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UNIFORM TWO-WEIGHT NORM INEQUALITIES FOR HANKEL
TRANSFORM BOCHNER-RIESZ MEANS OF ORDER ONE
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Abstract. Two-weightLp norm inequalities, uniform with respect to the order of the
involved Bessel function, are proved for the Bochner-Riesz means of the first order for the
Hankel transform. Both sufficient and necessary conditions for parameters used in the two
weights are determined. The proof relies on uniform pointwise asymptotic estimates for the
Bessel functions that were shown by Barceló and Córdoba.

1. Introduction. The Hankel transformHνf of a suitable functionf on (0,∞) is
defined by

Hνf (x) =
∫ ∞

0
(xy)1/2Jν(xy)f (y) dy , x > 0 .

Hereν > −1 is given andJν(x) denotes the Bessel function of the first kind and orderν, [3].
It is known that(Hν ◦ Hν)f = f and‖Hνf ‖2 = ‖f ‖2 for anyf ∈ C∞

c (0,∞), the space of
C∞ functions with compact support in(0,∞) (‖ · ‖p denotes the usual unweighted norm in
Lp(0,∞)). Consider the Bochner-Riesz means of orderδ ≥ 0 for the Hankel transformHν

given by

Sδν,Rf (x) = Hν(m
δ
R · Hνf )(x)

=
∫ ∞

0
Kδ
ν,R(x, y)f (y)dy ,

wheremδR(y) = (1 − (y/R)2)δ for 0< y < R and 0 otherwise, and

Kδ
ν,R(x, y) =

∫ R

0
mδR(s)(xs)

1/2Jν(xs)(ys)
1/2Jν(ys)ds .

Uniform boundedness, with respect toR > 0, ofSδν,R in weightedLp spaces for fixedν > −1
andδ = 0,

‖S0
ν,Rf (x)x

a‖p ≤ C‖f (x)xa‖p , R > 0 ,(1)

is known to hold if eitherν ≥ −1/2, 1< p < ∞ and−1/p < a < 1 − 1/p or −1 < ν <

−1/2, 2/(2ν + 3) < p < −2/(2ν + 1) anda = 0; cf. [7] for appropriate references. The
general caseδ > 0 then follows by applying a sort of Stečkin-type multiplier theorem for the
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Hankel transform. Indeed, letm(x) be a function of bounded variation on(0,∞). Then (1)
implies

‖Hν(m · Hνf )(x)x
a‖p ≤ Cmax{|m(1)|,Varm}‖f (x)xa‖p

(with the same constantC). To show this, it is sufficient to establish the inequality∣∣∣∣
∫ ∞

0
m(y)Hνf (y)Hνg(y)dy

∣∣∣∣ ≤ Cmax{|m(1)|,Varm}‖f (x)xa‖p‖g(x)x−a‖p′

for f, g ∈ C∞
c (0,∞). Define

nν(R) =
∫ R

0
Hνf (y)Hνg(y)dy , R > 0 .

Then (1) gives

|nν(R)| ≤ C‖f (x)xa‖p‖g(x)x−a‖p′

and an integration by parts leads to∣∣∣∣
∫ N

ε

m(y)Hνf (y)Hνg(y)dy
∣∣∣∣ ≤ |m(ε)nν(ε)| + |m(N)nν(N)| +

∣∣∣∣
∫ N

ε

nν(y)dm(y)

∣∣∣∣
≤ Cmax{|m(1)|,Varm}‖f (x)xa‖p‖g(x)x−a‖p′ .

Finally, a limit passage withε tending to 0 andN tending to∞ completes the argument.
Since (1), withδ = 0 andR = 1 (hence also with anyR > 0), holds uniformly with

respect toν ≥ 2 (cf. [7] for appropriate comments) in the case when 4/3 < p < 4 and
−1/p < a < 1 − 1/p the same remains valid, by applying the argument just used, for
arbitraryδ > 0.

The present paper focuses on proving more general, uniform with respect toν, inequali-
ties of the form

‖S1
ν f (x)x

a(1 + x)b−a‖p ≤ C‖f (x)xA(1 + x)B−A‖p ;
we simplify the notation by writingS1

ν andK1
ν in place ofS1

ν,1 andK1
ν,1.

THEOREM 1. Let α > −1 and 1 ≤ p ≤ ∞. Then

‖S1
ν f (x)x

a(1 + x)b−a‖p ≤ C‖f (x)xA(1 + x)B−A‖p(2)

with a constantC = C(p, α, a, b,A,B) independent of ν ≥ α and f if and only if a, b,A,B, α
and p satisfy the conditions

a > −1/p − (α + 1/2) (≥ if p = ∞) , A < 1 − 1/p + (α + 1/2) (≤ if p = 1) ,(3)

b < 2 − 1/p (≤ if p = ∞) , B > −1 − 1/p (≥ if p = 1) ,(4)

b ≤ B .(5)

Moreover, only ν = α in (2) is required to prove necessity of (3), (4) and (5).
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It is tacitly understood that when assuming(2) to hold and then proving the necessity
of (3), (4) and (5) only such functionsf are admitted for whichS1

αf (x) is well defined
for (almost) allx > 0, i.e.,

∫ ∞
0 |K1

α(x, y)f (y)|dy < ∞ for x > 0. Clearly, if f is com-

pactly supported in(0,∞), say in[c, d], 0 < c < d < ∞, and
∫ d
c

|f (y)|dy < ∞, then∫ ∞
0 |K1

ν (x, y)f (y)|dy < ∞, since, with givenx > 0,K1
ν (x, y) is a continuous function of

y > 0. But if we assume
∫ ∞

0 |f (x)xA(1 + x)B−A|pdx < ∞ with A < 1 − 1/p+ (α + 1/2)
(≤ if p = 1) andB > −1 − 1/p (≥ if p = 1), thenS1

ν f (x) is also well-defined for
ν ≥ α and x > 0. This easily follows, by using Hölder’s inequality and the estimates
K1
ν (x, y) = O(yν+1/2), y → 0+, andK1

ν (x, y) = O(y−2), y → ∞. The first estimate
follows from the integral representation ofK1

ν (x, y) and the asymptotic

Jν(t) = O(tν) , t → 0+ ,(6)

the second is a consequence of the Campbell-type representation ofK1
ν (x, y): cf. (26) and

follow the argument in the proof of Lemma 2 (now, withx and ν fixed!). Therefore the
second parts of (3) and (4) should be considered as “natural” assumptions. An analysis also
shows that the first conditions in (3) and (4) are dual to their right counterparts.

It is instructive to compare the assumptions (3), (4) and (2) of Theorem 1 with those
of Theorem 1.1 of [7] (partial sums case). The conditions ona andA are exactly the same;
this is probably explained by the fact that the kernelsK1

ν (x, y) andK0
ν (x, y) have the same

behaviour in the neighbourhood of(0,0). The conditions onb andB are now relaxed (by one
from both sides) when compared with those from Theorem 1.1 of [7]. The most important
difference is with the condition on the relation betweenb andB; it becomes now very simple
when compared with that of Theorem 1.1 of [7]. Furthermore, the uniformity of (2) for large
ν does not imply additional restrictions: the conditionb ≤ B is sufficient for (2) to hold for
ν ≥ α as well as for the singleν = α.

In [7] we compared a similar result proved there for partial sum operators (the case of
δ = 0) with Muckenhoupt’s result [4] proved for partial sum operators for expansions with
respect to the system of Laguerre functions

ψαn (x) =
(

2Γ (n+ 1)

Γ (n+ α + 1)

)1/2

e−x2/2 xα+1/2Lαn(x
2) ,

which form a complete orthonormal system inL2(0,∞) (for a motivation leading to such a
comparition see again [7]).

