ′f defined by (3.8) is a one-to-one continuous
linear map of F ′

p onto G′
p.

4. The wavelet transform on Lp-Sobolev space. One can measure the regularity of
a functionφ in the scale of anLp-Sobolev space. For−∞ < s < ∞ and 1≤ p < ∞, then
Lp-Sobolev sapceHp

s is defined to be set of allφ ∈ S′(Rn) such that

‖φ‖Hp
s

= ‖|ω|s φ̂‖Lp ,(4.1)

whereφ̂ = Fφ.

We are also concerned with the spaceWp′,s
ρ of all measurable functionsφ on Rn × R+

such that

‖φ(·, ·)‖
W
p′ ,s
p

=
( ∫ ∞

0

( ∫
Rn

|φ(b, a)|pdb
)p′/p

a−s−1da

)1/p′

< ∞ ,

1 ≤ p,p′ < ∞ , s ∈ R .

(4.2)

Now, from (1.2) it follows that

F [W(·, a)](ω) = ψ̂(aω)φ̂(ω) .(4.3)

Using the Haussdorff-Young inequality [8, p. 178] for 1≤ p ≤ 2,1/p + 1/p′ = 1, we have

( ∫
Rn

|ψ̂(aω)φ̂(ω)|p′
dω

)1/p′

=
( ∫

Rn

|FW(·, a)|p′
dω

)1/p′

≤ Cp,n

( ∫
Rn

|W(b, a)|pdb
)1/p

,

(4.4)

whereCp,n > 0 is a constant. Multiplying bya−s−1da and integrating from 0 to∞ we get∫ ∞

0
a−s−1da

∫
R n

|ψ̂(aω)φ̂(ω)|p′
dω ≤ (Cp,n)

p′
∫ ∞

0
(|W(b, a)|pdb)p′/pa−s−1da ,(4.5)

so that

C
s,p′
ψ

∫
Rn

|ω|s |φ̂(ω)|pdω ≤ (Cp,n)
p′‖φ̃(b, a)‖p

W
p′,s
p

,
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where

C
s,p′
ψ =

∫
R n

|ψ̂(aω)|p′
(a|ω|)−sda/a > 0(4.6)

is assumed to be independent ofω. Thus

‖φ‖
H
p′
s

≤ (Cp,n/(C
s,p′
ψ )1/p

′
)‖φ̃(b, a)‖

W
p′,s
p

.(4.7)

Furthermore, using the Haussdorff-Young inequality again, from (4.3) we also have

(∫
R n

|W(b, a)|p′
db

)1/p′

=
( ∫

Rn

|F−1[ψ̂(aω)φ̂(ω)](b)|p′
db

)1/p′

≤ Dp′,n

( ∫
Rn

|ψ̂(aω)φ̂(ω)|pdω
)1/p

, Dp′,n > 0 .

Therefore,

∫ ∞

0
a−s−1

( ∫
R n

|W(b, a)|p′
db

)p/p′

da ≤ (Dp′,n)
p

∫ ∞

0
a−s−1

( ∫
Rn

|ψ̂(aω)φ̂(ω)|pdω
)
da

= (Dp′,n)
p

∫
Rn

|φ̂(ω)|p|ω|sdωCs,pψ ,

whereCs,pψ is given by (4.6). Thus

‖φ̃(b, a)‖Wp,s

p′ ≤ Dp′,n(C
s,p
ψ )1/p‖φ‖Hp

s
, 1/p + 1/p′ = 1 .(4.8)

From (4.7) and (4.8) we get the following characterization of theLp-Sobolev space in
terms of the continuous wavelet transform, generalizing a result of Tchamitchian [9, p. 103]
and Theorem 3.1 of Perrier and Basdewant [6].

