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UNIFORM TWO-WEIGHT NORM INEQUALITIESFOR HANKEL
TRANSFORM BOCHNER-RIESZ MEANS OF ORDER ONE
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Abstract. Two-weightL” norm inequalities, uniform with respect to the order of the
involved Bessel function, are proved for the Bochner-Riesz means of the first order for the
Hankel transform. Both sufficient and necessary conditions for parameters used in the two
weights are determined. The proof relies onfamm pointwise asymptotic estimates for the
Bessel functions that were shown by Barcel6 and Cérdoba.

1. Introduction. The Hankel transforni, f of a suitable functionf on (0, co) is
defined by

Ho f(x) = /0 Y20, f () dy. x> 0.

Herev > —1is given and/, (x) denotes the Bessel function of the first kind and ordg8].
Itis known that(H, o H,) f = f and||H, fll2 = || fll2 forany f € C2°(0, co), the space of
C*° functions with compact support i, oo) (|| - I, denotes the usual unweighted norm in
L?(0, o0)). Consider the Bochner-Riesz means of odler 0 for the Hankel transforrfi,
given by

88 g f(x) = Hy(m% - Hy f)(x)
- /0 K o6 ) f Oy |

wheremé,(y) = (1 — (y/R)?)°® for 0 < y < R and 0 otherwise, and

R
K} R(x,y) = fo my () (xs)Y2 0, (x5) (y5) 20, (ys)ds .
Uniform boundedness, with respectRo> 0, of SS_R in weightedL” spaces for fixed > —1
ands =0,
1) IIS,?,Rf(X)X“IIpSCIIf(X)X“IIp, R >0,

is known to hold if eithew > —-1/2,1< p < ccand-1/p <a<1l—-1/por-1l<v <
—-1/2,2/(2v+3) < p < —=2/(2v + 1) anda = O; cf. [7] for appropriate references. The
general casé > 0 then follows by applying a sort of Stkin-type multiplier theorem for the
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Hankel transform. Indeed, lei(x) be a function of bounded variation @, co). Then (1)
implies
Hy (m - Hy £)(0)x)|, < CmaxX{im (1), Varm}| f(x)x“|

(with the same constaidt). To show this, it is sufficient to establish the inequality

‘ /0 m(y)YHy f (M Hvg(y)dy

< Cmax{im()|, Varm}|l f ()x || pll g (o)x Il

for f, g € C2°(0, 0o). Define

R
no(R) = /0 Hof Y Hogdy. R > 0.

Then (1) gives
Iny(R)] < CllLf )X N pllge)x™ Il
and an integration by parts leads to

N
SIm(s)nu(8)|+IM(N)nv(N)I+/ nv(y)dm(y)‘

< CmaxX{|m(D)|, Varm}| f ()x“ [l pllgC)x Il -

N
/ m(y)YHy f ) Hyg(dy

Finally, a limit passage with tending to 0 andV tending toco completes the argument.

Since (1), withd = 0 andR = 1 (hence also with anR > 0), holds uniformly with
respect tov > 2 (cf. [7] for appropriate comments) in the case wheB8 &« p < 4 and
—1/p < a < 1— 1/p the same remains valid, by applying the argument just used, for
arbitrary$ > 0.

The present paper focuses on proving more general, uniform with respedheguali-
ties of the form

1S3 £ @)x“A 40", < ClfF @A+ x5,
we simplify the notation by writing} andk ! in place ofs} , andK} ;.
THEOREM 1. Leta > —1land1l < p < oo. Then
2 1Sy £ )x“ (L4 0", < ClLf A+ )54,

withaconstant C = C(p, «, a, b, A, B) independent of v > « and f ifandonlyifa, b, A, B, «
and p satisfy the conditions

@) a>-1/p—(a@+1/2) zifp=0c0), A<1-1/p+(+1/2) (<ifp=1),
(4) b<2-1/p (fifp=o0), B>-1-1/p (zifp=1),

%) b<B.

Moreover, only v = « in (2) isrequired to prove necessity of (3), (4) and (5).
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It is tacitly understood that when assumif®) to hold and then proving the necessity
of (3), (4) and (5) only such functiong are admitted for whictsy f (x) is well defined
for (almost) allx > 0, i.e., [5° |K2(x,y) f()|dy < oo for x > 0. Clearly, if f is com-
pactly supported if0, c0), say in[c,d], 0 < ¢ < d < oo, and[cd |[f(»)|dy < oo, then
Jo 1K x, y) f(»)Idy < oo, since, with givent > 0, K1(x, y) is a continuous function of
y > 0. But if we assumdy” | f(x)xA (14 x)B~4|Pdx < cowith A <1—1/p+ (« + 1/2)
(zif p=1andB > -1-1/p (= if p = 1), thenSvlf(x) is also well-defined for
v > « andx > 0. This easily follows, by using Hoélder's inequality and the estimates
Klx,y) = 00""Y?),y — 0F, andKl(x,y) = O(y2), y — oo. The first estimate
follows from the integral representation Kﬂ(x, y) and the asymptotic

(6) L) =0@"), -0,

the second is a consequence of the Campbell-type representatigf(afy): cf. (26) and
follow the argument in the proof of Lemma 2 (now, withand v fixed!). Therefore the
second parts of (3) and (4) should be considered as “natural” assumptions. An analysis also
shows that the first conditions in (3) and (4) are dual to their right counterparts.

It is instructive to compare the assumptions (3), (4) and (2) of Theorem 1 with those
of Theorem 1.1 of [7] (partial sums case). The conditiongi@nd A are exactly the same;
this is probably explained by the fact that the kernifSx, y) and K%(x, y) have the same
behaviour in the neighbourhood @, 0). The conditions o andB are now relaxed (by one
from both sides) when compared with those from Theorem 1.1 of [7]. The most important
difference is with the condition on the relation betwéesnd B; it becomes now very simple
when compared with that of Theorem 1.1 of [7]. Furthermore, the uniformity of (2) for large
v does not imply additional restrictions: the conditibrx B is sufficient for (2) to hold for
v > « as well as for the single = «.

