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Abstract. It is proved that, for a complex minimal smooth projective surfaceS of
general type, any automorphism group ofS, inducing trivial actions on the second rational
cohomology ofS, is isomorphic to a cyclic group of order less than five or the product of two
groups of order two, provided that the Euler characteristic of the structure sheaf ofS is larger
than 188.

Introduction. It is well-known that, for a curveC of genusg ≥ 2, the automorphism
group AutC acts faithfully onH 1(C,Q).

The case of surfaces has been studied by many authors. For K3 and Enriques surfaces
S, AutS acts faithfully onH 2(S,Z) (cf. [BR], [Ue]); and there exists an Enriques surfaceS

for which AutS does not act faithfully onH 2(S,Q) (cf. [Pe]). For compact Kähler surfaces
S with h0(TS) = 0 and the canonical linear system|KS | base point free, Peters [Pe] proved
that, if a non-trivialσ ∈ Aut S acts trivially onH 2(S,Q), then eitherK2

S = 8χ(OS) and the
order o(σ ) of σ is a power of 2 orK2

S = 9χ(OS) and o(σ ) is a power of 3.
Taking the product of two hyperelliptic curves, one gets easily examples of surfaces of

general type for which AutS does not act faithfully onH 2(S,Q). The aim of this paper is to
prove the following

THEOREM A. Let S be a complex minimal smooth projective surface of general type,
and χ(OS) the Euler characteristic of the structure sheaf of S. Let G ⊂ Aut S be a subgroup
of automorphisms acting trivially on H 2(S,Q). If χ(OS) > 188, then G is isomorphic to Cn

(n ≤ 4) or C2 × C2, where Cn is a cyclic group of order n.

Theorem A is proved in Sections 2 through 4. Thanks to Beauville’s theorem on the
canonical map ofS, the problem reduces to the analysis of the automorphisms of the canonical
fiber surfacef : S → B, of genusg ≤ 5. The main part of this paper is to treat the caseg = 3
andG nonabelian of order 8 or 6. The idea of the proof is to prove the existence of aG-
invariant irreducible curve (in a singular fiber off ) on whichG acts faithfully and to analyze
the action around it.
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We use standard notation as in [BPV] or [Ha]. In this paper we denote byCn, D2n and
Q8 the cyclic group of ordern, the dihedral group of order 2n, and the quaternion group of
order 8.

I am grateful to the referee for a very careful reading of the paper and several valuable
suggestions.

1. Preliminaries. For the reader’s convenience, in this section we recall several re-
sults from the literature.

(1.1) LetS be a smooth complex projective surface of general type, with a fibration
f : S → B of genusg ≥ 2 over a smooth curveB. We assume thatf is relatively minimal,
that is,S has no(−1)-curves contained in a fiber off . Denote byF the general fiber off .
Let KS be the canonical divisor ofS.

We say thatf is ahyperelliptic (resp.nonhyperelliptic) fibration if F is a hyperelliptic
(resp. nonhyperelliptic) curve. An irreducible curveC on S is vertical (with respect tof ) if
f (C) is a point; otherwise, we sayC is horizonal.

(1.2) Let f : S → B be a relatively minimal fibration of genusg ≥ 2, andσ an
involution ofS inducing the trivial action onB. Let u : S̃ → S be the blowup of all isolated
fixed points ofσ , and σ̃ the induced involution oñS. Let Pσ = S̃/σ̃ . Thenf induces a
fibration hσ : Pσ → B of genusg(F/σ) (not relatively minimal in general). We have a
commutative diagram

S̃
π−−→ Pσ

u

�
�hσ

S −−→
f

B.

(1.2.1) If Γ < f ∗b (b ∈ B) is a σ -fixed curve, then from(f ◦ u)∗b = π∗(h∗
σ b),

the coefficient ofΓ in f ∗b is divisible by 2. In particular, iff ∗b is reduced, thenσ acts
nontrivially on any irreducible component off ∗b.

Let F ′ be a semistable fiber off (i.e., F ′ is reduced with only nodes as singularities),
andp ∈ F ′ a node. We say thatp is aseparating point (resp.nonseparating point) of F ′, if
F ′ \ {p} is disconnected (resp. connected) as a topological space.