It seems worthy to compare our present result with that of Muckenhoupt and Webb
[5] specified to the first order Cesàro means and reformulated for expansions with respect
to {ψαn }∞n=0,

σ
(α,1)
N (f, x) = 1

N + 1

N∑
n=0

(N + 1 − n)〈f,ψαn 〉ψαn (x) .

An earlier result of Poiani, [6], admitted the casea = A andb = B only and did not include
some possibilities.
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THEOREM ([5], Theorem (2.29)). Let α > −1 and 1 ≤ p ≤ ∞. Then

sup
N≥0

‖σ (α,1)N (f, x)xa(1 + x)b−a‖p ≤ C‖f (x)xA(1 + x)B−A‖p ,(7)

holds with C = C(p, α, a, b,A,B) independent of f if and only if a, b,A,B and α satisfy
the conditions

a ≥ −1 − 1/p , a > −1/p − (α + 1/2) (≥ if p = ∞) ,(8)

A ≤ a , A ≤ 1 − 1/p + 1/2 , A < 1 − 1/p + (α + 1/2) (≤ if p = 1) ,(9)

a + B ≥ min{−3 − 2/(3p),−2 − 2/p} , A+ b ≤ min{4 − 2/p,11/3 − 2/(3p)} ,(10)

b ≤ min{3 − 1/p,8/3 + 1/(3p)} , B ≥ max{−3 + 1/(3p),−2 − 1/p} ,(11)

b ≤ B + min{0,3 − 4/(3p),5/3 + 4/(3p)} .(12)

The last parts of the assumptions (8) and (9) are identical with our assumptions ona and
A, cf. (3). This is caused by the fact that the kernelK1

α(x, y) and the kernels that correspond to

σ
(α,1)
N have the same behaviour for smallx andy. To see this, one has to compare the result of

Lemma 1 below with the estimate (2.3) of [5] (because of the reformulation mentioned above,
in (2.3) of [5] one has to takex2, y2 in place ofx, y, and then multiply both sides by(xy)1/2).
In general, however, the assumptions (8)–(12) from the Laguerre case are much more involved
than those from Theorem 1. This is again explained by more complicated nature of estimates
of the first order Cesàro kernels in the Laguerre case (cf. (2.3), (2.4) and (2.2) in [5] with
necessary modifications) when compared with the estimates contained in Lemmas 1–4 below.

2. Preliminaries. We start with writing an exact expression for the kernel

K1
ν (x, y) = √

xy

∫ 1

0
s(1 − s2)Jν(xs)Jν(ys)ds

that corresponds to the Bochner-Riesz meanS1
ν . We use the notation

u = x2 − y2 , v = x2 + y2

and

F1(x, y) = √
xyJν(x)Jν(y) , F2(x, y) = √

xyJ ′
ν(x)Jν(y) ,

F3(x, y) = √
xyJν(x)J

′
ν(y) , F4(x, y) = √

xyJ ′
ν(x)J

′
ν(y) .

Then we have

K1
ν (x, y)

= 2

u2

(
(2ν2 − v)F1(x, y)− 2x

v

u
F2(x, y)+ 2y

v

u
F3(x, y)− 2xyF4(x, y)

)(13)

wheneverx �= y. This may be checked by noting that

K1
ν (x, y) = 2D2F1(x, y)(14)
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where

D = 1

u

(
y
∂

∂y
− x

∂

∂x

)
,

usingD(f gh) = D(f )gh+ fD(g)h+ f gD(h) andD(xaybu−c) = xaybu−c−2((b− a)u+
2cv), a, b, c ∈ R, and observing howD acts onFi , i = 1,2,3:

D(F1) = 1

u
(−xF2 + yF3) ,

D(F2) = 1

u

(
− ν2 − x2

x
F1 + F2 + yF4

)
,

D(F3) = 1

u

(
ν2 − y2

y
F1 − F3 − xF4

)
;

the identities are obtained by using the fact thatJν(x) satisfies Bessel’s differential equation
J ′′
ν (x) = ((ν2 − x2)/x2)Jν(x)− (1/x)J ′

ν(x). To verify (14) we first use Lommel’s formula

∫ s

0
tJν(xt)Jν(yt)dt = s

xJν+1(sx)Jν(sy)− yJν(sx)Jν+1(sy)

x2 − y2 ,

with s = 1, the identityxJν+1(x) = νJν(x)− xJ ′
ν(x) and the expression onD(F1) to obtain

K0
ν (x, y) = DF1(x, y), whereK0

ν (x, y) denotes the integral kernel ofS0
ν = S0

ν,1. Then,
integrating by parts, using Lommel’s formula and the expression onD(F1) shows that

K1
ν (x, y) = √

xy

∫ 1

0
(1 − s2)sJν(xs)Jν(ys) ds

= 2
√
xy

∫ 1

0
s · s xJν+1(sx)Jν(sy)− yJν(sx)Jν+1(sy)

x2 − y2 ds

= 2
√
xy

∫ 1

0
sD(Jν(sx)Jν(sy))ds

= 2DK0
ν (x, y) .

This completes checking (14). We should addat this point that according to the Laguerre
case, (14) could be called a Campbell-type formula.

If ν = −1/2 thenJ−1/2(u) = (2/πu)1/2 cosu andH−1/2 reduces to the cosine trans-
form. A direct calculation of the integral representingK1−1/2(x, y) then shows that

K1
−1/2(x, y) = 2

π

(
1

(x − y)3
sin(x − y)− 1

(x − y)2
cos(x − y)

+ 1

(x + y)3
sin(x + y)− 1

(x + y)2
cos(x + y)

)
.
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Similarly, if ν = 1/2 thenJ1/2(u) = (2/πu)1/2 sinu, H1/2 reduces to the sine transform and

K1
1/2(x, y) = 2

π

(
1

(x − y)3
sin(x − y)− 1

(x − y)2
cos(x − y)

− 1

(x + y)3
sin(x + y)+ 1

(x + y)2
cos(x + y)

)
.

These two exact formulas (consistent with (13)!) give an immediate insight on how estimates
of K1

ν (x, y) should look like, for a singleν, in different regions of the quarter plane. For
estimates uniform onν, (13) together with the uniform estimates that follow are required.

We will make an extensive use of the following uniform pointwise estimates of Bessel
functions and their first derivatives: with a constantD, independent ofν andx, for ν ≥ 1,

|x1/2Jν(x)| ≤ D



xν+1/2(Γ (ν + 1)2ν)−1 , 0< x < ν/2 ,

ν1/4(ν1/3 + |x − ν|)−1/4 , ν/2< x < 2ν ,

1 , 2ν < x < ∞ ,

(15)

and

|x1/2J ′
ν(x)| ≤ D



νxν−1/2(Γ (ν + 1)2ν)−1 , 0< x < ν/2 ,

ν−1/4(ν1/3 + |x − ν|)1/4 , ν/2< x < 2ν ,

1 , 2ν < x < ∞ ,

(16)

and, for−1< ν < 1,

|x1/2Jν(x)| ≤ D

{
xν+1/2(Γ (ν + 1))−1 , 0< x < 1/2 ,

1 , 1/2< x < ∞ ,
(17)

and

|x1/2J ′
ν(x)| ≤ D

{
xν−1/2(Γ (ν + 1))−1 , 0< x < 1/2 ,

1 , 1/2< x < ∞ .
(18)

In the caseν = 0, the boundx−1/2 in (18) has to be replaced byx3/2. (15) and (16) are direct
consequences of the delicate bounds done by Barceló and Córdoba; they follow from the table
on p. 661 of [1], or p. 24 of [2]. The transition pointx = ν/2 in (15) and (16) may be replaced
(clearly, with a differentD) by (1 + ε)ν/2, or in (17) and (18),x = 1/2 may be replaced by
(1 + ε)/2, where 0< ε < 1 is chosen earlier; cf. [7] for additional comments.