In [7] we compared a similar result proved there for partial sum operators (the case of
8 = 0) with Muckenhoupt’s result [4] proved for partial sum operators for expansions with
respect to the system of Laguerre functions

2F(}’l+1) 1/2722 1/2 2
) e */ xo‘+/Lfl‘(x),

wn(X):<F(n+O{+1)

which form a complete orthonormal systemiiR(0, o) (for a motivation leading to such a
comparition see again [7]).

It seems worthy to compare our present result with that of Muckenhoupt and Webb
[5] specified to the first order Cesaro means and reformulated for expansions with respect

to {120,
(@1 1 ¢ -
oN (f,x)zN—HZ(N+1—n)<f,w,,>wn(x>.
n=0

An earlier result of Poiani, [6], admitted the case=- A andb = B only and did not include
some possibilities.
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THEOREM([5], Theorem (2.29)). Leto > —1and1 < p < oo. Then

(7) sugnaﬁ”(f,x)x“(1+x>”—“||p < Cllf@xA@+x)B4),,

N>
holdswith C = C(p, @, a, b, A, B) independent of f if and only if a, b, A, B and « satisfy
the conditions

(8) az-1-1/p. a>-1p—(@+1/2) (=if p=oc0).
9) A<a, A<1-1/p+1/2, A<1l-1/p+@+1/2) (<ifp=1),

(10) a+ B = min(~3—2/(3p). —2—2/p}, A+b <min{4—2/p,11/3—2/@3p)},
(1)  b=min(3—1/p.8/3+1/GBp)}. B=max-3+1/@3p).~2—1/p},

(12) b < B+ min{0,3—4/(3p),5/3+4/@3p)}.

The last parts of the assumptions (8) and (9) are identical with our assumptiarenain
A, cf. (3). Thisis caused by the fact that the kerkiglx, y) and the kernels that correspond to
cr](\,""l) have the same behaviour for smatindy. To see this, one has to compare the result of
Lemma 1 below with the estimate (2.3) of [Sptause of the reformulation mentioned above,
in (2.3) of [5] one has to take?, y2 in place ofx, y, and then multiply both sides ki y)/2).
In general, however, the assumptions (8)—(12) from the Laguerre case are much more involved
than those from Theorem 1. This is again explained by more complicated nature of estimates
of the first order Cesaro kernels in the Laguerre case (cf. (2.3), (2.4) and (2.2) in [5] with
necessary modifications) when compared with the estimates contained in Lemmas 1-4 below.

2. Preliminaries. We start with writing an exact expression for the kernel

1
KL, y) = Jxy f s(1 = s2)Jy (x5)Jy (ys)ds
0

that corresponds to the Bochner-Riesz m§arie use the notation

u=x2—y2 y=x24)2

and
Fi(x,y) = /Xy h(0) L),  Fa(x,y) = JxyJy(x0) L),
F3(x,y) = /Xy ()1 (y) ., Falx,y) = J/xyJ,(x)J)(y).
Then we have
K (x,y)

(13) 2
= P((sz — V) F(x,y) — ZXEFz(x, )+ 2y§F3(x, ¥) — 2y Fa(x, y))

whenever # y. This may be checked by noting that
(14) Ki(x,y) = 2D?Fi(x. y)
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1 d d
T

u ay ax
usingD(f gh) = D(f)gh+ fD(g)h+ fgD(h) andD(x*yu=¢) = x*y*u="2((b — a)u +
2cv), a, b, c € R, and observing how acts onF;,i = 1, 2, 3:

where

1
D(F1) = ;(—sz +yF3),

b2 _ 2

1
D(1"2)=;<— F1+F2+yF4>,

1 2 _ 2
D(F3)=;<” yy Fl—F3—xF4>;

the identities are obtained by using the fact thatr) satisfies Bessel's differential equation
J"(x) = (v = x2)/x?) ], (x) — (1/x)J.(x). To verify (14) we first use Lommel’s formula

xJyy1(sx)Jy(sy) — yJu(sx)Jyr1(sy)
x2—y2

3

/ tJy(xt)J,(yt)dt = s
0

with s = 1, the identityx J,+1(x) = vJy(x) — xJ)(x) and the expression dR(Fy) to obtain
K%(x.y) = DFi(x,y), whereK?(x, y) denotes the integral kernel f = s0,. Then,
integrating by parts, using Lommel’s formula and the expressig®@n) shows that

1
Kvl(x, y) = J)Ty/ (L= s2sJy(xs)J, (ys)ds
0

1
J Jo(sy) = yJu(sx)J
:2“/x_y/0 o Flv1lsr) v(si’;_izv(sx) v+1(5y)

1
= 2,/xy/ sD(Jy (sx)Jy(sy))ds
0
= ZDKS(x, y).
This completes checking (14). We should atdthis point that according to the Laguerre
case, (14) could be called a Campbell-type formula.

If v =—1/2 thenJ_1/2(u) = (2/wu)*/?cosu and’H_1/2 reduces to the cosine trans-
form. A direct calculation oftie integral representingfl/z(x, y) then shows that

1
(.X' — y)z Coix - y)

1 .
+ msm(x +y)—

Ko y>=3(#sin(x—y>—
—l2 7\ (x —y)3

Ty cosx + y)) .
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Similarly, if v = 1/2 thenJa/2(u) = (2/mu)*/2sinu, H1/2 reduces to the sine transform and

2 . 1
Kll/z(x» y) = ;(m sin(x —y) — m cogx —y)
. 1
T hE? sin(x +y) + G102 cosx + y)) .

These two exact formulas (consistent with (13)!) give an immediate insight on how estimates
of Kul(x, y) should look like, for a single, in different regions of the quarter plane. For
estimates uniform on, (13) together with the uniform estimates that follow are required.