(1.3) (cf. [Ca, Lemma 2.4]) Letf : S → B andσ be as above, andF ′ a semistable
singular fiber off . If p ∈ F ′ is an isolated fixed point ofσ , thenp is a node ofF ′, and
moreover ifσ is a hyperelliptic involution ofS, thenp is a separating point ofF ′.

(1.4) Notation as in (1.2). Iff is a relatively minimal hyperelliptic fibration, gluing the
hyperelliptic involution ofF gives an everywhere defined involutionσ onS. Thenhσ : Pσ →
B is a ruled surface. Let(R̃, δ̃) be the double cover data corresponding toπ : S̃ → Pσ . One
has a minimal ruled surfaceP , and a (possibly singular) double cover data(R, δ) on P ,
satisfying the following conditions:

(i) There is a birational morphismφ : Pσ → P such thatR̃ is the reduced inverse
image ofR;
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(ii) Let Rh be the sum of the nonvertical irreducible components ofR. Then the singu-
larities ofRh are at most of orderg + 1, andR2 is the smallest among all such choices (cf.
[X1, Lemma 6]).(P,R, δ) is called thegenus g data corresponding tof .

(1.4.1) ([X1, Definition 5]) Letf : S → B be a hyperelliptic fibration corresponding to
genusg data(P,R, δ). For any fiberF of f andi = 3, . . . , g + 2, we define thei-singularity
si(F ) of F as follows:

If i is odd,si (F ) equals the number of singularities of typei → i (that is, infinitely near
points of multiplicityi) of R on the image ofF .

If i is even,si(F ) equals the number of singularities of orderi of R on the image ofF ,
not belonging to a singularity of typei − 1 → i − 1 or i + 1 → i + 1.

The singularitiessi(F ) do not depend on the choice of the contraction mapφ : Pσ → P

(cf. [X1, Lemma 8]). Clearly there are only a finite number of fibersF with si (F ) 	= 0 for
eachi. A fiber F is essential, if si (F ) 	= 0 for somei.

(1.4.2) (Xiao [X1, Theorem 1]) Letf : S → B be the hyperelliptic fibration corre-
sponding to genusg data(P,R, δ). If f has no essential fibers, then

K2
S = 4g − 4

g
χ(OS) − 4(g2 − 1)(g(B) − 1)

g
.

(1.5) (Reid [Re]) Letf : S → B be a nonhyperelliptic fibration of genusg = 3. Then
the natural morphism of sheaves

r : S2(f∗ωS/B) → f∗ω2
S/B

is generically surjective. LetM = Cokerr. ThenM = ⊕
b∈B Mb, whereMb is the stalk

of M atb ∈ B, which is anOB,b-module of finite length. LetH(S/B, b) = lengthMb. For
anyb ∈ B, if f ∗b is a smooth nonhyperelliptic curve or an irreducible nonhyperelliptic curve
with one node whose normalization is a curve of genus 2, thenH(S/B, b) = 0. Using the
Riemann-Roch theorem onS and the Leray spectral sequence, we have

K2
S = 3χ(OS) + 10(g(B) − 1) +

∑
b∈B

H(S/B, b) .

For any normal surfaceX, we denote bypg (X) the geometric genus of a nonsingular model
of X.

(1.6) (Beauville [Be]) LetS be a projective minimal nonsingular surface of general
type withχ(OS) ≥ 21, andφS : S − − → P pg (S)−1 the canonical map. There are two cases:

(1.6.1) φS is composed with a pencil. Then the moving part of|KS | is base point free.
Let f : S → B be the fibration associated withφS , andg the genus of the general fiber off .
Then 2≤ g ≤ 5 andK2

S ≥ (2g − 2)(χ(OS) − 2).
(1.6.2) dim ImφS = 2. If χ(OS) ≥ 31, then either (i)pg (Im φS) = 0 and degφS ≤ 9

or (ii) pg (Im φS) = pg (S) and degφS ≤ 3.
(1.7) (Xiao [X2]) Letf : S → B be as in (1.6.1). Theng(B) ≤ 1.
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(1.8) (A special case of the logarithmic Miyaoka-Yau inequality. cf. [Sa]) LetS be a
projective nonsingular complex surface of general type andC ⊂ S a nonsingular curve. Then
K2

S ≤ 9χ(OS) + (g(C) − 1) − KSC/4.
(1.9) (Accola [Ac]) LetC be a curve of genusg, andG ⊂ Aut C a finite group. IfG

admits a partition, i.e.,G = ⋃s
i=1 Gi , whereGi are subgroups ofG satisfyingGi ∩ Gj =

〈1G〉 for all i 	= j , then

(s − 1)g + |G|g(C/G) =
s∑

i=1

|Gi |g(C/Gi) .