Denoting byΦν(x) the function that appears on the right of (15) whenν ≥ 1 or on the
right of (17) when−1< ν < 1, we have

|√xJν(x)| ≤ DΦν(x) .(19)

Accordingly, (16) and (18) may be written in the following form

|√xJ ′
ν(x)| ≤ C

√|ν2 − x2| + x4/3

x
Φν(x)(20)

whenν ≥ 1 and

|√xJ ′
ν(x)| ≤ C

x + 1

x
Φν(x)(21)
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when−1< ν < 1 with the exception forν = 0; then(x + 1)/x is replaced byx/(x + 1).
For the purpose of kernel estimates that are proved in Lemma 1 it is much more con-

venient to split(ν/2,2ν) into the three intervals(ν/2, ν − ν1/3), (ν − ν1/3, ν + ν1/3) and
(ν + ν1/3,2ν) and, instead ofΦν(x) in (19) use, ifν ≥ 3, say, the (equivalent) bound by

Φ̃ν(x) =




xν+1/2(Γ (ν + 1)2ν)−1 , 0< x ≤ ν/2 ,

ν1/4(ν − x)−1/4 , ν/2< x ≤ ν − ν1/3 ,

ν1/6 , ν − ν1/3 < x ≤ ν + ν1/3 ,

ν1/4(x − ν)−1/4 , ν + ν1/3 < x ≤ 2ν ,

1 , 2ν < x .

We have, for certainaν , bν andcν , the asymptotic

√
tJν(t) = √

2/π

(
cos(t + aν)+ bν

sin(t + cν)

t
+O(t−2)

)
, t → ∞ .(22)

At several places of the next section, without further refering to it, Stirling’s formula is used:

lim
ν→∞ ν

ν+1/2e−νΓ (ν + 1)−1 = (2π)−1/2 .

Givenp, 1 ≤ p ≤ ∞, p′ denotes its conjugate, 1/p + 1/p′ = 1.

3. Kernel estimates and bounds forK1
ν in different regions. In the sequel we write

ν̄ = ν if ν ≥ 1 andν̄ = 1 if −1< ν ≤ 1. Also, we use the notation

wa,b(x) = xa(1 + x)b−a .

The lemmas that follow give proper estimates of the kernelK1
ν (x, y) in different regions

of the quarter plane(0,∞) × (0,∞). The corresponding propositions furnish weightedLp

bounds of associated kernel operators restricted to relevant regions with minimal assumptions
required ona, b,A,B. In the propositions the constantC will depend onα, p, a, b,A,B but
will not depend onν ≥ α andf . At several places the usual interpretation of theLp norm is
needed whenp = ∞.

LEMMA 1. There exists C > 0 independent of ν > −1 such that

|K1
ν (x, y)| ≤ C

{
(xy)ν+1/2/(Γ (ν + 2)2ν)2 , 0< x, y < 2ν̄/3 ,

1 , x, y > ν̄/2 .

PROOF. Using (15) and (17) gives, for 0< x, y < 2ν̄/3,

|K1
ν (x, y)| ≤ C

(xy)ν+1/2

Γ (ν + 1)222ν

∫ 1

0
(1 − s2)s2ν+1ds .

To get the required bound we use
∫ 1

0
(1 − s2)s2ν+1ds = 1

2

Γ (ν + 1)Γ (2)

Γ (ν + 3)
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and then majorize the last expression byC(1 + ν)−2. To prove the estimate forx, y > ν̄/2
we note that by Schwarz’s inequality we have|K1

ν (x, y)|2 ≤ Aν(x)Aν(y), where

Aν(x) =
∫ 1

0
(1 − s2)(

√
xsJν(xs))

2ds .

It is therefore sufficient to check thatAν(x) ≤ C for x > ν̄/2. In what follows we consider
the caseν ≥ 1 only (analysing the case−1 < ν < 1 is much easier). In fact we also assume
thatν ≥ 3. We consider four cases to estimateAν(x): ν/2 < x ≤ ν − ν1/3, ν − ν1/3 < x ≤
ν + ν1/3, ν + ν1/3 < x ≤ 2ν, and 2ν < x.

Case 1: ν/2< x ≤ ν − ν1/3. By (19), (here and in the sequel we use (19) withΦ̃ν(x)
in place ofΦν(x))

|√xsJν(xs)| ≤ C

{
(xs)ν+1/2(Γ (ν + 1)2ν)−1 , 0< s ≤ ν/2x ,

ν1/4(ν − xs)−1/4 , ν/2x < s < 1 .

Therefore,

Aν(x) ≤ C

(
x2ν+1(Γ (ν + 1)2ν)−2

∫ ν/2x

0
(1 − s2)s2ν+1ds

+ ν1/2
∫ 1

ν/2x
(1 − s2)(ν − xs)−1/2ds

)
.

The first summand above is bounded by using∫ ν/2x

0
(1 − s2)s2ν+1ds ≤ C

1

2(ν + 1)

(
ν

2x

)2(ν+1)

and Stirling’s formula. For the second summand we write∫ 1

ν/2x
(1 − s2)(ν − xs)−1/2ds ≤

∫ ν/x

ν/2x
(ν − xs)−1/2ds

and note that the last integral is bounded byCν−1/2 which gives the correct bound of the
second summand. The claim,Aν(x) ≤ C, now follows.

Case 2: ν − ν1/3 < x < ν + ν1/3. From (19), the following estimate holds:

|√xsJν(xs)| ≤ C



(xs)ν+1/2(Γ (ν + 1)2ν)−1 , 0< s ≤ ν/2x ,

ν1/4(ν − xs)−1/4 , ν/2x < s ≤ (ν − ν1/3)/x ,

ν1/6 , (ν − ν1/3)/x < s < 1 .

Therefore,

Aν(x) ≤ C

(
x2ν+1(Γ (ν + 1)2ν)−2

∫ ν/2x

0
(1 − s2)s2ν+1 ds

+ ν1/2
∫ (ν−ν1/3)/x

ν/2x
(1 − s2)(ν − xs)−1/2ds + ν1/3

∫ 1

(ν−ν1/3)/x

(1 − s2)ds

)
.

The first summand is that from Case 1. The same is with the second summand once we enlarge
the upper integral limit from(ν − ν1/3)/x to 1. The integral contained in the third summand
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is easily seen to be bounded byCν−1/3 which gives the correct bound of the summand. The
claim,Aν(x) ≤ C, again follows.

Case 3: ν + ν1/3 < x ≤ 2ν. As in the previous cases we use (19) obtaining:

|√xsJν(xs)| ≤ C




(xs)ν+1/2(Γ (ν + 1)2ν)−1 , 0< s ≤ ν/2x ,

ν1/4(ν − xs)−1/4 , ν/2x < s ≤ (ν − ν1/3)/x ,

ν1/6 , (ν − ν1/3)/x < s ≤ (ν + ν1/3)/x ,

ν1/4(xs − ν)−1/4 , (ν + ν1/3)/x < s < 1 .

