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Abstract. It is proved that, for a complex minimal smooth projective surfacef
general type, any automorphism group$finducing trivial actions on the second rational
cohomology ofS, is isomorphic to a cyclic group of order less than five or the product of two
groups of order two, provided that the Eutdharacteristic of the structure sheaf$is larger
than 188.

Introduction. It is well-known that, for a curv& of genusg > 2, the automorphism
group AutC acts faithfully onH1(C, Q).

The case of surfaces has been studied by many authors. For K3 and Enriques surfaces
S, Aut S acts faithfully onH2(S, Z) (cf. [BR], [Ue]); and there exists an Enriques surface
for which AutS does not act faithfully o/ 2(S, Q) (cf. [Pe]). For compact Kéhler surfaces
S with h9(Ts) = 0 and the canonical linear systeikis| base point free, Peters [Pe] proved
that, if a non-trivialo € Aut S acts trivially onH?2(S, @), then eitherk 2 = 8y (Os) and the
order o) of o is a power of 2 0K 2 = 9% (Os) and do) is a power of 3.

Taking the product of two hyperelliptic curves, one gets easily examples of surfaces of
general type for which Aug does not act faithfully orf%(S, Q). The aim of this paper is to
prove the following

THEOREMA. Let S bea complex minimal smooth projective surface of general type,
and x (Og) the Euler characteristic of the structure sheaf of S. Let G C Aut S be a subgroup
of automorphisms acting trivially on H2(S, Q). If x(Os) > 188 then G isisomorphicto C,
(n < 4) or C2 x C2, where C,, isa cyclic group of order n.

Theorem A is proved in Sections 2 through 4. Thanks to Beauville’s theorem on the
canonical map of, the problem reduces to the analysis of the automorphisms of the canonical
fiber surfacef : S — B, of genusg < 5. The main part of this paper is to treat the case 3
and G nonabelian of order 8 or 6. The idea of the proof is to prove the existencesef a
invariant irreducible curve (in a singular fiber 6§ on whichG acts faithfully and to analyze
the action around it.
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We use standard notation as in [BPV] or [Ha]. In this paper we denotg,by,, and
Qs the cyclic group of ordenr, the dihedral group of ordem? and the quaternion group of
order 8.

| am grateful to the referee for a very careful reading of the paper and several valuable
suggestions.

1. Preliminaries. For the reader’s convenience, in this section we recall several re-
sults from the literature.

(1.1) LetS be a smooth complex projective surface of general type, with a fibration
f: S — Bofgenusg > 2 over a smooth curv8. We assume thaf is relatively minimal,
that is, S has no(—1)-curves contained in a fiber gf. Denote byF the general fiber of .

Let Kg be the canonical divisor of.

We say thatf is ahyperélliptic (resp.nonhyperelliptic) fibration if F is a hyperelliptic
(resp. nonhyperelliptic) curve. An irreducible cur@eon S is vertical (with respect tof) if
f(C) is a point; otherwise, we say is horizonal.

(1.2) Letf: S — B be a relatively minimal fibration of genug > 2, ando an
involution of § inducing the trivial action oB. Letu : S — S be the blowup of all isolated
fixed points ofo, andé the induced involution orf. Let P, = §/6. Then f induces a
fibration h,: P, — B of genusg(F/o) (not relatively minimal in general). We have a
commutative diagram

S s p,

L b

S — B.
f

(1.21) I < f*b (b € B) is ac-fixed curve, then fron(f o u)*b = n*(hib),
the coefficient ofl” in f*b is divisible by 2. In particular, iff*b is reduced, thew acts
nontrivially on any irreducible component gfb.

Let F’ be a semistable fiber of (i.e., F’ is reduced with only nodes as singularities),
andp € F’ anode. We say that is aseparating point (resp.nonseparating point) of 7, if
F’\ {p} is disconnected (resp. connedj as a topological space.

(2.3) (cf. [Ca, Lemma 2.4]) Lef: S — B ando be as above, anfi’ a semistable
singular fiber off. If p € F’ is an isolated fixed point of, thenp is a node ofF’, and
moreover ifo is a hyperelliptic involution ofS, thenp is a separating point of”.

(1.4) Notation asin (1.2). If is a relatively minimal hyperelliptic fibration, gluing the
hyperelliptic involution ofF gives an everywhere defined involutieron S. Theni, : Py —

B is a ruled surface. LdtR, §) be the double cover data correspondingrtoS — P,. One
has a minimal ruled surfacg, and a (possibly singular) double cover dé&m §) on P,
satisfying the following conditions:

() There is a birational morphisrt: P, — P such thatr is the reduced inverse
image ofR;
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(i) Let R, be the sum of the nonvertical irreducible component® of hen the singu-
larities of R, are at most of ordey + 1, andR? is the smallest among all such choices (cf.
[X1, Lemma 6]).(P, R, d) is called thegenus g data corresponding tg .

(1.4.1) ([X1, Definition 5]) Letf: S — B be a hyperelliptic fibration corresponding to
genusg data(P, R, 8). For any fiberF of f andi = 3,..., g + 2, we define the-singularity
s; (F) of F as follows:

If i is odd,s; (F) equals the number of singularities of type> i (that is, infinitely near
points of multiplicity:) of R on the image of.