We will make an extensive use of the following uniform pointwise estimates of Bessel
functions and their first derivatives: with a const@ntindependent of andx, forv > 1,

WH2(ro+ 12t 0<x <v/2,

(15) |x1/2Jv(x)| <D 1)1/4(111/3 + |x — v|)71/4, V/2<x <2v,
1, 2V <x <00,
and
v Y2(ro+ 12", 0<x< v/2,
(16) |x1/2J;(x)| <D v VAR L x — Y4, w2 <x < 2v,
1, 2V <x <00,

and, for-1 <v < 1,

vH2(rw+1)71, 0<x<1/2
17 Y25 ) <Dl : ’
(17) |x v(X)| = ’ 1/2 < x < 00,
and

v12(rw+1)7t, 0<x<1/2
18 2510 < Dy ’ ’
(18) A= DY 1/2 < x < 0.

In the caser = 0, the bound:—1/2in (18) has to be replaced hy/2. (15) and (16) are direct
consequences of the delicate bounds done by Barcelé and Cérdoba; they follow from the table
on p. 661 of [1], or p. 24 of [2]. The transition poiat= v/2 in (15) and (16) may be replaced
(clearly, with a differentD) by (1 + ¢)v/2, oriin (17) and (18)x = 1/2 may be replaced by
(1+¢)/2, where O< ¢ < 1is chosen earlier; cf. [7] for additional comments.

Denoting by®, (x) the function that appears on the right of (15) wher 1 or on the
right of (17) when—-1 < v < 1, we have

(19) IVxJy(x)] < D®y(x) .
Accordingly, (16) and (18) may be written in the following form

|v2 _ x2| + x4/3

(20) IVxJ,(x)| < C - P, (x)

whenv > 1 and

(21) IWEJL(x)] < CXT”qbv(x)
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when—1 < v < 1 with the exception for = 0; then(x + 1)/x is replaced by /(x + 1).

For the purpose of kernel estimates that are proved in Lemma 1 it is much more con-
venient to split(v/2, 2v) into the three intervalgv/2, v — v1/3), (v — v1/3, v +v¥/3) and
(v +v1/3, 2v) and, instead o®, (x) in (19) use, ifv > 3, say, the (equivalent) bound by

H2(ro+ 12971, 0<x <v/2,

w40 — x)~1/4, v/2 <x <y -3,
@v(x)z /6 v =18 < x < v 4013,

v1/4(x—v)_1/4, v+ 03 < x < 2v,

1, 2v < x.

We have, for certain,, b, andc,, the asymptotic

sin(z + ¢,)

(22) Vidy (1) = ‘/Z/n(COE(t +ay) + by + O(t2)> , I —00.

At several places of the next section, withoutfar refering to it, Stirling’s formula is used:

lim vHY2e " re+ 1)t = 27)"Y2.

V—>00

Givenp, 1 < p < o0, p’ denotes its conjugate/p + 1/p’ = 1.

3. Kernd estimatesand boundsfor Kl in different regions. In the sequel we write
v=vifv>21landv =1if —1 < v < 1. Also, we use the notation

Wa,p(x) = x (14 x)777.

The lemmas that follow give proper estimates of the kediglx, y) in different regions

of the quarter plan€0, co) x (0, o). The corresponding propositions furnish weighted
bounds of associated kernel operators restricted to relevant regions with minimal assumptions
required oru, b, A, B. In the propositions the constafitwill depend onv, p, a, b, A, B but

will not depend on > o and f. At several places the usual interpretation of fifenorm is
needed whep = oco.

LEMMA 1. Thereexists C > 0independent of v > —1 such that

v+1/2 vy 2 _
IKvl(x,y)|§C{(x” /(T +22)%, 0<x.y<20/3,

1, X,y >v/2.
ProoF. Using (15) and (17) gives, for@ x, y < 2v/3,
1 (xy) /2 G20
K3yl = € R | Y1 252y,

To get the required bound we use

1 1rw+1rQ)
G2\ 2v+l _ =
/ (1 —s%)s ds = 27]_,(]) 13
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and then majorize the last expression®l + v)~2. To prove the estimate for, y > 7/2
we note that by Schwarz’s inequality we hav&' (x, W2 < Ay(x)A,(y), where

1
Av(x) = / (1= 52) (/x50 (x5))2ds
0

It is therefore sufficient to check thdt, (x) < C for x > v/2. In what follows we consider
the caser > 1 only (analysing the casel < v < 1 is much easier). In fact we also assume
thaty > 3. We consider four cases to estimatgx): v/2 < x <v —v1/3 v — /3 < x <
v4+u3 08 « x <2v,and 2 < x.
Case 1:v/2 < x < v —vY3. By (19), (here and in the sequel we use (19) with(x)
in place of®, (x))
)" TY2(rw+12") 1, 0<s<v/2x,
Vs ool < C{ w4 — xs)~ 14, v/2x <s < 1.

Therefore,

v/2x
Ay(x) < c<x2”+1(r(v +12")72 / (1 — 5252 ds
0

1
+ vl/Z/ A-s%@w— xs)l/zds> .
v/2x

The first summand above is bounded by using

v/2x 2 2vi1 1 y 2(v+1)
1-s2)s2Hgs<c—" (2
/0 (1 =957 ds = 2(v+l)(2x)

and Stirling’s formula. For the second summand we write

1 v/x
/ 1- sz)(v — xs)fl/zds < / (v — xs)fl/zds
v/2x v/2x

and note that the last integral is boundeddy /2 which gives the correct bound of the
second summand. The claim, (x) < C, now follows.
Case 2:v —v¥3 < x < v+ Y3 From (19), the following estimate holds:

)" TY2(rw+ 12", 0<s <v/2x,
IWVxsJ,(xs)] < C {v¥/3w — xs) 14, v/2x <5 < (—v3/x,
vl/e, (v—v1/3)/x<s<1.

Therefore,

v/2x
A(x) =C (xz”“(F(v +1)2")7? / (1— 252+ ds
0

(v—v1/3)/x 1
+ vl/Z/ A —s?)(v—xs) Y2ds + u1/3/
v/2x (v—v1/3)/x

The first summand is that from Case 1. The same is with the second summand once we enlarge
the upper integral limit fronfv — v/3)/x to 1. The integral contained in the third summand

(1-— sz)ds> .
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is easily seen to be bounded 6y ~1/3 which gives the correct bound of the summand. The
claim, A, (x) < C, again follows.
Case 3:v+vY/3 < x <2v. Asinthe previous cases we use (19) obtaining:

)" P2(ro+12>)1, 0<s <v/2x,

YW —xs)7H4 j2x <5 < (v=v3)/

vy — xs ) <s V—v X

JxsT,(xs)| < C ’ - ’

AL T W= vY¥/x <5 < v+ 0H3)/x,
v/ (xs —v) V4, (v + vl/3)/x <s<l1.