For example, assume thatG = D2n is a dihedral group of order 2n. Let α ∈ G generate the
cyclic subgroup of ordern, and letβ ∈ G be an element of order 2 not in〈α〉. Thenβi = αiβ

(i = 1, 2, . . . , n) are elements inG not in 〈α〉. SoG admits a partition and we have

g + 2g(C/G) = g(C/〈α〉) + g(C/〈β1〉) + g(C/〈β2〉) .

(1.10) LetS be a smooth surface,σ ∈ Aut S, andp ∈ S a fixed point ofσ . Thenσ

induces a linear action on the tangent spaceTpS of S at p. If this action is trivial, thenσ is
trivial.

A curveC ⊂ S is σ -invariant (resp.σ -fixed), if σ(C) = C (resp.σ(p) = p for any
p ∈ C).

(1.11) If a reducedσ -fixed curveC is singular, thenσ is trivial. This follows from
(1.10), since the induced action ofσ on the tangent space at the singular point ofC is trivial.

(1.12) LetC be a curve of genusg, andG ⊂ Aut C a finite group. IfG has a fixed
point, thenG is cyclic.

(1.13) LetC be a curve of genusg ≥ 2, andG ⊂ Aut C an abelian group. Assume
thatg(C/G) = 1. Letπ : C → C/G be the quotient map. Letqi (i = 1, . . . , k) be the points
over whichπ is ramified andri the ramification number ofπ overqi . Thenk ≥ 2, and if
k = 2 thenr1 = r2. Indeed,G is an abelian quotient ofπ1(C/G \ {q1, . . . , qk}), which is
generated byα, β, γ1, . . . , γk with one relationαβα−1β−1γ1 · · · γk = 1, whereα andβ are
generators ofπ1(C/G) andγi is a small loop aroundqi . Let γ̄i be the image ofγi in G. Then
γ̄i is of orderri andγ̄1 · · · γ̄k = 1.

(1.14) LetS be a smooth projective surface, andG ⊂ Aut S a finite subgroup such that
G acts trivially onH 2(S,Q). By the argument of [Pe, Lemma 2], we have that, ifp ∈ S a
σ -fixed point for some id	= σ ∈ G, then eitherp ∈ Bs|KS | (the base locus of|KS |) or p is
an isolatedσ -fixed point. This implies:

(1.14.1) IfC ⊂ S is aσ -fixed curve for some id	= σ ∈ G, thenC ⊂ Bs|KS |.
(1.14.2) IfC ⊂ S is aG-invariant curve, andC 	⊂ Bs|KS |, thenG acts faithfully on

C, i.e.,G ↪→ Aut C.
(1.15) LetS andG be as in (1.14). Assume thatS has a fibrationf : S → B and

G induces the trivial action onB. If pg (S) > 0 theng(F/G) > 0, whereF is a general
fiber off . Indeed, We havepg (S/G) = dimH 0(S, ωS)G (cf. [Fr, p. 99]). By Hodge theory,
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H 0(S, ωS)G = H 0(S, ωS). Sopg (S/G) = pg (S) and thus the general fiber ofS/G → B is
not rational ifpg(S) > 0.

2. First reductions. To prove Theorem A, let me start by fixing notation.
(2.1) LetS be a complex minimal nonsingular projective surface of general type with

χ(OS) ≥ 21. Assume that the canonical mapφS of S is composed with a pencil.
Let G ⊂ Aut S be a subgroup of automorphisms ofS, inducing trivial actions on

H 2(S,Q).
Let M andZ be the moving part and the fixed part of|KS |, respectively. By (1.6.1),|M|

has no base points. Let

φS = ϕ ◦ f : S → B → Im φS ⊂ P pg (S)−1

be the Stein factorization ofφS . We callf : S → B thecanonical fibration associated with
φS . Let F be a general fiber off , andg the genus ofF .