THEOREM 4.1. Assume that the analysing wavelet satisfies the admissibility condition
(4.6). Then the continuous wavelet transform is a bounded linear operator fromH

p
s (Rn) into

Wp′,s(Rn × R+) for 1 ≤ p ≤ 2, 1/p + 1/p′ = 1 and for all s ∈ R.

Moreover, for allf ∈ Hp
s (Rn), we have

‖φ‖
H
p′
s

∼= ‖φ̃(b, a)‖
W
p′,s
p

,

for all s ∈ R and 1≤ p, p′ ≤ 2, 1/p + 1/p′ = 1.

5. Boundedness of the wavelet transform in Triebel-Lizorkin and Besov spaces.
Perrier and Basdevant [6] have obtained certain boundedness result for the continuous wavelet
transform in Besov spaces. However, they restricted to the casep, q ≥ 1 as they used
Minkowski’s inequality in their analysis. In this section using the following theorem on mul-
tipliers by Triebel [10] we obtain a boundedness result for the wavelet transform in the Besov
spaceBsp,q(R

n) and the Triebel-Lizorkin sapceFsp,q(R
n) for all s ∈ R, 0< p, q ≤ ∞.
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THEOREM 5.1 (Triebel). Assume that m : C∞(Rn) → C such that

‖m‖N = sup
|α|≤N

sup
x∈Rn

(1 + |x|2)|α|/2|Dαm(x)| < ∞ , N ∈ N0 .(5.1)

Let −∞ < s < ∞ and 0 < q ≤ ∞. Let A(Rn) be either Bsp,q(R
n) or Fsp,q(R

n) with
0< p < ∞. Then there exists a positive number C such that

‖F−1mFf |A‖ ≤ C‖m‖N‖f |A‖(5.2)

holds for all m ∈ C∞(Rn) and all f ∈ A with

N > |s| + 3(n/p)+ n+ 2 for Bsp,q

and

N > |s| + 3n/(min(p, q))+ n+ 2 for Fsp,q .

The boundedness result for the wavelet transform inBsp,q (R
n) andFsp,q (R

n) is given by
the following.

THEOREM 5.2. Let −∞ < s < ∞ and 0 < q ≤ ∞. Let f ∈ A, where A denotes
Bsp,q(R

n) with 0 < p ≤ ∞ or Fsp,q(R
n) with 0 < p < ∞. Let N denote the natural number

such that

N > |s| + 3n/p + n+ 2 for Bsp,q

and

N > |s| + 3n/(min(p, q))+ n+ 2 for Fsp,q .

Assume that ψ̂ ∈ C∞(Rn) and (2.3) holds. Then there exists a positive number C such that

‖Wψf |A‖ ≤ C(1 + a2)N/2 sup
|α|≤N

‖ψ̂‖ρα‖f |A‖ ,(5.3)

for m+ (1 − ρ)N ≤ 0.

PROOF. Assume that

m(ξ) = ψ̂(aξ)

for ξ ∈ Rn, a > 0. Then

‖m‖N = sup
|α|≤N

sup
ξ∈Rn

(1 + |ξ |2)|α|/2|Dαψ̂(aξ)|

= sup
|α|≤N

sup
u
(a2 + |u|2)|α|/2|Dαu ψ̂(u)|

≤ (1 + a2)N/2 sup
|α|≤N

sup
u
(1 + |u|2)|α|/2|Dαu ψ̂(u)|

≤ (1 + a2)N/2 sup
|α|≤N

sup
u

(1 + |u|)|α|

(1 + |u|)−m+ρ|α| [(1 + |u|)−m+ρ|α||Dαψ̂(u)|]

≤ (1 + a2)N/2 sup
|α|≤N

‖ψ̂‖m,ρα .

(5.4)
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In view of Theorem 5.1 we have

‖Wψf |A‖ = ‖F−1ψ̂(a.)Ff |A‖ = ‖F−1mFf |A‖ ≤ C‖m‖N‖f |A‖ .
Now, invoking the inequality (5.4) we get the desired estimate.
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