Next, we boundd, (x) by splitting the integration accordingly. The first two resulting terms
are exactly those from Case 2. The same is with the third one once the upper integral limit is
enlarged fromv + v1/3)/x to 1. The fourth resulting term is

1
vl/Z/ 1- sz)(xs - v)_l/zds
(v+v1/3)/x

and the required claim follows since
1 1
/ L= s (s —v) Vs < Cx_l/Z/
(v+v1/3)/x v/x
Case 4: 2v < x. Inthis situation we have
)" P2(ro+12>)1, 0<s <v/2x,

-1/2
(s— K) /ds < cv 12,
X

V4w — xs)" V4, v/2x <s < @w—vY3/x,
[Vxsy(xs)] < C {08, w—B)/x <s <+ v¥/x,

v 4(xs —v)~ V4, (v + vl/3)/x <s<2v/x,

1, 2v/x <s <1.

Again, we boundA, (x) by properly splitting the integration and noting that the first three
resulting terms are those from Case 3. The same is with the fourth one after replacing the
upper integral limit 2/x by 1. The fifth resulting term iglev/x(l — s%)ds and it is obviously
bounded by a constant. This finishes the proof of Case 4 hence the lemma. O

PrOPOSITION 1. Leta > —landl < p < oco. Assuminga > —1/p — (¢ +1/2) (>
ifp=o0)andA <1—-1/p+ (¢ +1/2) (<if p =1) we have

2i/3 2i/3 p 2i/3
(23) /0 (wa,b(X)/O IKi(x,y)f(y)ldy> dx < C/o |f(y)wA,B(y)|pdy,

for v > «, while, assuming in addition » < B, for v > o we have

o0

[ee] 14 [ee}
(24) » (wa,b(x) f/z XD(x,y)IK,)l(x,y)f(y)ldy> dx < C/ , | f O wa s dy,

v/
where D = {(x, y) : [x — y| < 1}.
PROOF  Proving (23) use the bound ¢k (x, y)| from Lemma 1 and consider = 1

first. Then split the integration regio®, 2v/3] in the double integral using/3 as break-
points and change the order of integration to end up with four integrals to be estimated by a
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constant multiple of eithefoz/3 | f(»)|yAdy or [22/93/3 | f(»)|yBdy. If the y-region of integra-
tion is [0, 2/3], then merely replace’+1/2 by y4 (using the assumptiod < « + 1/2) and

note that the integrals
2/3 2/3
/ xa+u+l/2dx , / xb+v+l/2dx i
0 2/3

when multiplied by(I" (v + 2)2”)~2 give bounded functions of > «. If the y-region of
integration i2/3, 2v/3] then, for large values of say, replace’*+1/2 by (2v/3)"t1/2-8 8
and, in the case of the-integration ovef2/3, 2v/3], note that

_p 23
LB [ e,
(I'(v+2)2)2 \3 2/3

is a bounded function of large(note that the possible growth o#~5-2 is compensated by
the decay of(e/3)"). The remaining case of theintegration ovelf0, 2/3] is similar (and
easier). In the case ¢ p < oo apply the analogous argument using Hélder’s inequality in
appropriate places (cf. also the proof of Lemma 2.1 in [7]). Consider mewoo. It is then
sufficient to show that, for > «, the quantities

1 i1z [P i1
1 sup [ae / » If(y)ldy]
v+ 2)2v)2 0<x<2/3|: 0

and

1 pivrrz [P i
sup  [x7T / v’ If(y)ldy}
(IF'(v+2)2")2 2/34 <20/3 [ 0

are bounded by a constant (independent of «) multiplied by the sum

sup YUfmI+ sup yEIFl.
O<y<2/3 2/3<y<2v/3

This is easily done by using the assumptiarns —(« + 1/2) andA < 1+ (a + 1/2).
Proving (24) use Lemma 1 and note that only 1 may be considered. Let= 1. Itis
sufficient to show that

o0 b o0 o0
/ X / x,1(x = yDIf M ldydx < C/ lf ) yBdy
vz Jup2 b2

with C independent ob > 1. The inequality immediately follows by changing the order of
integration, noting that fop > v/2 andv > 1

o0
/ * xo.1(lx — yDdx < Cy”,
v/2

and usingy < B. Consider now the case4 p < co. By usingb < B it is easily seen that
(24) is implied by

00 x+1 14 00
/ </ . |X[v/2,oo]()’)9()’)|dy> dx < C/ lg(n|Pdy,

/2 v/2
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wherev > 1. This, in order, follows from the well-known standard norm inequality for the
maximal function since, far > v/2 andv > 1,

x+1
/ . [X[v/2,000(Y) gAYy < CM(X[v/2,0019)(X) . O
e

LEMMA 2. Leta > —1. Thereexists a constant C independent of v > « such that for
|x —y| > landx,y > 5v/4,

(25) |Ky(x, »)| < Clx = y| 72
PrRoOOF. Using (13) gives

2v
|—(x|F2I + yIF3)) + 2Xy|F4|) .

(26) IKL0x, vl 52|u|—2<|2v2—v||F1|+ 2

Since|F;| < C onx,y > v, see (15)—(18), the conclusion then follows by noting that each
of the terms|2v2 — (x2 + y?)|, v, xy, when divided by(x + y)? is bounded on the indicated
range ofx andy. O

PROPOSITION 2. Leta > —1,1<p <00, b<B,b<2-1/p (<if p=00),and
B>-1-1/p(=if p=1). Then,forv > «,

e’} e’} V4
/ <wa,h<x) / 2o (e KA, y)f(y)ldy> dx
27 50/4 50/4

< [ 1 Gwanody.