Let d andL be the degree and the hyperplane section of ImφS in P pg (S)−1 respectively.
We haveOS(M) = f ∗ϕ∗L andM ∼num degϕdF . Note thath1(B, ϕ∗L) = 0, sinceg(B) ≤
1 by (1.7), andd ≥ codim ImφS + 1 (cf. [Mu]). From

pg (S) = h0(S, ϕ∗L) = deg(ϕ∗L) + 1 − g(B) + h1(B, ϕ∗L) = degϕd + 1 − g(B) ,

we get

(2.1.1) degϕ = 1 and

(2.1.2) d =


χ(OS) if g(B) = 1 ,

χ(OS) − 2 + q(S) if g(B) = 0 .

(2.2) SinceH 0(S, ωS) is a direct factor ofH 2(S,C) by Hodge theory,G acts trivially
onH 0(S, ωS). This implies thatG acts trivially on ImφS and there is a homomorphismh of
G into AutB. Since degϕ = 1 (2.1.1), we have that Kerh = G, i.e., G induces the trivial
action onB, andG ↪→ Aut F for a general fiberF of f .

NOTATION 2.3. Letf : S → B andG be as above.
(i) We write Z = H + V andH = n1Γ1 + n2Γ2 + · · · with n1 ≥ n2 ≥ · · · , where

H (resp.V ) is the horizontal part (resp. the vertical part) ofZ, andΓi (i = 1, 2, . . . ) are the
irreducible components ofH , with ni the multiplicity ofΓi in H .

(ii) For a general fiberF of f , let RF be the set of ramified points of the quotient
mapF → F/G. For any two curvesC andD on S, we denote byC ∩ D the set-theoretic
intersection suppC ∩ suppD.

LEMMA 2.4. Let f : S → B, H , Γi and G be as in (2.1). Let F be a general fiber of
f . Then

(2.4.1) RF ⊂ H ∩ F .
(2.4.2) If RF = H ∩ F , then Γi is smooth for every i.
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PROOF. (i) Suppose that there is a pointp ∈ F such thatp ∈ RF andp /∈ H ∩ F .
Then there exists an element id	= σ ∈ G such thatp is σ -fixed. SinceF is a general fiber,
p is not an isolated fixed point ofσ . So there exists aσ -fixed curveC passing throughp.
By (1.14.1),C ⊂ Bs|KS |. C is not vertical sinceF is a general fiber. SoC < H , which
contradicts the assumption thatp /∈ H ∩ F .

(ii) For a general pointp ∈ Γi , p ∈ H ∩ f ∗(f (p)) = Rf ∗(f (p)). This implies there
exists id 	= σp ∈ G such thatp is σp-fixed. SinceG is finite, there is a id	= σ ∈ G such that
Γi is σ -fixed. SoΓi is smooth by (1.11). �

LEMMA 2.5. Let f : S → B, H , g and G be as in (2.1). Let F be a general fiber of f .
If 2 ≤ g ≤ 4, then either |G| ≤ 2g − 2, or G is nonabelian, G acts transitively on H ∩ F ′ for
any fiber F ′ of f , and the only possibilities for the triple (g, |G|, #(H ∩ F)) are as follows:

(3, 8, 4) , (3, 6, 2) , (4, 12, 6) , (4, 8, 2) .

Moreover, if (g, |G|, #(H ∩ F)) = (3, 8, 4) or (4, 12, 6), then H is reduced and each
irreducible component of H is smooth.