Next, we boundAν(x) by splitting the integration accordingly. The first two resulting terms
are exactly those from Case 2. The same is with the third one once the upper integral limit is
enlarged from(ν + ν1/3)/x to 1. The fourth resulting term is

ν1/2
∫ 1

(ν+ν1/3)/x

(1 − s2)(xs − ν)−1/2ds

and the required claim follows since∫ 1

(ν+ν1/3)/x

(1 − s2)(xs − ν)−1/2ds ≤ Cx−1/2
∫ 1

ν/x

(
s − ν

x

)−1/2
ds ≤ Cν−1/2 .

Case 4: 2ν < x. In this situation we have

|√xsJν(xs)| ≤ C




(xs)ν+1/2(Γ (ν + 1)2ν)−1 , 0< s ≤ ν/2x ,

ν1/4(ν − xs)−1/4 , ν/2x < s ≤ (ν − ν1/3)/x ,

ν1/6 , (ν − ν1/3)/x < s ≤ (ν + ν1/3)/x ,

ν1/4(xs − ν)−1/4 , (ν + ν1/3)/x < s ≤ 2ν/x ,

1 , 2ν/x < s < 1 .

Again, we boundAν(x) by properly splitting the integration and noting that the first three
resulting terms are those from Case 3. The same is with the fourth one after replacing the
upper integral limit 2ν/x by 1. The fifth resulting term is

∫ 1
2ν/x(1 − s2)ds and it is obviously

bounded by a constant. This finishes the proof of Case 4 hence the lemma. �

PROPOSITION 1. Let α > −1 and 1 ≤ p ≤ ∞. Assuming a > −1/p− (α + 1/2) (≥
if p = ∞) and A < 1 − 1/p + (α + 1/2) (≤ if p = 1) we have∫ 2ν̄/3

0

(
wa,b(x)

∫ 2ν̄/3

0
|K1

ν (x, y)f (y)|dy
)p
dx ≤ C

∫ 2ν̄/3

0

∣∣f (y)wA,B(y)∣∣p dy ,(23)

for ν ≥ α, while, assuming in addition b ≤ B, for ν ≥ α we have∫ ∞

ν̄/2

(
wa,b(x)

∫ ∞

ν̄/2
χD(x, y)|K1

ν (x, y)f (y)|dy
)p
dx ≤ C

∫ ∞

ν̄/2

∣∣f (y)wA,B(y)∣∣p dy ,(24)

where D = {(x, y) : |x − y| ≤ 1}.
PROOF. Proving (23) use the bound on|K1

ν (x, y)| from Lemma 1 and considerp = 1
first. Then split the integration regions[0,2ν̄/3] in the double integral using 2/3 as break-
points and change the order of integration to end up with four integrals to be estimated by a



380 Ó. CIAURRI, K. STEMPAK AND J. VARONA

constant multiple of either
∫ 2/3

0 |f (y)|yAdy or
∫ 2ν̄/3

2/3 |f (y)|yBdy. If the y-region of integra-

tion is [0,2/3], then merely replaceyν+1/2 by yA (using the assumptionA ≤ α + 1/2) and
note that the integrals ∫ 2/3

0
xa+ν+1/2dx ,

∫ 2ν̄/3

2/3
xb+ν+1/2dx ,

when multiplied by(Γ (ν + 2)2ν)−2 give bounded functions ofν ≥ α. If the y-region of
integration is[2/3,2ν̄/3] then, for large values ofν say, replaceyν+1/2 by (2ν/3)ν+1/2−ByB
and, in the case of thex-integration over[2/3,2ν/3], note that

1

(Γ (ν + 2)2ν)2

(2

3
ν
)ν+1/2−B ∫ 2ν/3

2/3
xb+ν+1/2dx

is a bounded function of largeν (note that the possible growth ofxb−B−2 is compensated by
the decay of(e/3)ν). The remaining case of thex-integration over[0,2/3] is similar (and
easier). In the case 1< p < ∞ apply the analogous argument using Hölder’s inequality in
appropriate places (cf. also the proof of Lemma 2.1 in [7]). Consider nowp = ∞. It is then
sufficient to show that, forν ≥ α, the quantities

1

(Γ (ν + 2)2ν)2
sup

0<x<2/3

[
xa+ν+1/2

∫ 2ν̄/3

0
yν+1/2|f (y)|dy

]

and

1

(Γ (ν + 2)2ν)2
sup

2/3<x<2ν̄/3

[
xb+ν+1/2

∫ 2ν̄/3

0
yν+1/2|f (y)|dy

]

are bounded by a constant (independent ofν ≥ α) multiplied by the sum

sup
0<y<2/3

yA|f (y)| + sup
2/3<y<2ν̄/3

yB |f (y)| .

This is easily done by using the assumptionsa ≥ −(α + 1/2) andA < 1 + (α + 1/2).
Proving (24) use Lemma 1 and note that onlyν ≥ 1 may be considered. Letp = 1. It is

sufficient to show that∫ ∞

ν/2
xb

∫ ∞

ν/2
χ[0,1](|x − y|)|f (y)|dydx ≤ C

∫ ∞

ν/2
|f (y)| yBdy

with C independent ofν ≥ 1. The inequality immediately follows by changing the order of
integration, noting that fory ≥ ν/2 andν ≥ 1∫ ∞

ν/2
xbχ[0,1](|x − y|)dx ≤ Cyb ,

and usingb ≤ B. Consider now the case 1< p ≤ ∞. By usingb ≤ B it is easily seen that
(24) is implied by∫ ∞

ν/2

( ∫ x+1

x−1
|χ[ν/2,∞](y)g(y)|dy

)p
dx ≤ C

∫ ∞

ν/2
|g(y)|pdy ,
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whereν ≥ 1. This, in order, follows from the well-known standard norm inequality for the
maximal function since, forx ≥ ν/2 andν ≥ 1,

∫ x+1

x−1
|χ[ν/2,∞](y)g(y)|dy ≤ CM(χ[ν/2,∞]g)(x) . �

LEMMA 2. Let α > −1. There exists a constant C independent of ν ≥ α such that for
|x − y| ≥ 1 and x, y ≥ 5ν̄/4,

|K1
ν (x, y)| ≤ C|x − y|−2.(25)

PROOF. Using (13) gives

|K1
ν (x, y)| ≤ 2|u|−2

(
|2ν2 − v||F1| + 2v

|u| (x|F2| + y|F3|)+ 2xy|F4|
)
.(26)

Since|Fi | ≤ C on x, y ≥ ν̄, see (15)–(18), the conclusion then follows by noting that each
of the terms,|2ν2 − (x2 + y2)|, v, xy, when divided by(x + y)2 is bounded on the indicated
range ofx andy. �

PROPOSITION 2. Let α > −1, 1 ≤ p ≤ ∞, b ≤ B, b < 2 − 1/p (≤ if p = ∞), and
B > −1 − 1/p (≥ if p = 1). Then, for ν ≥ α,

∫ ∞

5ν̄/4

(
wa,b(x)

∫ ∞

5ν̄/4
χDc(x, y)|K1

ν (x, y)f (y)|dy
)p
dx

≤ C

∫ ∞

5ν̄/4
|f (y)wA,B(y)|pdy ,

(27)

where Dc = {(x, y) : |x − y| ≥ 1}.
PROOF. Consider firstp = 1. Then (27) reduces to showing that

∫ ∞

5ν̄/4

∫ ∞

5ν̄/4
χ[1,∞)(|x − y|)xby−B |g(y)|

|x − y|2dydx ≤ C

∫ ∞

2ν̄
|g(y)|dy

and this is a consequence of (this timeb < 1 is used)

sup
ν≥α

sup
y≥5ν̄/4

[
y−B

∫ ∞

5ν̄/4
xbχ[1,∞)(|x − y|) 1

|x − y|2dx
]
< ∞.