If i is even,s; (F) equals the number of singularities of ordesf R on the image of,
not belonging to a singularity of type— 1 — i —1ori + 1 — i + 1.

The singularities; (F) do not depend on the choice of the contraction mapP, — P
(cf. [X1, Lemma 8]). Clearly there are only a finite number of fib&rsvith s; (F) # 0 for
eachi. A fiber F is essential, if s; (F) # 0 for somei.

(1.4.2) (Xiao [X1, Theorem 1]) Lef: S — B be the hyperelliptic fibration corre-
sponding to genug data(P, R, §). If f has no essential fibers, then

49 — 4

4(g%2 —1)(g(B) -1
K2 = : £(O5) — ("= DlgB) -1

g

(1.5) (Reid [Re]) Letf: S — B be a nonhyperelliptic fibration of genys= 3. Then
the natural morphism of sheaves

r: S2(fuws/p) > frodp

is generically surjective. Lett = Cokerr. ThenM = @, .z M), whereM, is the stalk
of M atb € B, which is anOp ,-module of finite length. Let/ (S/B, b) = length .M, For
anyb € B, if f*bis a smooth nonhyperelliptic curve or an irreducible nonhyperelliptic curve
with one node whose normalization is a curve of genus 2, #ié$y/ B, b) = 0. Using the
Riemann-Roch theorem dghand the Leray spectral sequence, we have

K§=3x(0s) +10(g(B) =) + ) H(S/B.b).
beB

For any normal surfac&, we denote by, (X) the geometric genus of a nonsingular model
of X.

(1.6) (Beauville [Be]) LetS be a projective minimal nonsingular surface of general
type with x (Os) > 21, andps: § — — — PP~ the canonical map. There are two cases:

(1.6.1) ¢s is composed with a pencil. Then the moving partkf| is base point free.
Let f : S — B be the fibration associated withy, andg the genus of the general fiber ¢f
Then 2< g < 5andk2 > (29 — 2)(x(Os) — 2).

(1.6.2) dimimgs = 2. If x(Os) > 31, then either (ip,(Im¢s) = 0 and degs < 9
or (i) pg(Imes) = py(S) and deghs < 3.

(1.7) (Xiao [X2]) Letf:S — Bbeasin(1.6.1). Then(B) < 1.
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(1.8) (A special case of the logarithmic Miyaoka-Yau inequality. cf. [Sa]) Sék a
projective nonsingular complex surface of general type@rd S a nonsingular curve. Then
K% < 9x(0s) + (9(C) = 1) — KsC/4.

(1.9) (Accola [Ac]) LetC be a curve of genug, andG C Aut C a finite group. IfG
admits a partition, i.eG = (J!_; G;, whereG, are subgroups of; satisfyingG; N G; =
(1g) forall i # j, then

N

(s —Dg+1Glyg(C/G) = Z |Gilg(C/Gi).
i=1

For example, assume th@t= D, is a dihedral group of orderm2 Leta € G generate the
cyclic subgroup of ordet, and let8 € G be an element of order 2 not {r). Theng; = o'
(i=1,2,...,n)are elements iz notin (). SOG admits a partition and we have

9+29(C/G) = g(C/{a)) + g(C/ (1)) + g(C/{B2)) .

(1.10) LetS be a smooth surface; € AutS, andp € S a fixed point ofo. Theno
induces a linear action on the tangent sp&gg of S at p. If this action is trivial, therv is
trivial.

A curveC C S is o-invariant (resp.o-fixed), if o(C) = C (resp.c(p) = p for any
p ().

(1.11) If a reduced -fixed curveC is singular, therv is trivial. This follows from
(1.10), since the induced action®fon the tangent space at the singular poinfas$ trivial.

(1.12) LetC be a curve of genug, andG c AutC a finite group. IfG has a fixed
point, thenG is cyclic.

(1.13) LetC be a curve of genug > 2, andG C AutC an abelian group. Assume
thatg(C/G) = 1. Letwr: C — C/G bethe quotient map. Let (i = 1, ..., k) be the points
over whichzx is ramified and; the ramification number ot overg;. Thenk > 2, and if
k = 2 thenry = rp. Indeed,G is an abelian quotient of1(C/G \ {q1, - - ., q«}), which is
generated by, 8, y1, ..., yx with one relatiorufo=1=1y1 .-y = 1, wherex andp are
generators of1(C/G) andy; is a small loop aroung;. Lety; be the image of; in G. Then
y; is of orderr; andyjy - - -y = 1.

(1.14) LetS be a smooth projective surface, aidc Aut S a finite subgroup such that
G acts trivially onH?(S, Q). By the argument of [Pe, Lemma 2], we have thap i€ S a
o-fixed point for some id% o € G, then eitherp € Bs| K| (the base locus diK|) or p is
an isolatedr-fixed point. This implies:

(1.14.1) IfC c Sis ao-fixed curve for some igt o € G, thenC C Bs|Kg|.

(1.14.2) IfC c Sis aG-invariant curve, and” ¢ Bs|Ks|, thenG acts faithfully on
C,i.e.,G— AutC.