5v/4
where D¢ = {(x,y) : |x — y| > 1}.

ProoOF. Consider firstp = 1. Then (27) reduces to showing that

Rl b—p 19 *©
X[L,00) (Ix = y)x7y sdydx < C lg(»)Idy
50/4 J 50 /4 lx — ¥l 7

2v

and this is a consequence of (this time: 1 is used)

o 1
sup sup [yB/ xhX[l,oo)(|x —y|)72dxi| < 00.
V>0 y>50/4 50/4 [x =yl

In the casep = oo, (27) reduces to showing that

b [ lgl _p
sup | x xpe(x,y) sy “dy| =C sup [g(y)
x>5v/4 50/4 |x — yl y=50/4

and this easily follows by noting thaB(> —1 is used)

*© 1
Sup sup |:xb/ X[1,00) (|x —Y|)md){| < 0.

b>0 x>50/4 20
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Consider now the cased p < oo. We decompose thgrange in[5v/4, x /2], [x/2, 2x] and
[2x, 00). Then,

0 x/2 p
f (wa,b(m f xpe (x, Y)IKXx, y)f(y)ldy) dx
5 5v/4

5 /4
e’} 5 X )4
<c / (xb / If(y)ldy) dx,
50/4 50/4

and an application of Holder’s inequality shows that the last expression is bounded by the
right side of (27). Similarly,

= o . ’ o)\
/ (wa,bm / xDe(x,y>|1<u(x,y)f(y>|dy) dx < C / (x / ) dy) dx
55/4 2 55/4 x Y

and again Hdélder’s inequality does the job. Proving

00 2x p 00
/5 (wa,bm f /2 xuc(x,y)IKvl(x,y)f(y)Idy> dx < C /5 s f s

v/4 v

v/4

reduces to showing that

-8 2 lg(»)| P o0 »
x X11,001(Ix — yI) zdy | dx <C lg(x)]Pdx .
5/4 x/2 lx =yl 50/4

By the assumptioh < B, we obtain

o) 2x p
_ lg(I
/ xP® B)</ Xi1,001(Jx = ¥ 5dy | dx
55/4 x/2 |x — ¥

0 x p
lg(y)]

C/ (Z/ L Xy () dy ) dx
55/4 \ 127 Jl—yl~2t X =y

00 00 5 »
C/ (22 k/ Ig(y)IX[sa/4,oo](y)dy) dx
5 k=1 x—y|~2k

/4 |
o0

C M (X(55/4,00)9) (x)Pdx .
50/4

IA

IA

IA

Using the fact thad/ is a bounded operator di¥’ for 1 < p < oo, we conclude the proof of
Proposition 2. |

LEMMA 3. There exists a constant C independent of v > 1 such that for |x — y| > 1
andv/2 <x,y < 3v/2,

— 1/3 1/4 o 1/3 ]_/4
(28) |K3(X,Y)|§C|x—y|—2<<w) +(¢> )

[v—y|+v1/3 v — x| +v1/3
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PROOF.  Applying (19) and (20) to (26) leads to

_ v
IKX(x, y)| < CP,(x)D, (v)|u| 2 <|2v2 — |+ muvz — x| 32

v

+ (|1)2 _ x2| +x4/3)1/2(|v2 _ y2| + y4/3)1/2) )

Then the estimates fab, on the rangév/2, 3v/2) give
|Ky(x, )| < Clx — y[72(jv — x| + 037V — y| + 0137147372
x (v[Jv — x|+ [v = y[T+ v¥2[(v — x| + v/3)1/2
+ (v =y + 32 (v — x|+ Y20 — y| +03)12)

A careful analysis then shows that each of the three resulting summands is bounded by the
right side of (28). O

PrOPOSITION 3. Leta > 1,1< p <oo,andb < B. Then, forv > «,

3v/2 3v/2 14
/ (wa,bm //2 ch(x,y)lKvl(x,y)f(y)ldy) dx

(30) /2

3v/2
sc/Z | f0)wa s ()IPdy .
v/

PROOF. By using (28) and the assumptién< B, (30) will follow from
(/31)/2(/31)/2 |f(y)| v — x|+ Vl/3 1/4d pd 1/p
e (2 2) ) )
v/2 v/2 IX_YIZ |V—)’|+Vl/3

3v/2 1/p
< c(/ If(y)l”dy>
v/2

and an analogous inequality with the second term from the right side of (28) involved. Since
in the latter case the argument is completely similar to what we present below we do not repeat
it. The change of variable® = v=1/3(x — v), ¥ = v~1/3(y — v), shows that the left side of

(31) equaly~Y/3+1/CGr) myltiplied by

(/v2/3/2 </v2/3/2 X.¥) |F(Y)] (1+|X|)1/4dy>pdx>l/p
_y|sp-13y (X, )

Curaga \ gy XY PR Ty e Ty

with F(Y) = f(Yv1/3 + v). By symmetry, it is now enough to majorize the quantity

2/3 2/3
([ e 200 (LY )
0 yzrapp XY AN v 2\ 1+ Y

by v1/3-1/GP) times the right side of (31). We decompose theange into five intervals
[—v2/3/2, —X], [-X, 0], [0, X/2], [X/2, 2X] and[2X, v¥/3/2] (the extreme intervals may

(31)
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be void, the second one may reducé-t®?/3/2, 0]) and denote the resulting double integrals
byrl;,i =1,...,5. We will focus on proving that

3v/2 1/p
(32) I < Cv1/31/<3p>( f |f(y)|de> , i=1,...,5.
v/2

Leti = 1. If Y € [—v¥3/2, —X]then|X — Y|~2 < C|Y| %, the change of variablg = —T
and Hoélder's inequality produce the following boundlef

v2/3/2 -X IF(Y)I 1+ |X| 1/4 p 1/p
_ “1y3(X, Y dYy )| dX
(/0 (/_vz/s/zx“" G )|X—Y|2<1+|Y|> ) )
1)2/3/2 1)2/3/2 IF(—T)| 1+ X 1/4 p 1/p
<C - X, T)—— | —— dT ) dX
= </0 </x Ky (D™ (1+T> ) )
V2372 %82 |F(=T)| P 1/p
([, )
0 max{X,v—1/3—X} T
V232 V2732 ) p/r’ i/p
< Cvl/(3p)</ </ T2° dT) dX)
0 max{(X,2v—1/3—x}