In the casep = ∞, (27) reduces to showing that

sup
x≥5ν̄/4

[
xb

∫ ∞

5ν̄/4
χDc(x, y)

|g(y)|
|x − y|2 y

−Bdy
]

≤ C sup
y≥5ν̄/4

|g(y)|

and this easily follows by noting that (B > −1 is used)

sup
ν̄≥α

sup
x≥5ν̄/4

[
xb

∫ ∞

2ν̄
χ[1,∞)(|x − y|) 1

yB|x − y|2dy
]
< ∞.
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Consider now the case 1< p < ∞. We decompose they-range in[5ν̄/4, x/2], [x/2,2x] and
[2x,∞). Then,

∫ ∞

5ν̄/4

(
wa,b(x)

∫ x/2

5ν̄/4
χDc(x, y)|K1

ν (x, y)f (y)|dy
)p
dx

≤ C

∫ ∞

5ν̄/4

(
xb−2

∫ x

5ν̄/4
|f (y)|dy

)p
dx ,

and an application of Hölder’s inequality shows that the last expression is bounded by the
right side of (27). Similarly,

∫ ∞

5ν̄/4

(
wa,b(x)

∫ ∞

2x
χDc(x, y)|K1

ν (x, y)f (y)|dy
)p
dx ≤ C

∫ ∞

5ν̄/4

(
xb

∫ ∞

x

|f (y)|
y2 dy

)p
dx

and again Hölder’s inequality does the job. Proving

∫ ∞

5ν̄/4

(
wa,b(x)

∫ 2x

x/2
χDc(x, y)|K1

ν (x, y)f (y)|dy
)p
dx ≤ C

∫ ∞

5ν̄/4
|wA,B(x)f (x)|pdx

reduces to showing that

∫ ∞

5ν̄/4
xp(b−B)

( ∫ 2x

x/2
χ[1,∞](|x − y|) |g(y)|

|x − y|2dy
)p
dx ≤ C

∫ ∞

5ν̄/4
|g(x)|pdx .

By the assumptionb ≤ B, we obtain

∫ ∞

5ν̄/4
xp(b−B)

( ∫ 2x

x/2
χ[1,∞](|x − y|) |g(y)|

|x − y|2dy
)p
dx

≤ C

∫ ∞

5ν̄/4

( ∞∑
k=1

∫
|x−y|∼2k

|g(y)|
|x − y|2χ[5ν̄/4,∞](y) dy

)p
dx

≤ C

∫ ∞

5ν̄/4

( ∞∑
k=1

2−2k
∫

|x−y|∼2k
|g(y)|χ[5ν̄/4,∞](y) dy

)p
dx

≤ C

∫ ∞

5ν̄/4
M(χ[5ν̄/4,∞)g)(x)pdx .

Using the fact thatM is a bounded operator onLp for 1< p < ∞, we conclude the proof of
Proposition 2. �

LEMMA 3. There exists a constant C independent of ν ≥ 1 such that for |x − y| ≥ 1
and ν/2 ≤ x, y ≤ 3ν/2,

|K1
ν (x, y)| ≤ C|x − y|−2

(( |ν − x| + ν1/3

|ν − y| + ν1/3

)1/4

+
( |ν − y| + ν1/3

|ν − x| + ν1/3

)1/4)
.(28)
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PROOF. Applying (19) and (20) to (26) leads to

|K1
ν (x, y)| ≤ CΦν(x)Φν(y)|u|−2

(
|2ν2 − v| + v

|u| (|ν
2 − x2| + x4/3)1/2

+ v

|u|(|ν
2 − y2| + y4/3)1/2

+ (|ν2 − x2| + x4/3)1/2(|ν2 − y2| + y4/3)1/2
)
.

(29)

Then the estimates forΦν on the range(ν/2,3ν/2) give

|K1
ν (x, y)| ≤ C|x − y|−2(|ν − x| + ν1/3)−1/4(|ν − y| + ν1/3)−1/4ν−3/2

× (
ν[|ν − x| + |ν − y|] + ν3/2[(|ν − x| + ν1/3)1/2

+ (|ν − y| + ν1/3)1/2] + ν(|ν − x| + ν1/3)1/2(|ν − y| + ν1/3)1/2
)
.

A careful analysis then shows that each of the three resulting summands is bounded by the
right side of (28). �

PROPOSITION 3. Let α ≥ 1, 1≤ p ≤ ∞, and b ≤ B. Then, for ν ≥ α,∫ 3ν/2

ν/2

(
wa,b(x)

∫ 3ν/2

ν/2
χDc(x, y)|K1

ν (x, y)f (y)|dy
)p
dx

≤ C

∫ 3ν/2

ν/2
|f (y)wA,B(y)|pdy .

(30)

PROOF. By using (28) and the assumptionb ≤ B, (30) will follow from
( ∫ 3ν/2

ν/2

(∫ 3ν/2

ν/2
χDc(x, y)

|f (y)|
|x − y|2

( |ν − x| + ν1/3

|ν − y| + ν1/3

)1/4

dy

)p
dx

)1/p

≤ C

( ∫ 3ν/2

ν/2
|f (y)|pdy

)1/p
(31)

and an analogous inequality with the second term from the right side of (28) involved. Since
in the latter case the argument is completely similar to what we present below we do not repeat
it. The change of variablesX = ν−1/3(x − ν), Y = ν−1/3(y − ν), shows that the left side of
(31) equalsν−1/3+1/(3p) multiplied by

( ∫ ν2/3/2

−ν2/3/2

( ∫ ν2/3/2

−ν2/3/2
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p
dX

)1/p

,

with F(Y ) = f (Yν1/3 + ν). By symmetry, it is now enough to majorize the quantity
( ∫ ν2/3/2

0

( ∫ ν2/3/2

−ν2/3/2
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p
dX

)1/p

by ν1/3−1/(3p) times the right side of (31). We decompose theY -range into five intervals
[−ν2/3/2,−X], [−X,0], [0,X/2], [X/2,2X] and[2X, ν2/3/2] (the extreme intervals may
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be void, the second one may reduce to[−ν2/3/2,0]) and denote the resulting double integrals
by Ii , i = 1, . . . ,5. We will focus on proving that

Ii ≤ Cν1/3−1/(3p)
(∫ 3ν/2

ν/2
|f (y)|pdy

)1/p

, i = 1, . . . ,5 .(32)

Let i = 1. If Y ∈ [−ν2/3/2,−X] then|X− Y |−2 ≤ C|Y |−2, the change of variableY = −T
and Hölder’s inequality produce the following bound ofI1:

( ∫ ν2/3/2

0

( ∫ −X

−ν2/3/2
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 + |X|
1 + |Y |

)1/4

dY

)p
dX

)1/p

≤ C

( ∫ ν2/3/2

0

( ∫ ν2/3/2

X

χ{X+T>ν−1/3}(X, T )
|F(−T )|
T 2

(
1 +X

1 + T

)1/4

dT

)p
dX

)1/p

≤ C

( ∫ ν2/3/2

0

( ∫ ν2/3/2

max{X,ν−1/3−X}
|F(−T )|
T 2

dT

)p
dX

)1/p

≤ Cν−1/(3p)
( ∫ ν2/3/2

0

( ∫ ν2/3/2

max{X,2ν−1/3−X}
T −2p′

dT

)p/p′

dX

)1/p

×
( ∫ 3ν/2

ν/2
|f (y)|pdy

)1/p

.