(1.15) LetS andG be as in (1.14). Assume th&thas a fibrationf: S — B and
G induces the trivial action oB. If p,(S) > 0 theng(F/G) > 0, whereF is a general
fiber of . Indeed, We have,(S/G) = dimHO(S, ws)© (cf. [Fr, p. 99]). By Hodge theory,
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HO(S, )¢ = HO(S, ws). S0py(S/G) = py(S) and thus the general fiber 6§ G — B is
not rational ifp,(S) > 0.

2. Firstreductions. To prove Theorem A, let me start by fixing notation.

(2.1) LetS be a complex minimal nonsingular projective surface of general type with
x(Os) > 21. Assume that the canonical mapof S is composed with a pencil.

Let G C AutS be a subgroup of automorphisms 8f inducing trivial actions on
H2(S, Q).

Let M andZ be the moving part and the fixed part|&fs|, respectively. By (1.6.1)M |
has no base points. Let

¢S=¢OfZS—>B—>|m¢SCPpg(S)7l

be the Stein factorization @fs. We call f: S — B the canonical fibration associated with
¢s. Let F be a general fiber of, andg the genus of.

Letd andL be the degree and the hyperplane section apgrin P7¢(9~1 respectively.
We haveOs(M) = f*¢*L andM ~num deged F. Note thath!(B, ¢*L) = 0, sinceg(B) <
1by (1.7), and/ > codim Im¢s + 1 (cf. [Mu]). From

pg(S) = h0(S, ¢*L) = dedg*L) + 1 — g(B) + h'(B, ¢*L) = degypd + 1 — g(B),

we get

(2.1.2) degp =1 and

4 =]x©s) ifg(B) =1,
x(Os) —2+q(S) if g(B) =0.

(2.2) SinceH(S, wy) is a direct factor of72(S, C) by Hodge theoryG acts trivially
on H9(S, ws). This implies thaiG acts trivially on Imgs and there is a homomorphistnof
G into AutB. Since de@ = 1 (2.1.1), we have that Kér = G, i.e., G induces the trivial
action onB, andG — Aut F for a general fibe# of f.

2.1.2)

NOTATION 2.3. Letf: S — B andG be as above.

(i) WewriteZ =H+VandH = n1l1 + nal> + --- withni > np > ..., where
H (resp.V) is the horizontal part (resp. the vertical part)Afandrl; (i = 1,2,...) are the
irreducible components df, with n; the multiplicity of I in H.

(i) For a general fiberr of f, let Rr be the set of ramified points of the quotient
mapF — F/G. For any two curve€ andD on S, we denote byC N D the set-theoretic
intersection supg N suppD.

LEMMA 2.4. Let f: S — B, H,I;and G beasin (2.1). Let F be a general fiber of
f. Then

(241 RrCHNF.

(24.2) If Rp = H N F,then I issmooth for every i.
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PrROOF. (i) Suppose that there is a poipte F suchthatp € Rp andp ¢ HN F.
Then there exists an element#l o € G such thatp is o-fixed. SinceF is a general fiber,
p is not an isolated fixed point af. So there exists a-fixed curveC passing throughp.
By (1.14.1),C c Bs|Ks|. C is not vertical sinceF' is a general fiber. S@ < H, which
contradicts the assumption thatt H N F.

(i) For ageneral poinp € I, p € HN f*(f(p)) = Rp+(r(py. This implies there
exists id# o, € G such thatp is o, -fixed. SinceG is finite, there is a id% o € G such that
I; is o-fixed. Sorl; is smooth by (1.11). a

LEMMA 2.5. Let f: S — B,H,gandG beasin(2.1). Let F beageneral fiber of f.
If2 < g < 4,theneither |G| < 29 —2,0r G isnonabelian, G actstransitively on H N F’ for
any fiber F’ of f, and the only possibilities for thetriple (¢, |G|, #(H N F)) are as follows:

G,8 4, 3,62, 4 1206), 4 8 2.

Moreover, if (¢, |G|, #(H N F)) = (3, 8, 4) or (4, 12, 6), then H isreduced and each
irreducible component of H is smooth.

PrROOF. Forany poinp € S, letstalip) = {r € G|t(p) = p}. If r,: = [stalip)| =1
forsomep € HN F, then|G| < #(H N F) < 2¢g — 2. S0 we can assume thatak{p)| > 2
for eachp € H N F. Letm be the number of orbits af N F under the action of;. Then
by (2.4.1), the quotient map: F — F/G has exactlyn branch points. Using the Hurwitz
formula forz, we get|G| < 2¢g — 2 if either g(F/G) > 2, org(F/G) = 1 and eithetG
is abelian orm > 2. Hence we can assume thatF/G) = 1 (¢9(F/G) # 0 by (1.15)),
G is nonabelian andh = 1. ThenG acts transitively ond N F and hence o N F’ for
any fiberF’ of f. In this case, for any point € H N F, we havelG|/r, = #(H N F) and
#(HNF) | 2g— 2. Using the Hurwitz formula forr again, we hav@G| = #(HNF)+2g — 2.
Note thatG is nonabelian in this case, and we get that|G|, #(H N F)) equals one of the
triples listed in the lemma. The last statement follows by (2.4.2). |

REMARK 2.6. If (¢, |G|,#(H N F)) = (3, 6, 2), then eitherH = 2Iy + 21 or
H = 2I'", wherer; are sections of andI" is an irreducible smooth curve with F = 2.