3v/2 1/p
x ( / If(y)l”dy> .
v/2

This proves (32) fof = 1 since

232 232 ) p/r 1/p
</ </ T-2r dT) dX) < V3.
0 max(X,v—1/3—-X}

Leti = 2. If Y € [-X, 0] then|X — Y|~2 < C|X|~2, the change of variablé = —7 and
Hélder's inequality similarly show thak is bounded by ~1/37 multiplied by the product of

v23)2 X 14 x\ 774 p/p 1/p
(33) ( / X‘Z”< / <—+ ) dT) dX)
0 max0,v-13—xy \1+T

and the right side of (31). This completes the proof of (32)ifer 2 once we note that (33)
is O (v1/3). Consider the case= 3. Thenls equals

v2/32 X/2 |F(Y)] 1+X 1/4 14 1/p
_ X,Y)————| —— dY | dX
<fu—m </o ) )|X—Y|2(1+ Y) ) )
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and we further split th&-range ontdv—1/3, 1] and[1, v%/3/2] denoting the resulting double
integrals byl3; and/3». Then

1 min{X/2, X —v~1/3} |F(Y)| 14 1/p
Iz1=C dy | dX
v—1/3 0 X2
207173 X—v~13 |F(Y)] p 1/p
<C 5 dYy | dX
v=1/3 0 X
! X irw)l o\ Y
+ ( / ( A dY) dX) }
20-13 \Jo X
~1/3

2v
- C,,—l/<3p>[(/
»-1/3
1 , 1/p 3v/2 1/p
([ ) ) [ o)
2v-1/3 v/2

where, in the last lingii6lder’s inequality was used. Now, the bound

1/p
X2 (X — v—1/3)17/l7’dx)

o)-1/3 / 1/p 1 ) 1/p
(/ X720 (x — v Y3yp/p dX) + (/ xPA/p —2>dx) < V3
p—1/3 PN B

shows (32) forls;. Similarly, using Hélder’s inequality again, we majorize by v—1/Gr)
times the product of

v2/3/2 X ) p/v 1/p
(34) </ X7”/4</ A+Y)™P /4dY> dx)
1 0

and the right side of (31). Thus (32) follows f&i,, hence also forz, since (34) is0 (v1/3).
Consider the case= 4. Thenls equals

0 /2 X{Xx-y|>v-13){4, X —YP\1+Y

and we further bound it by

C / </ Xi1x— —13 (X, Y)idY) dX)
< 0 xy2 T IXIZVE) X —Y[2

v2/3/2 00 s (Y)F(Y) ) U
SC(/ (E :/ X022 > IdY) dX)
0 o J1X—y |~k X — Y|
=k1
v2/3/2 e’} , ) U
< C(/ (Z 2- k/ |X[0,v2/3/2](Y)F(Y)|dY) dX)
1
<

vi3j2 , o p 1/p
c( /0 (Z 2—’<M(X[O,v2/3/2]F)(X)) dX)
k=k1
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13 v2/3)2 1/p
< Cv / ('/0 M(X[0’v2/3/2]F)(X)de>

with k3 = [—(log, v)/3] — 1. Using the fact thad/ is a bounded operator ¥’ we finish
the proof of (32) foti = 4. Consider the case= 5. Thenls equals

/ o / o x, 1)L (1+ X Y ax)”
0 oy XY B e Ty

and is easily seen to be bounded by a constant multiplied by the sum of

Lo FOOL N\
151 = (/ (/ X{\X—Y|>v’l/3}(X’ Y) 2 dY) dX)
0 2X Y

%82 V2372 [F(Y)] P 1/p
152 = (/ (/ X{|X—Y\>v’1/3}(X’ Y)—de) dX) .
1 2x Y

Using Holder’s inequality and the estimate

1 v2/3/2 p/r 1/p
</ (/ Y—ZdY> dX) < V3
0 max{(X+v—1/32x}

(decompose th&-range into0, v—1/3] and[v—1/3, 1]) shows that

Lot FOOL N Y7
151§C</ (/ > dY) dX)
0 maxX+v-132x) Y

3v/2 1/p
< CU1/3—1/<3">( f If(y)l”dy) :
v/2

Similarly, the estimate

v2/3/2 v2/3/2 , 120 1/p
(/ (/ Yy~ dY) dX) < Ccvl3
1 2X

and Holder's inequality produce

v2/3/2 323 ) p/p' 1/p v2/3/2 1/p
Isy < c(/ (/ y—2r dY) dX) (/ |F(Y)|PdY>
1 2X —v2/3/2

3v/2 1/p
< CV1/31/<3P>< / |f(y)|de> :
v/2

This finishes the proof of (32) far= 5 hence the proposition. o

and

LEMMA 4. Let
Ry =[2/3,00) x [0,1/2], Rz =[3v/2,00) x [/2,5v/4],
R3=1[0,v/2] x [2v/3,00), Ra=1[v/2,5v/4] x [3V/2, 00).

Then there exists a constant C independent of v > —1 such that
D, (x)Py(y)

o i=l234
xX=y

|KLe, y)xr (x, y)| < C
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PrROOF. We discuss the case> 1 only (if v < 1 our argument also applies but the
right side of (29) must be suitably modified). It is sufficient to check that the expression in
parentheses on the right side of (29) divided(by+ y)? is bounded by a constant. IRy,

x <x+y<T7x/4andx/4 < x — y < x, thereforev/|u| is bounded. Also each of the
terms(|v2 — x2| +x¥3) Y2 (1v2 — y2| + y¥3)1/2 when divided by + y is bounded. Finally,
|2v2— (x24y2)| when divided by(x+y)2is bounded. Similar analysis holds foe 2, 3, 4.