This proves (32) fori = 1 since

( ∫ ν2/3/2

0

( ∫ ν2/3/2

max{X,ν−1/3−X}
T −2p′

dT

)p/p′

dX

)1/p

≤ Cν1/3 .

Let i = 2. If Y ∈ [−X,0] then|X − Y |−2 ≤ C|X|−2, the change of variableY = −T and
Hölder’s inequality similarly show thatI2 is bounded byν−1/3p multiplied by the product of

( ∫ ν2/3/2

0
X−2p

( ∫ X

max{0,ν−1/3−X}

(
1 +X

1 + T

)p′/4
dT

)p/p′

dX

)1/p

(33)

and the right side of (31). This completes the proof of (32) fori = 2 once we note that (33)
isO(ν1/3). Consider the casei = 3. ThenI3 equals

( ∫ ν2/3/2

ν−1/3

( ∫ X/2

0
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p
dX

)1/p



UNIFORM TWO-WEIGHT NORM INEQUALITIES 385

and we further split theX-range onto[ν−1/3,1] and[1, ν2/3/2] denoting the resulting double
integrals byI31 andI32. Then

I31 ≤ C

( ∫ 1

ν−1/3

( ∫ min{X/2,X−ν−1/3}

0

|F(Y )|
X2 dY

)p
dX

)1/p

≤ C

[( ∫ 2ν−1/3

ν−1/3

( ∫ X−ν−1/3

0

|F(Y )|
X2

dY

)p
dX

)1/p

+
( ∫ 1

2ν−1/3

( ∫ X/2

0

|F(Y )|
X2

dY

)p
dX

)1/p]

≤ Cν−1/(3p)
[( ∫ 2ν−1/3

ν−1/3
X−2p(X − ν−1/3)p/p

′
dX

)1/p

+
( ∫ 1

2ν−1/3
Xp(1/p

′−2)dX

)1/p]( ∫ 3ν/2

ν/2
|f (y)|pdy

)1/p

where, in the last line,Hölder’s inequality was used. Now, the bound

( ∫ 2ν−1/3

ν−1/3
X−2p(X − ν−1/3)p/p

′
dX

)1/p

+
( ∫ 1

2ν−1/3
Xp(1/p

′−2)dX

)1/p

≤ Cν1/3

shows (32) forI31. Similarly, using Hölder’s inequality again, we majorizeI32 by ν−1/(3p)

times the product of

( ∫ ν2/3/2

1
X−7p/4

( ∫ X

0
(1 + Y )−p′/4dY

)p/p′

dX

)1/p

(34)

and the right side of (31). Thus (32) follows forI32, hence also forI3, since (34) isO(ν1/3).
Consider the casei = 4. ThenI4 equals

( ∫ ν2/3/2

0

( ∫ 2X

X/2
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p
dX

)1/p

and we further bound it by

C

( ∫ ν2/3/2

0

( ∫ 2X

X/2
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2dY

)p
dX

)1/p

≤ C

( ∫ ν2/3/2

0

( ∞∑
k=k1

∫
|X−Y |∼2k

|χ[0,ν2/3/2](Y )F (Y )|
|X − Y |2 dY

)p
dX

)1/p

≤ C

( ∫ ν2/3/2

0

( ∞∑
k=k1

2−2k
∫

|X−Y |∼2k
|χ[0,ν2/3/2](Y )F (Y )|dY

)p
dX

)1/p

≤ C

( ∫ ν2/3/2

0

( ∞∑
k=k1

2−kM(χ[0,ν2/3/2]F)(X)
)p
dX

)1/p
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≤ Cν1/3
( ∫ ν2/3/2

0
M(χ[0,ν2/3/2]F)(X)pdX

)1/p

with k1 = [−(log2 ν)/3] − 1. Using the fact thatM is a bounded operator onLp we finish
the proof of (32) fori = 4. Consider the casei = 5. ThenI5 equals( ∫ ν2/3/2

0

(∫ ν2/3/2

2X
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
|X − Y |2

(
1 +X

1 + Y

)1/4

dY

)p
dX

)1/p

and is easily seen to be bounded by a constant multiplied by the sum of

I51 =
( ∫ 1

0

( ∫ ν2/3/2

2X
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
Y 2

dY

)p
dX

)1/p

and

I52 =
( ∫ ν2/3/2

1

(∫ ν2/3/2

2X
χ{|X−Y |>ν−1/3}(X, Y )

|F(Y )|
Y 2

dY

)p
dX

)1/p

.

Using Hölder’s inequality and the estimate( ∫ 1

0

( ∫ ν2/3/2

max{X+ν−1/3,2X}
Y−2dY

)p/p′

dX

)1/p

≤ Cν1/3

(decompose theX-range into[0, ν−1/3] and[ν−1/3,1]) shows that

I51 ≤ C

( ∫ 1

0

( ∫ ν2/3/2

max{X+ν−1/3,2X}
|F(Y )|
Y 2 dY

)p
dX

)1/p

≤ Cν1/3−1/(3p)
( ∫ 3ν/2

ν/2
|f (y)|pdy

)1/p

.

Similarly, the estimate( ∫ ν2/3/2

1

(∫ ν2/3/2

2X
Y−2p′

dY

)p/p′

dX

)1/p

≤ Cν1/3

and Hölder’s inequality produce

I52 ≤ C

( ∫ ν2/3/2

1

( ∫ 3ν2/3

2X
Y−2p′

dY

)p/p′

dX

)1/p(∫ ν2/3/2

−ν2/3/2
|F(Y )|pdY

)1/p

≤ Cν1/3−1/(3p)
( ∫ 3ν/2

ν/2
|f (y)|pdy

)1/p

.

This finishes the proof of (32) fori = 5 hence the proposition. �

LEMMA 4. Let
R1 = [2ν̄/3,∞)× [0, ν̄/2] , R2 = [3ν̄/2,∞)× [ν̄/2,5ν̄/4] ,
R3 = [0, ν̄/2] × [2ν̄/3,∞) , R4 = [ν̄/2,5ν̄/4] × [3ν̄/2,∞) .

Then there exists a constant C independent of ν > −1 such that

|K1
ν (x, y)χRi (x, y)| ≤ C

Φν(x)Φν(y)

|x − y|2 , i = 1,2,3,4 .
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PROOF. We discuss the caseν ≥ 1 only (if ν < 1 our argument also applies but the
right side of (29) must be suitably modified). It is sufficient to check that the expression in
parentheses on the right side of (29) divided by(x + y)2 is bounded by a constant. InR1,
x ≤ x + y ≤ 7x/4 andx/4 ≤ x − y ≤ x, thereforev/|u| is bounded. Also each of the
terms(|ν2 −x2|+x4/3)1/2, (|ν2 −y2|+y4/3)1/2, when divided byx+y is bounded. Finally,
|2ν2−(x2+y2)| when divided by(x+y)2 is bounded. Similar analysis holds fori = 2,3,4.
�

PROPOSITION 4. Let α > −1, 1 ≤ p ≤ ∞ and a,A, b, B satisfy the assumptions (3)
and (4) of Theorem 1. Assume also that

b ≤



B + 1 + 1/2 − 2/(3p) , if 1 ≤ p < 4/3 ,

B + 1 , if 4/3 ≤ p ≤ 4 , (< if p = 4/3 or p = 4) ,

B + 1 − 1/6 + 2/(3p) , if 4< p ≤ ∞ .

Then, for ν ≥ α,

∫ ∞

0

(
wa,b(x)

∫ ∞

0
χRi (x, y)|K1

ν (x, y)f (y)|dy
)p
dx ≤ C

∫ ∞

0
|f (y)wA,B(y)|pdy ,(35)

where Ri , i = 1, . . . ,4, are as in Lemma 4.