PROPOSITION 2.7. Let S beacomplex minimal nonsingular projective surface of gen-
eral typewith x (Os) > 21,andlet G C Aut S bea subgroup of automorphisms of S inducing
trivial actionson H2(S, Q). Assume that the canonical map ¢ is composed with a pencil.
Let f: S — B bethe canonical fibration associated with ¢g, and ¢ the genus of a general
fiber of f. Furthermore, assume x (Os) > 188if ¢ = 4, and x (Os) > 60if ¢ = 5. Then
|G| < 4.

PROOF By (1.6.1),2< g < 5. If g = 2, we havgG| < 2 by Lemma 2.5. The proof
of the case ¥ g < 5is longer and is postponed till the next two sections. o

PROOF OFTHEOREMA. By Proposition 2.7, we can assume tipgtis generically fi-
nite. SinceH(S, wy) is a direct factor ofH2(S, Q) by Hodge theoryG acts trivially on
HO(S, ws). This implies thatG induces trivial actions on Ims. So¢s factors through the
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guotient map
ps=ao0q:S— S/G -2 Imgs.

Thus|G| = deggs/dega. Now if S is as in case (ii) of (1.6.2), theiG| < 3. If S is as
in case (i) of (1.6.2), then deg > 2, sincepy(S/G) = py(S) # 0 = py(Imes). So
|G| < deggs/2 < 9/2. O

3. Proof of Proposition 2.7, thecase g = 3.

LEMMA 3.1. Let S be a complex nonsingular projective surface, and G C AutS a
subgroup of automorphisms of S inducing trivial actions on H2(S, Q). Let C ¢ S be an
irreducible curve. If C? < 0, then C is G-invariant.

PROOF. Indeed, ifC is noto-invariant for some id4 o € G, then(c*C)C > 0. On
the other handy*C is numerically equivalent t@', sinceG acts trivially on N§S) ® Q —
H2(S, Q). So(c*C)C = €2 < 0, a contradiction. O

LEMMA 3.2. Let f: S — B, H,gand G beasin (2.1). Assumethat ¢ = 3and G is
a nonabelian group of order 8.

(i) Let o be the generator of the center of G, which is clearly a cyclic subgroup of
order 2. Then H iso-fixed (and hence smooth), and G /(o) < Aut H.

(i) Let F'beasingular fiber of f and C < F’ anirreducible componentwith CH # 0.
Then G — AutC.

PrROOF. (i) Let F be a general fiber of. Let F = F/{o) andG = G/(o). Since
g(F/G) = 1 and|G| = 4, using the Hurwitz formula foir — F/G ~ F/G, we get
g(F) = 1. Soo has four fixed points oi. Since #H N F) = 4 in Lemma 2.5, by (2.4.1¢
is o-fixed and hence smooth by (1.11). Sirgects transitively ortHNF and #H N F) = 4,
we haveG /(o) — AutH.

(i) If F"is reducible,C is G-invariant by (3.1); if the reduced schenfig, of F’ is
irreducible, thenC = F/, is clearly G-invariant. So there is a homomorphism G —
AutC.

Leto be asiin (i). Ifo € Kerh, thenC + H is o-fixed. Soo is trivial by (1.11). This is
impossible. Hence the lemma follows by showing that Ker# if Ker & is not trivial.

Suppose that Keér is not trivial. If G >~ Qg, we have that- € Kerh since there is only
one element of order 2 i@s. Now assume that ~ Dg. If | Kerh| = 2, we get Ken = (o)
since a normal subgroup of order 2 must be contained in the centerlbfl Keri| = 4, let
« € G be an element of order 4. Then= «? andh(a?) = h(x)?2 = id. Soc € Kerh. O

LEMMA 3.3. (i) Let G beanonabelian group of order 8. Assumethat G — AutC
for some smooth curve C of genus < 1. Then G >~ Dg. Moreover, if g(C) = 1, the elements
of order 4 of G act freely on C.

(i) 1f G ~ Dg — AutC for some smooth elliptic curve C, then the elements of order
3of G act freely on C.
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PROOF. (i) If C ~ P, the lemma follows by the well known fact that a finite sub-
group of Aut P! is isomorphic to one of the following groups’,, D2y, T12, O24 and Igp,
whereTy,, 024 andlgo are the polyhedral groups of indicated orders.

If C is an elliptic curve, theits = T % A (a semi-direct product), wher®is a group of
translations andi C AutC is a subgroup preserving the group structurd. = Co, thenG
must be abelian, which contradicts the assumption. Now assumg'that4. Leta € G be
an element of order 4. Then itis easy to see éffa& T since|A| = 2 in this case. Sa? and
hencex has no fixed points. This impliese T. HenceT =~ C4, and the result follows.

(ii) follows by an argument similar to that in (i). |

LEMMA 3.4. Let f: S — B, gandG beasin (2.1). Assumethat g = 3.
(i) IfG ~ Qg, f isnonhyperelliptic.
(i) If G ~ Dgor Dg, f ishypereliptic.