O

PROPOSITION 4. Leta > —1,1< p <ocoanda, A, b, B satisfy the assumptions (3)
and (4) of Theorem 1. Assume also that

B+1+1/2-2/@p), if1<p<4/3,
b<{B+1, if 4/3<p=<4, (<if p=4/3orp=4),
B+1-1/64+2/(3p), ifd<p<oo.
Then, for v > «,

e¢]

00 e’} V4
(35)/0 (wa,b(x) /0 xR,.(x,y>|l<3<x,y)f(y>|dy) dx < C /0 F0)was()IPdy

whereR;,i =1,...,4,areasin Lemma4.

PrROOF Denote the left side of the inequality to be proved raised to fhetth power
(with the usual interpretation whem = oo) by F; = Fj(a, b, p,v; f). Consider first the
case = 1. Using the bound from Lemma 4 and Hoélder’s inequality gives

~ o p 1/p
F= ( /0 (wa,bm /0 xR1<x,y)|K3<x,y)f<y)ldY> dX>
00 v/2 P 1/p
< c( / (xb / |f(y>|wdy) dX>
2v/3 0 I-x - )’|

o0 /2 » 1p
< c( / (xbzqau(x) / |f(y>|q>u<y)dy> dx)
2/3 0

< Cllx@i/3.00X)xP 720,01 - 1x0.5/2 Mwa, 8D 2@y - 1 F wa sl p -

The product of the first two terms following the laStabove is a continuous function of
v € [, 00). It is therefore sufficient to consider largés; analogous remark applies when
analysingF;, i = 2, 3, 4. Thus, from now on we assumeo be large and write in place of

v. Then we have

I x©.0/2 Mwa, () @)
(36) < cmaxXlixo,n My ALyl Ixa w2 My EDu()l )
S C27v1—'(v + 1)71(v/2)73+v+1/2 ,
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where, to assure the convergence of the integr@ph] the conditiomA < 1-1/p+(ax+1/2)
was used4 < « + 1/2 whenp = 1). Moreover,

1, if p<4,
(37) I X2v/3.00) (X)x" 2@, ()|, < CVO72FYP L logn)¥/4,  if p =4,
v1/6-2/@p) - if p > 4.

This is obtained by splitting the integration oriy /3, 2v) and(2v, 00), using the assumption
b<2—-1/p (b < 2whenp = oo) and then by inspection. We conclude the analysis by
noting that the product of majorants in (36) and (37) produces a bounded function af

In the case = 2, to get the required bound we proceed as in the case just discussed
majorizing F» by a constant times

IX@v/2,000 X721 - it w/2,50/8 D wa 5D 2@y - 1 F Iwa sl -
Again, we claim that the product of the first two terms above is a bounded functiop df.
This is becauséy a2 00) (X)x* 2|, = 0(v*=2+1/7) and
v l2+2/Gp) - jf p<4/3,
% v/2.50/4MNwa, 5N S, (Wl < Cv™ B2 1 (logv) /4, if p=4/3,
1, if p>4/3.

Now, considering separately the cages< 4/3, p = 4/3, p > 4/3 and using appropriate
assumptions on the relation betwéeand B proves the claim.
Consider the case= 3. This time we bound by a constant times

1X0.0/2) ) Wa b () DPu(X) 1 p - 1x20/3,000 DY~ ET2 D, (W1 - 1L fF )wa, 5O -
Similarly to (36) (the assumption> —1/p — (¢ +1/2), witha > —(a¢+1/2) whenp = oo,
is used), we obtain the estimate
1X0.0/2)(X)Wa b () Dy (X)|l, < C27VT (v + 1)~ Hw/2)PH+1/2,
Moreover,
v~ Y242/C@p) i p < 4/3,
1X@0/3.000 Y~ P2 D,y < Cv7 B2 L logn)V4,if p=4/3,
1, if p>4/3.

This is easily seen by splitting the integration oti2o/3, 2v) and(2v, 0o0), using the relevant
assumption and then by inspection. Combining these two bounds shows that the product of
the first two terms majorizing3s is a bounded function af > 1.

Finally, considei = 4. ThenFy is bounded by a constant times

1Xu/2.50/2) (X" @y )l - 11X Bur2.00 )y~ EH 2 - 1F Iwa 8O -
Here we usé| xav/2,00)(3)y~E+2], = 0~ 8-1-1/P) (the assumptioB > —1 — 1/p,
B > —2 whenp = 1, is applied) and (37) witlb instead ofb — 2 (to be precise with
(v/2,5v/4) in place of(2v/3, 00)). Then, considering separately the capes 4/3, p =
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4/3, p > 4/3 and using appropriate assumptions on the relation betivaed B shows that
the product of the two relevant terms is a bounded function af1. O

4. Proof of Theorem 1. We start with the proof of sufficiency in Theorem lolf< 1
andv € [a, 1], then (2) is a consequence of the estimates contained in Propositions 1, 2 and 4.
If « > 1 andv € [a, 00), then we use the estimates from Propositions 1-4 (note that the
regions that appear there cover the quarter pl@neo) x (0, o0)). Checking the required
assumptions shows that (3), (4) and (5) were used.

We now pass to the necessity. Checking of (3) relies on the asymptotk;%(mf y) at
(0, 0). Indeed, to check the necessity of the first condition in (3) note that for a sufficiently
smalle = g(a) we haveJ,(s) > Cs® for0 < s < ¢. Hence, forx, y € (0, ¢), KO}(x, y) >
C(xy)**Y2 Take f = x(e/2.); then, forx € (0, &),

&

o
Solgf(x) = [) Ko%(x, y)f(y)dy > Cx¥t1/2 //2 ya+l/2dy > Cxo+12
P

Thus, (here and later on an appropriate interpretation is neegeg ifo), by (2),

. 1/p e 1/p
< / x(“+l/2+”)pdx> 5C< / |S$f(x>x“<1+x>b“|"dx)
0 0

€ 1/p
< C</ |xA(1+x)B_A|pdx>
€/2

< 0.