PROOF. Denote the left side of the inequality to be proved raised to the 1/p-th power
(with the usual interpretation whenp = ∞) by Fi = Fi(a, b, p, ν; f ). Consider first the
casei = 1. Using the bound from Lemma 4 and Hölder’s inequality gives

F1 =
( ∫ ∞

0

(
wa,b(x)

∫ ∞

0
χR1(x, y)|K1

ν (x, y)f (y)|dy
)p
dx

)1/p

≤ C

( ∫ ∞

2ν/3

(
xb

∫ ν̄/2

0
|f (y)|Φν(x)Φν(y)|x − y|2 dy

)p
dx

)1/p

≤ C

( ∫ ∞

2ν̄/3

(
xb−2Φν(x)

∫ ν̄/2

0
|f (y)|Φν(y)dy

)p
dx

)1/p

≤ C‖χ(2ν̄/3,∞)(x)x
b−2Φν(x)‖p · ‖χ(0,ν̄/2)(y)wA,B(y)−1Φν(y)‖p′ · ‖f (y)wA,B(y)‖p .

The product of the first two terms following the lastC above is a continuous function of
ν ∈ [α,∞). It is therefore sufficient to consider largeν’s; analogous remark applies when
analysingFi , i = 2,3,4. Thus, from now on we assumeν to be large and writeν in place of
ν̄. Then we have

‖χ(0,ν/2)(y)wA,B(y)−1Φν(y)‖p′

≤ Cmax{‖χ(0,1)(y)y−AΦν(y)‖p′, ‖χ(1,ν/2)(y)y−BΦν(y)‖p′ }
≤ C2−νΓ (ν + 1)−1(ν/2)−B+ν+1/2 ,

(36)



388 Ó. CIAURRI, K. STEMPAK AND J. VARONA

where, to assure the convergence of the integral on[0,1] the conditionA < 1−1/p+(α+1/2)
was used (A ≤ α + 1/2 whenp = 1). Moreover,

‖χ(2ν/3,∞)(x)x
b−2Φν(x)‖p ≤ Cνb−2+1/p




1 , if p < 4 ,

(logν)1/4 , if p = 4 ,

ν1/6−2/(3p) , if p > 4 .

(37)

This is obtained by splitting the integration onto(2ν/3,2ν) and(2ν,∞), using the assumption
b < 2 − 1/p (b ≤ 2 whenp = ∞) and then by inspection. We conclude the analysis by
noting that the product of majorants in (36) and (37) produces a bounded function ofν ≥ 1.

In the casei = 2, to get the required bound we proceed as in the case just discussed
majorizingF2 by a constant times

‖χ(3ν/2,∞)(x)x
b−2‖p · ‖χ(ν/2,5ν/4)(y)wA,B(y)−1Φν(y)‖p′ · ‖f (y)wA,B(y)‖p .

Again, we claim that the product of the first two terms above is a bounded function ofν ≥ 1.
This is because‖χ(3ν/2,∞)(x)x

b−2‖p = O(νb−2+1/p) and

‖χ(ν/2,5ν/4)(y)wA,B(y)−1Φν(y)‖p′ ≤ Cν−B+1−1/p



ν−1/2+2/(3p) , if p < 4/3 ,

(logν)1/4 , if p = 4/3 ,

1 , if p > 4/3 .

Now, considering separately the casesp < 4/3, p = 4/3, p > 4/3 and using appropriate
assumptions on the relation betweenb andB proves the claim.

Consider the casei = 3. This time we boundF3 by a constant times

‖χ(0,ν/2)(x)wa,b(x)Φν(x)‖p · ‖χ(2ν/3,∞)(y)y
−(B+2)Φν(y)‖p′ · ‖f (y)wA,B(y)‖p .

Similarly to (36) (the assumptiona > −1/p−(α+1/2), with a ≥ −(α+1/2)whenp = ∞,
is used), we obtain the estimate

‖χ(0,ν/2)(x)wa,b(x)Φν(x)‖p ≤ C2−νΓ (ν + 1)−1(ν/2)b+ν+1/2 .

Moreover,

‖χ(2ν/3,∞)(y)y
−(B+2)Φν(y)‖p′ ≤ Cν−B−1−1/p



ν−1/2+2/(3p) , if p < 4/3 ,

(logν)1/4 , if p = 4/3 ,

1 , if p > 4/3 .

This is easily seen by splitting the integration onto(2ν/3,2ν) and(2ν,∞), using the relevant
assumption and then by inspection. Combining these two bounds shows that the product of
the first two terms majorizingF3 is a bounded function ofν ≥ 1.

Finally, consideri = 4. ThenF4 is bounded by a constant times

‖χ(ν/2,5ν/4)(x)xbΦν(x)‖p · ‖χ(3ν/2,∞)(y)y
−(B+2)‖p′ · ‖f (y)wA,B(y)‖p .

Here we use‖χ(3ν/2,∞)(y)y
−(B+2)‖p′ = O(ν−B−1−1/p) (the assumptionB > −1 − 1/p,

B ≥ −2 whenp = 1, is applied) and (37) withb instead ofb − 2 (to be precise with
(ν/2,5ν/4) in place of(2ν/3,∞)). Then, considering separately the casesp < 4/3, p =
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4/3,p > 4/3 and using appropriate assumptions on the relation betweenb andB shows that
the product of the two relevant terms is a bounded function ofν ≥ 1. �

4. Proof of Theorem 1. We start with the proof of sufficiency in Theorem 1. Ifα < 1
andν ∈ [α,1], then (2) is a consequence of the estimates contained in Propositions 1, 2 and 4.
If α ≥ 1 andν ∈ [α,∞), then we use the estimates from Propositions 1–4 (note that the
regions that appear there cover the quarter plane(0,∞) × (0,∞)). Checking the required
assumptions shows that (3), (4) and (5) were used.

We now pass to the necessity. Checking of (3) relies on the asymptotics ofK1
α(x, y) at

(0,0). Indeed, to check the necessity of the first condition in (3) note that for a sufficiently
smallε = ε(α) we haveJα(s) ≥ Csα for 0 < s < ε. Hence, forx, y ∈ (0, ε), K1

α(x, y) ≥
C(xy)α+1/2. Takef = χ(ε/2,ε); then, forx ∈ (0, ε),

S1
αf (x) =

∫ ∞

0
K1
α(x, y)f (y)dy ≥ Cxα+1/2

∫ ε

ε/2
yα+1/2dy ≥ Cxα+1/2 .

Thus, (here and later on an appropriate interpretation is needed ifp = ∞), by (2),
( ∫ ε

0
x(α+1/2+a)pdx

)1/p

≤ C

( ∫ ε

0
|S1
αf (x)x

a(1 + x)b−a|pdx
)1/p

≤ C

( ∫ ε

ε/2
|xA(1 + x)B−A|pdx

)1/p

< ∞ .

In consequence,a > −1/p − (α + 1/2) (≥ if p = ∞) follows.
To verify the necessity of the second part of (3) define the functionf by

f (x) =



x−1−A/(− logx)2 , if p = 1 ,

x−1/p−A/(− logx) , if 1 < p < ∞ ,

x−A , if p = ∞ ,

for 0 < x < ε andf (x) = 0 otherwise, and consider in (2) the sequence of functions
fn(x) = f (x)χ(ε/n,ε)(x). Then, supn≥1 ‖fn(x)xA(1 + x)B−A‖p < ∞ and, for 0< x < ε,

S1
αfn(x) =

∫ ∞

0
K1
α(x, y)fn(y)dy ≥ Cxα+1/2

∫ ε

ε/n

yα+1/2f (y)dy .