PrROOF. (i) Otherwise, letr be the hyperelliptic involution of a general fib&rof f.
Sinceg(F/G) = 1 by (1.15), we get ¢ G. This impliesG < Aut P!, since AutF is a
(t)-extension of a subgroup of A®!. This is impossible by Lemma 3.3.

(i) Let F be a general fiber of. If G >~ Dy, for n = 3 or 4, then by (1.9) we have
g(F) + 29(F/D2,) = g(F/(a)) + g(F/{B1)) + g(F/{(B2)), wherea andp; are as in (1.9).
Sinceg(F/D2,) = 1 andg(F/{«)) = 1, we getg(F/{B;)) = 2. SOF is étale over a curve of
genus 2. This implie#’ is hyperelliptic by [Ac]. a

LEmMMA 3.5. Let f: S — B beanonhyperellipticfibration of genus3,and G C Aut S
a subgroup inducing thetrivial actionon B. Let F’ beafiber of f. Assumethat G ~ Qg, and
that F’ is either a smooth hyperelliptic curve or a multiple fiber 2C with C smooth of genus
2. Then the kernel of the homomorphismi: G — Aut F,4isnot trivial.

PROOF. Suppose that kéris trivial. Denote by the unique element of order 2 G.

First we assume thdt’ = 2C, whereC is a smooth curve of genus 2. Let = f(F’)
and fix a pointp € B such thatf* p is smooth. Let3 — B be a double cover ramified exactly
atp andp’, and letr’: § — B xp S be the normalization. Them := poon’: § — S'is
ramified alongf*p, andf := p1on’: § — B is a fibration of genus 3, whepe and p, are
the projections o3 x S onto its factors. Lef’ be the inverse image of . ThenF’ := f*p’
is a smooth hyperelliptic curve. Sin€einduces the trivial action oB, B xz S C B x S is
G-invariant. SoG acts onS, inducing the trivial action oB. We haveG < Aut F' if Ker h
is trivial. Hence the lemma is reduced to the case wheis a smooth hyperelliptic curve.

Now assume thak” is a smooth hyperelliptic curve. Letbe the hyperelliptic involution
of F'. If T ¢ G, thenG — Aut P! since AutF’ is a(t)-extension of a subgroup of A’
This is impossible by Lemma 3.3. So we can assumedhiatthe hyperelliptic involution
of F’. Then there are eight-fixed points onF’. By (1.3), there exists a-fixed curve D
passing through these points. SinGe~ Qg <> Aut F’ by assumption, we geft’ # D.
Now for a general fibeF, there are at least(#® N F) = DF = DF’ > 8 o-fixed points.
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This implies that is the hyperelliptic involution of, contradicting the assumption thAis
nonhyperelliptic. O

LEMMA 3.6. Let f: S — B, H, gand G beasin (2.1). Assumethat g = 3and G
is a nonabelian group of order 8. Let F’ be a singular fiber of f and C < F’ anirreducible
component. Denote by C the normalization of C. If ¢(C) > 2, then F’ belongs to one of the
following possible types.

() F’'=2C,andC issmooth;

(i) F’ = Cisanirreducible curve with one node, and the normalization of F’ isa
curve of genus 2;

(i) F’ = C+ D,where C and D are irreducible smooth curves meeting transversally
at two points, and ¢(C) = 2 and g(D) = 0.

PROOF. We have eithep,(C) = 3 orC = C. In the former casef’ = C is an
irreducible curve with one singularity, say and its normalization is a curve of genus 2. If
g € F’is a cusp, the inverse imageof the cuspg € F’ under the normalization map is
G-fixed. This impliesG is cyclic by (1.12), a contradiction. S0’ is of type (ii). In the latter
case, sinc&ksC = 2 — C? > 2 andKsF' = 4, we get eitheC? = 0 (F’ is of type (i))
or multe F/ = 1. Now assume that muitF’ = 1. ThenF’ is 1-connected. Leb < F’ be
an irreducible curve such th&xC > 0. If #(D N C) = 1, G is cyclic, a contradiction. So
#(D N C) > 2 and hencedC > 2. Note thatp,(D + C) < 3, hence we hav®C = 2 and
F'is of type (iii). O

PROOF OFPROPOSITION2.7, THE CASEg = 3. Letf: S — B be the canonical fibra-
tion associated witkps. By (2.2),G induces the trivial action o®, andG — Aut F, where
F is a general fiber of . Assumeg = 3. By Lemma 2.5, if G| > 4, thenG is isomorphic to
Qs, Dg or Dg. Now the result follows by the next claims. O

CLAIM 3.7. G ~ Qg does not occur.

PROOF.  Suppose&; =~ Qg. Then by Lemma 3.4f is nonhyperelliptic. Since(B) < 1
by (1.7), f has singular fibers.

Let F’ be a singular fiber of’, and letC < F’ be an irreducible component such that
CH # 0. By Lemma 3.2 (ii), we havé — AutC. By Lemmas 3.3 (i), 3.5 and 3.6, we have
that F’ is of type (ii) or (iii) of (3.6).