In consequence, > —1/p — (e + 1/2) (= if p = oo) follows.
To verify the necessity of the second part of (3) define the funcfiday

x4/ (—logx)?, if p=1,
f(x)={xYP=4/(—logx), if1l<p<oo,
x4, if p=o0,
for0 < x < ¢ and f(x) = O otherwise, and consider in (2) the sequence of functions
Ja(¥) = F &) X(e/n.e)(x). Then, sup.q || f ()xA(1+ x)54|, < oo and, for 0< x < ¢,

&

o0
S f () =/0 Ky(x,y) fu(y)dy = Cx““/Z/ Y2 f(yydy.
e/n
Thus, to kee| St £, (x)x4(1 + x)?~¢||, uniformly bounded (with respect t0) requirese +
12— A—-1/p > -1 (> if p = 1), the second part of (3).
To check the necessity of the first condition in (4) choose a sufficiently gnsalth that
Jo(y) > 0for0 <y < e and takef = x(e/2¢). Then,SL £ (x) is the sum of

e 20[2— (x2+ 2)
(38) 2 / T 2, (dy - x P,
g/2 (xc—=y9)
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e x2 + 2
(39) —4x / B ﬁ Y2 Iy - M2 (),
£
£ 2 2
Y+ y9)
(40) 4//2 2=y Y a0y - (),
&
¢ M 1/2 1/2
(41) —4x //zmy 121 (ydy - xM2 T (x) .
£
Since
25, (x0) = 2/7) 2 cos(x . % . %) oY, x>1,
and
, o
Jy(x) = ;Ja(x) — Jo+1(x),
hence
X2 (x) = 2/7)Y2sin (x - % - %) oY, x>1.

Let g andh, 4 < ¢ < h < oo, be such that/2J,(x) > 1/v/2n forx € X =
Uj‘;o(g + 27, h+ 21j). Then, forx € X, the absolute values of (39), (40) and (41) are less
thanCx 3, while the (negative) value of (38) is less thax 2. Thus, for large values of

x € X, the sum of absolute values of (39), (40) and (41) is less than the half of the absolute
value of (38). Therefore, it is possible to chogsso large that the former statement remains
valid for all x € X. Hence, with such a choice gf for x € X, |S f(x)| = Cx~?, and using

(2) produces

1p 1/p
(/ x(b_z)pdx) < C(/ |So%f(X)xa(1+x)b_a|pdx>
X X

e 1/p
c( / |f(x>xA(1+x>B—A|”dx)
e/2

<.

IA

In consequence, < 2 —1/p (< if p = oo) follows.
To check the necessity of the second condition in (4), define the fungtipn

x’lfB/(logx)z, if p=1,
fx)=3x"YP=B/logx), if1l<p<oo,
x~ B, if p=oo,
forx > 2 andf(x) = 0 otherwise. Then choose an interyal 1), 1 < ¢ < h < o0, such
that J, (x) < 0 andJj(x) > O forx € (g, h). In addition, choos& andH, 2maxg, o} <
G < H < oo in such a way thay'/2J,(y) > 1/v/27 andJ,(y) < Ofory € ¥ =
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U?io(G + 2rj, H 4+ 2rj). Consider in (2) the sequence of functiofsx) = f(x)xr, (x),
Y, =Y N (2,n). Then, sup.q || fn ()xA (1 + x)B~4|, < oo andS} £, (x) is the sum of

I(n,x) =2 / f(y)z‘xL;;zy) Y21,y - Y2 ().
2
Io(n, x) = —4x f(y)% Y20 dy - X2 )
2
Is(n, x) = / e >y(7+y2)3) V20 (p)dy - 52 (x),

tatn3) = ~ax [ 10y MR 0y ).

The choice off, (g, h) andY shows that forx € (g, h), I1(n, x), I2(n, x) andI4(n, x) are
positive whilelz(n, x) in negative. Thugi(n, x) + I3(n, x) < Sif,,(x). Moreover,

0< %dy (=xY2J () < Cli(n, x)

n

and

[I3(n, )| < C f(—i)dy A(=xP U (x))
y

The last estimate shows th&@tmight be chosen so large thdg(n, x)| < 102I1(n, x) for
x € (g, h). With such a choice of;,

f»)
Yu yz
and then multiplication of both sides by andx-integration ovel(g, h) produces

D) " (b+1/2)(p e 1 p e
y 761% | Jo (x)x |Pdx =C IS Fa)y’1Pdy
f g

scnfn(x>x A2+ x84,

Thus, uniform boundedness (with respectjmf the integralsfyn f(y)y~?dy now requires
B> —-1—-1/p (=if p =1), the second part of (4).
Proving the necessity of (5) note that fr> 0, K »(x, y) = RK_ (xR, yR), hence
Sy gf(x) = S3,fr(xR), where fr(y) = f(y/R). Then, applying (2) (wher® = 1 is
assumed) to a nontrivial functiofi € C2°(0, co) produces
1S5 & f xR+ 0", < CRP7P X (R™H 4+ 0P 74,
< CRPPIf@x®,

dy - (=xY2Ju(x)) < CSL £, (x)

(42)

if B— A < 0 or with the last term replaced Byf (x)x*(1 + x)8=4, if B— A > 0 and
R > 1. But

(43) Jim Sy g f)=f(0), x>0,
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hence by (42), (43) and Fatou’s lemma fok oo or trivially for p = co we have
(44) 1£ G)x"llp = CILf oox Pl liminf R
— 00

if B — A < 0 or analogous inequality with? replaced by (1 + x)~4 whenB — A > 0.
In any case, this implied < B. To verify (43), fixx > O andf € C2°(0, co) and use
Sppf(x) = Hy(m} - Hy ) (x) to write

00 2
Sy rf(x) = / Y2, (xy)<1 - <X) ) Ho f (3)dy .
0 R) ],
Then, (43) follows by an application of the dominated convergence theorem and the inversion

formula for the Hankel transforri, once we note that
o0
/0 Y2 T o)l [Ha f Dy < 00

The above is a consequenceldf f(y) = 0 (y*tY2), y — 0F, which in turn follows from
(6) andH, f(y) = O(y~?), the latter easily implied by (22). This finishes the proof of the
necessity of (5), hence the theorem.
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