Thus, to keep‖S1
αfn(x)x

a(1 + x)b−a‖p uniformly bounded (with respect ton) requiresα +
1/2 − A− 1/p > −1 (≥ if p = 1), the second part of (3).

To check the necessity of the first condition in (4) choose a sufficiently smallε such that
Jα(y) > 0 for 0< y < ε and takef = χ(ε/2,ε). Then,S1

αf (x) is the sum of

2
∫ ε

ε/2

2α2 − (x2 + y2)

(x2 − y2)2
y1/2Jα(y)dy · x1/2Jα(x) ,(38)
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−4x
∫ ε

ε/2

x2 + y2

(x2 − y2)3
y1/2Jα(y)dy · x1/2J ′

α(x) ,(39)

4
∫ ε

ε/2

y(x2 + y2)

(x2 − y2)3
y1/2J ′

α(y)dy · x1/2Jα(x) ,(40)

−4x
∫ ε

ε/2

y

(x2 − y2)2
y1/2J ′

α(y)dy · x1/2J ′
α(x) .(41)

Since

x1/2Jα(x) = (2/π)1/2 cos
(
x − απ

2
− π

4

)
+O(x−1) , x ≥ 1 ,

and

J ′
α(x) = α

x
Jα(x)− Jα+1(x) ,

hence

x1/2J ′
α(x) = (2/π)1/2 sin

(
x − απ

2
− π

4

)
+O(x−1) , x ≥ 1 .

Let g and h, 4 < g < h < ∞, be such thatx1/2Jα(x) ≥ 1/
√

2π for x ∈ X =⋃∞
j=0(g + 2πj, h+ 2πj). Then, forx ∈ X, the absolute values of (39), (40) and (41) are less

thanCx−3, while the (negative) value of (38) is less than−Cx−2. Thus, for large values of
x ∈ X, the sum of absolute values of (39), (40) and (41) is less than the half of the absolute
value of (38). Therefore, it is possible to chooseg so large that the former statement remains
valid for all x ∈ X. Hence, with such a choice ofg, for x ∈ X, |S1

αf (x)| ≥ Cx−2, and using
(2) produces

( ∫
X

x(b−2)pdx

)1/p

≤ C

( ∫
X

|S1
αf (x)x

a(1 + x)b−a|pdx
)1/p

≤ C

( ∫ ε

ε/2
|f (x)xA(1 + x)B−A|pdx

)1/p

< ∞ .

In consequence,b < 2 − 1/p (≤ if p = ∞) follows.
To check the necessity of the second condition in (4), define the functionf by

f (x) =



x−1−B/(logx)2 , if p = 1 ,

x−1/p−B/(logx) , if 1 < p < ∞ ,

x−B , if p = ∞ ,

for x ≥ 2 andf (x) = 0 otherwise. Then choose an interval(g, h), 1 < g < h < ∞, such
thatJα(x) < 0 andJ ′

α(x) > 0 for x ∈ (g, h). In addition, chooseG andH , 2 max{g, α} <
G < H < ∞ in such a way thaty1/2Jα(y) ≥ 1/

√
2π and J ′

α(y) ≤ 0 for y ∈ Y =
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⋃∞
j=0(G+ 2πj,H + 2πj). Consider in (2) the sequence of functionsfn(x) = f (x)χYn(x),

Yn = Y ∩ (2, n). Then, supn≥1 ‖fn(x)xA(1 + x)B−A‖p < ∞ andS1
αfn(x) is the sum of

I1(n, x) = 2
∫
Yn

f (y)
2α2 − (x2 + y2)

(x2 − y2)2
y1/2Jα(y)dy · x1/2Jα(x) ,

I2(n, x) = −4x
∫
Yn

f (y)
x2 + y2

(x2 − y2)3
y1/2Jα(y)dy · x1/2J ′

α(x) ,

I3(n, x) = 4
∫
Yn

f (y)
y(x2 + y2)

(x2 − y2)3
y1/2J ′

α(y)dy · x1/2Jα(x) ,

I4(n, x) = −4x
∫
Yn

f (y)
y

(x2 − y2)2
y1/2J ′

α(y)dy · x1/2J ′
α(x) .

The choice off , (g, h) andY shows that forx ∈ (g, h), I1(n, x), I2(n, x) andI4(n, x) are
positive whileI3(n, x) in negative. ThusI1(n, x)+ I3(n, x) ≤ S1

αfn(x). Moreover,

0<
∫
Yn

f (y)

y2
dy · (−x1/2Jα(x)) ≤ CI1(n, x)

and

|I3(n, x)| ≤ C

∫
Yn

f (y)

y3 dy · (−x1/2Jα(x)) .

The last estimate shows thatG might be chosen so large that|I3(n, x)| ≤ 10−2I1(n, x) for
x ∈ (g, h). With such a choice ofG,∫

Yn

f (y)

y2 dy · (−x1/2Jα(x)) ≤ CS1
αfn(x)

and then multiplication of both sides byxb andx-integration over(g, h) produces∫
Yn

f (y)

y2 dy ·
( ∫ h

g
|Jα(x)x(b+1/2)|pdx

)1/p

≤ C

( ∫ h

g
|S1
αfn(y)y

b|pdy
)1/p

≤ C‖fn(x)xA(1 + x)B−A‖p .
Thus, uniform boundedness (with respect ton) of the integrals

∫
Yn
f (y)y−2dy now requires

B > −1 − 1/p (≥ if p = 1), the second part of (4).
Proving the necessity of (5) note that forR > 0,K1

α,R(x, y) = RK1
α,1(xR, yR), hence

S1
α,Rf (x) = S1

α,1fR(xR), wherefR(y) = f (y/R). Then, applying (2) (whereR = 1 is
assumed) to a nontrivial functionf ∈ C∞

c (0,∞) produces

‖S1
α,Rf (x)x

a(R−1 + x)b−a‖p ≤ CRB−b‖f (x)xA(R−1 + x)B−A‖p
≤ CRB−b‖f (x)xB‖p

(42)

if B − A ≤ 0 or with the last term replaced by‖f (x)xA(1 + x)B−A‖p if B − A > 0 and
R > 1. But

lim
R→∞ S

1
α,Rf (x) = f (x) , x > 0 ,(43)
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hence by (42), (43) and Fatou’s lemma forp < ∞ or trivially for p = ∞ we have

‖f (x)xb‖p ≤ C‖f (x)xB‖p lim inf
R→∞ RB−b(44)

if B − A ≤ 0 or analogous inequality withxB replaced byxA(1 + x)B−A whenB − A > 0.
In any case, this impliesb ≤ B. To verify (43), fix x > 0 andf ∈ C∞

c (0,∞) and use
S1
ν,Rf (x) = Hν(m

1
R · Hνf )(x) to write

S1
ν,Rf (x) =

∫ ∞

0
(xy)1/2Jα(xy)

(
1 −

(
y

R

)2)
+
Hαf (y)dy .

Then, (43) follows by an application of the dominated convergence theorem and the inversion
formula for the Hankel transformHα once we note that∫ ∞

0
(xy)1/2|Jα(xy)||Hαf (y)|dy < ∞ .

The above is a consequence ofHαf (y) = O(yα+1/2), y → 0+, which in turn follows from
(6) andHαf (y) = O(y−2), the latter easily implied by (22). This finishes the proof of the
necessity of (5), hence the theorem.
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