If F’is of type (iii) of (3.6), we have that eithdd # V or HD > 0, whereV is as in
(2.1). Indeed, if bothD < V andH D = 0 hold, thenC # V and thusV D < 0. But from
0=KsD=(M+ H+ V)D, we getV D = 0, a contradiction. Now by Lemma 3.2 (ii) and
(1.14.2),08 — Aut D. This is impossible by Lemma 3.3 (i).

Now if F’is of type (ii) of Lemma 3.6, we show th&t’ is nonhyperelliptic.

Leto be the generator of the center@f We haveG /(o) >~ C2 x Ca. First we claim that
the nodey € F’ is an isolatedr-fixed point. Otherwise, there isafixed curveD passing
throughg. By (1.14.1),D < H. Sinceq € F’ is G-fixed,q € H is G/{o)-fixed. By Lemma
3.2 () and (1.12)G /(o) is cyclic, a contradiction.
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Second, we claim that preserves the local two branchesjatindeed, letG’ C G be
the subgroup preserving the local two brancheg &learly G’ is cyclic of order 4. Letx be
a generator o6’ If o ¢ G’, theno anda generates, and it is easy to see thatvo = o~ 1.

This implies thatG >~ Dg, a contradiction.

Now we have thay is an isolateds-fixed point and that preserves the local two
branches a§. Soi% (f(g)) consists of two irreducible smooth curves meeting transversally
at two points, wheré, : P, — B is asin (1.2). Sincé, is of genus 1¢ is a hyperelliptic
involution of the normalizatiorF’ of F’. This implies thatF’ is a nonhyperelliptic fiber.
Indeed, if there exists an involutionon F’ such thatF’/(r) ~ P2, thent exchanges the
local two branches at, andz is a hyperelliptic involution of”. This implies that = 7 on
F’, which is absurd since one preserves the local two branchewhile the other not.

By the above argument, we have that any singular fideof f is a nonhyperelliptic
irreducible curve with one node. By Lemma 3.5 and (1.14f2)as no smooth hyperelliptic
fibers. Thusf has no fiberg” with non-vanishingd (S/B, f (F’)) (see (1.5) for the notation).
By (1.5), we have that

KZ=3x(0s) +10(g(B) — 1).
We get a contradiction by (1.6.1). a
CLAIM 3.8. G =~ Dg or Dg does not occur.

PROOF. Suppose&; =~ De. The proof of the cas& ~ Dg is similar and is left to the
reader. By Lemma 3.4f is hyperelliptic. We will show that

(3.8.1) any singular fiber of belongs to one of the following types:

(i) F’ = C is anirreducible curve with one node, and the normalizatiof'os a

curve of genus 2;

(i) F’ = Cis an irreducible curve with three nodes, and the normalizatioF’d$
isomorphic toP?;

(i) F’ = C + D, whereC andD are irreducible smooth curves meeting transversally
at two points, ang(C) = 2 andg(D) = 0.

We note that, ifF” belongs to one of the types (i)—(iii), the singularitigéF’) = 0 for
i > 3 (see (1.4.1) for the definition). (We check it whEhis of the type (iii); the other cases
are similar. Lety; andgz be nodes off’ = C + D. Let t be the hyperelliptic involution
of f. Let the notation be as in (1.2) and (1.4). Since the dual graph @f(F")) is a tree,
we haverg; = g». Let C and D be the images of and D underx, respectively. Then
h.(f(F")) = C+ D consists of two smooth rational curves meeting transversally at one point,
andR meetsC (resp.D) transversally at six (resp. two) points. By the choice ofP, — P,
¢ contractsD. Thus there is only one singular point of order 2/Rbn the image of’ and
hence by (1.4.1);(F') = 0fori > 3.)

Admitting (3.8.1) for the moment, we have thathas no essential fibers, and hence by
(1.4)

8 32(9(B) — 1

Ki= 3%(0s) - 3
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On the other hand, by (l.6.1K,§ > 4(x (Os) — 2), a contradiction.

It remains to prove (3.8.1). Let € Dg (resp.c € Dg) be an element of order 3 (resp.
2). By the proof of Lemma 2.54 is a-fixed. Let F’ be a singular fiber of’. LetC < F’
be an irreducible component such titatl # 0, andC the normalization of”. ThenC is
a-invariant by Lemma 3.1, and the homomorphignof G into AutC is injective. (Other-
wise, Kerh = («) or G since the nontrivial normal subgroup 6fis (). Henceu is trivial
on C + H, which is impossible by (1.11).) We distinguish two cases according to whether
fu: Heq— B is étale atH N F’ or not.

Casel. fyisétaleatd N F'. Inthis caseH N F’ consists of two points, sgy; and
p2. SinceH F’ = 4, by Remark 2.6F" is smooth at these points. Singeis «-fixed, p1 and
p2 arex-fixed. By the choice o€, there are at least twe-fixed points (1 andp») on it, and
C is smooth afp; fori = 1 and 2.

If ¢(C) = 2, then by the proof of Lemma 3.6, we have tifais (i) or (ii).

If ¢(C) = 1, then by Lemma 3.3 (i), we get a contradiction.

Now we assume(C) = 0. We show that in this case eithgf is of type (i) or there
exists ac-fixed pointp € C with 2 1 mult, F’. We consider three cases according to the
singularities ofC.

(i) Thereisapoint p € CsingWith mult, C > 3. Thenp € C is an ordinary triple
point andC \ {p} is smooth and”’ = C. Sop is o-fixed and mulf F’ = 3.

(i) Csing # ¥ and for any point p € Csing, With mult, C = 2. Sincep; and p, are
a-fixed ande has exactly two fixed points aft ~ P, we havex(p) # pif p € Csing Hence
either F' is of type (ii), or F/ = C is an irreducible curve with three cusps (sayg2 andgs)
and the normalization of” is isomorphic toP. In the latter case, lg; (i = 1, 2, 3) be the
inverse image of; under the normalization map — C. Since{q1, g2, g3} is o-invariant
and there are exactly two-fixed points orC ~ P1, there must be a poitft € C \ {¢1, 2, g3}
which iso-fixed. Letp be the image of under the normalization map. Thenis o -fixed
and mul, F’ = 1.

(i) C is a smooth rational curve. Since F’ is 1-connected, there is an irreducible
curveD < F’ such thatDC > 0. SinceD N C is a-invariant by Lemma 3.1, if @ N C) #

0 (mod 3, o has at least there fixed pointgi( p2 and a pointinD N C) on C. This implies

a is trivial on C and hence o€ + H, which is impossible by (1.11). So we can assume
#(D N C) = 0 (mod3. Sincep,(C + D) < 3, we haveDC < 4. So#D NC) = 3.
SinceD N C is o-invariant and there are exactly twofixed points onC ~ P1, there is a
point p € C \ D N C which iso-fixed. We claim that mujt " = 1. Otherwise, there is an
irreducible curveD’ < F’ passing througlp. By the above argument, we can assume that
#(D' N C) =0 (mod3. This impliesp,(C + D + D’) > 3, a contradiction.

Now by the above argument, we have that eithéis of type (ii) or there is ar-fixed
point p € C with 2 1 mult, F’. In the latter case, lei: S — Sbeasin (1.2). lfpis an
isolatedo -fixed point, then the inverse imade= u~1(p) of p is ac-fixed (—1)-curve, and
the coefficient ofE in (f o u)*(f(F’)) is not divisible by 2. This is impossible by (1.2.1).
So there is a-fixed curve D passing througlp. Clearly D # C by (1.11). By (1.14.1),
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D < Bs|Ks|, and henceD < H. Sincea ando generates, this implies there is &-fixed
pointp’ € H N F, and thusG is cyclic by (1.12), a contradiction.

Case 2. fyisnotétale ald N F'. ThenH N F’ consists of one point, sgy. By the
choice ofC, C passes througp. SinceG — Aut C, by (1.12),p € C is a singular point.

SinceH F' = 4, we have muli F' = 1andmul;, C = 2. If p € Cisacusp, itis easy to
seeG is cyclic by (1.12). So we can assume tpat C is a node. Blowus at p, and letE be
the exceptional curve anll the strict transform ofd. If p is an ordinary node of’, thena
preserves the local branches®#t p since the order ok is 3. Sox preserves the three local
branches of” + H at p. This impliesE and henceE + H is a-fixed. By (1.11)x is trivial
on S, a contradiction. Now we can assume tpat C is a node which can be resolved by at
least two successive blowups. Then(C) > 2 andg(C) < 1, whereC is the normalization
of C. If ¢(C) = 1, by Lemma 3.3(ii)w is a translation of”, which is impossible since
preserves the local branches®fat p. Now we assumg(C) = 0. If F’ is reducible, letD
be an irreducible curv® < F’ such thatDC > 0. SinceD N C is a-invariant by Lemma 3.1
and there are exactly twe-fixed points onC ~ P!, we have #D N C) = 0 (mod 3. This
implies p,(C + D) > 3, a contradiction. Now we can assurfié = C. If there is a point
q € Csing\ {p}, theng is a-fixed and mill, C = 2 sincep,(C) = 3, and hence there are at
least foura-fixed points onC. This impliesa is trivial on C and hence o, a contradiction.
So we can assume th@at\ {p} is smooth. Them is o-fixed. If o preserves the local branches
of C at p, thenG also does. This implie§ is cyclic by (1.12), a contradiction. So we can
assume exchanges the local branchegat p. This implies there are twe-fixed points on
C\ {p}. Now by the same argument as in the last paragraph of Case 1, we get a contradiction.
This completes the proof of (3.8.1). a

4. Proof of Proposition 2.7, thecase g = 4, 5.

LEMMA 4.1. Let f: S — B,H, I;,gand G beasin (2.1). Assumethat ¢ = 4 and
|G| = 6. Then H isreduced and I is nonsingular for every .

PrROOF. Let F be a general fiber of. Using the Hurwitz formula forr: F — F/G,
we get thaty(F/G) = 1 (note thaty(F/G) > 1 by (1.15)) andr has six ramification points.
By (2.4.1), we have@{ N F) > 6. ThisimpliesH is reduced. Since@# NF) < 29—2 =6,
we haveRr = H N F. By (2.4.2),I; is nonsingular for every. |

LEMMA 4.2. Let S be a minimal surface whose canonical map is composed with a
pencil,and f: S — B theassociated canonical fibration of genus g. Assumethat ¢ = 4, and
that the horizontal part H of the fixed part of | Ks| is reduced and each irreducible component
of H isnonsingular. Then x (Os) < 188

PROOF. Let the notation be as in (2.1). Under the assumption, we have

t
Ks=M+) Ii+V, (t<6).
i=1
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Letg, = g(I7). FromKgsI; > MT; + Fiz and the adjunction formula fdr;, we get

i

D KsIi >

+g —1.
So

MT;
K?szM+ZKsnzed+22 "+ Y (-1

=9+ (g—1. (). MI=MH=dFH =6d)

On the other hand, using the logarithmic Miyaoka-Yau inequality§17;) (1.8), we have
K% < 9x(Os) + (g — 1) — KsI';/4 for everyi. Hence

Y@-1 Y Ksh
t

(2)

K2 <9x(Os) +

) 3% (g — 1) 3:1h
<9 (Os) + + -5 by ).

Combining (2) and (3), we get
3d < (4 —3)) (1—g)+361(x(Os) —d).

Note thatr < 6, andd = x (Os) if g(B) =1 andd = x(Os) —2+¢q(S) if g(B) = 0(2.1.2).
Hence we geg (Os) < 188. O

PROOF OFPROPOSITION2.7, THE CASEg = 4. Letf: S — B be the canonical fibra-
tion associated witkhs, F the general fiber of , andH the horizontal part of the fixed part of
|Ks|. We have thatG induces the trivial action o®, andG — Aut F by (2.2). By Lemma
2.5,if |G| > 4 then eithefG| = 6 or G is a nonabelian group of order 8 or 1JZ( # 5 by
the Hurwitz formula).

First we suppose thaG| = 6 or 12. Then by Lemmas 2.5 and 4.1, we have #ids
reduced and each irreducible componentofs smooth. So by Lemma 4.2,(0s) < 188,
contradicting the assumption.

Second, we suppose th@tis a nonabelian group of order 8. Then eitlier~ Dg or
G ~ Qs.

(i) The caseG >~ Dg does not occur.

Otherwise,Dg <— Aut F for a general fibeF of f. By (1.9), we have 4 2¢(F/Dg) =
g(F/{a)) + g(F/{B1)) + g(F/{B2)), wherea, ; are as in (1.9). But this is impossible since
g(F/Dg) =1, g(F/{a)) =1, andg(F/{B;)) < 2 for everyi by the Hurwitz formula.

(i) The caseG ~ Qg does not occur.

Otherwise, let be a generator of stap) for some pointp € H N F. By the proof of
Lemma 2.5¢ is of order 4. Consider the commutative diagram

F = F/(o)

| »

C —=> F/(c?).
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Since the ramification index of at p € F is 4, cannot be étale. This impliegC) = 2.
Since Qg has only one element of order @&2) is a normal subgroup oflg andG :=

Qg/{6%) ~ Co x C». Using the Hurwitz formula fo — C/G ~ F/Qs, (note that

g(F/Qg) = 1,) by (1.13), we gelG| < 2. This is a contradiction. ]

PROOF OFPROPOSITION2.7, THE CASEg = 5. Letf: S — B bethe canonical fibra-
tion associated tggs, and F' a general fiber off. Let M, H, V, I}, n; andd be as in (2.1).
Setb = g(B). First we suppose thay < g. Sincen1Ks,p + H + V is nef,

(m1+DKs—M —n1(2b —2)F)H = (n1Ks/p + H+V)H > 0.

So
H> (29 — 2)(d +n1(2b — 2)) . (29 —2)(d +n1(2b — 2)) _

ni+1 9
On the other hand, using the Miyaoka-Yau inequality (cf. [Mi, Y]), we have

K

9 (Og) > K2 =Ks(M+H+V) > (29— 2)d + KsH .

Combining these two inequalities, we gatOs) < 34, which contradicts the assumption.

Now we can assume thai > g. ThenIy is a section off. This implies’; and hence
the pointF N Iy € F is G-fixed. By (1.12),G is cyclic. Using the Hurwitz formula for
F — F/G, (note thaty(F/G) > 1 (1.15) and by (1.13) when(F/G) = 1) we getG =~ Cs
and#RNF)=2if |G| > 4.

Now we prove that the case >~ Cs does not occur. Otherwise, by (2.4.1JRiN F) >
2. Since(H — n1)F = 8 —n1 < 3 and|G| = 5, we must have@R N F) = 2. So
H=nln+ @8—-—n)l>withb <n <7andl»F = 1. Sincel'1 + I is G-fixed, by (1.11),
Il =0. FromKgsln = (M + H+ V)I'y > d + nF12 and the adjunction formula fafy,
we get

KsIy > d+n2b—2) .
n+1

Similarly, we have

d+ @8—n)(2b—2)
9—n '

Using the logarithmic Miyaoka-Yau inequality (1.8), we have

KsI> >

1
I (Os) + (b —1) — ZKS(Fl + 1) > KZ=KsM+nli+ B —n)2+V)
> 2g—2d+nKsl'n+ B8—n)Ksl>.

Combining these inequalities, we getOs) < 60, which contradicts the assumption. O
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