PROOF. For any pointp ∈ S, let stab(p) = {τ ∈ G|τ (p) = p}. If rp : = |stab(p)| = 1
for somep ∈ H ∩ F , then|G| ≤ #(H ∩ F) ≤ 2g − 2. So we can assume that|stab(p)| ≥ 2
for eachp ∈ H ∩ F . Let m be the number of orbits ofH ∩ F under the action ofG. Then
by (2.4.1), the quotient mapπ : F → F/G has exactlym branch points. Using the Hurwitz
formula forπ , we get|G| ≤ 2g − 2 if either g(F/G) ≥ 2, or g(F/G) = 1 and eitherG
is abelian orm ≥ 2. Hence we can assume thatg(F/G) = 1 (g(F/G) 	= 0 by (1.15)),
G is nonabelian andm = 1. ThenG acts transitively onH ∩ F and hence onH ∩ F ′ for
any fiberF ′ of f . In this case, for any pointp ∈ H ∩ F , we have|G|/rp = #(H ∩ F) and
#(H ∩F) | 2g−2. Using the Hurwitz formula forπ again, we have|G| = #(H ∩F)+2g −2.
Note thatG is nonabelian in this case, and we get that(g, |G|, #(H ∩ F)) equals one of the
triples listed in the lemma. The last statement follows by (2.4.2). �

REMARK 2.6. If (g, |G|, #(H ∩ F)) = (3, 6, 2), then eitherH = 2Γ1 + 2Γ2 or
H = 2Γ , whereΓi are sections off andΓ is an irreducible smooth curve withΓ F = 2.

PROPOSITION 2.7. Let S be a complex minimal nonsingular projective surface of gen-
eral type with χ(OS) ≥ 21,and let G ⊂ Aut S be a subgroup of automorphisms of S inducing
trivial actions on H 2(S,Q). Assume that the canonical map φS is composed with a pencil.
Let f : S → B be the canonical fibration associated with φS , and g the genus of a general
fiber of f . Furthermore, assume χ(OS) > 188 if g = 4, and χ(OS) > 60 if g = 5. Then
|G| ≤ 4.

PROOF. By (1.6.1), 2≤ g ≤ 5. If g = 2, we have|G| ≤ 2 by Lemma 2.5. The proof
of the case 3≤ g ≤ 5 is longer and is postponed till the next two sections. �

PROOF OFTHEOREM A. By Proposition 2.7, we can assume thatφS is generically fi-
nite. SinceH 0(S, ωS) is a direct factor ofH 2(S,Q) by Hodge theory,G acts trivially on
H 0(S, ωS). This implies thatG induces trivial actions on ImφS . SoφS factors through the
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quotient map

φS = α ◦ q : S
q−→ S/G

α−→ Im φS .

Thus |G| = degφS/ degα. Now if S is as in case (ii) of (1.6.2), then|G| ≤ 3. If S is as
in case (i) of (1.6.2), then degα ≥ 2, sincepg (S/G) = pg(S) 	= 0 = pg (Im φS). So
|G| ≤ degφS/2 ≤ 9/2. �

3. Proof of Proposition 2.7, the case g = 3.

LEMMA 3.1. Let S be a complex nonsingular projective surface, and G ⊂ Aut S a
subgroup of automorphisms of S inducing trivial actions on H 2(S,Q). Let C ⊂ S be an
irreducible curve. If C2 < 0, then C is G-invariant.

PROOF. Indeed, ifC is notσ -invariant for some id	= σ ∈ G, then(σ ∗C)C ≥ 0. On
the other hand,σ ∗C is numerically equivalent toC, sinceG acts trivially on NS(S) ⊗ Q ↪→
H 2(S,Q). So(σ ∗C)C = C2 < 0, a contradiction. �

LEMMA 3.2. Let f : S → B, H , g and G be as in (2.1). Assume that g = 3 and G is
a nonabelian group of order 8.

(i) Let σ be the generator of the center of G, which is clearly a cyclic subgroup of
order 2. Then H is σ -fixed (and hence smooth), and G/〈σ 〉 ↪→ Aut H .

(ii) Let F ′ be a singular fiber of f and C < F ′ an irreducible component with CH 	= 0.
Then G ↪→ Aut C.

PROOF. (i) Let F be a general fiber off . Let F̄ = F/〈σ 〉 andḠ = G/〈σ 〉. Since
g(F/G) = 1 and |Ḡ| = 4, using the Hurwitz formula forF̄ → F̄ /Ḡ � F/G, we get
g(F̄ ) = 1. Soσ has four fixed points onF . Since #(H ∩F) = 4 in Lemma 2.5, by (2.4.1),H
is σ -fixed and hence smooth by (1.11). SinceG acts transitively onH ∩F and #(H ∩F) = 4,
we haveG/〈σ 〉 ↪→ Aut H .

(ii) If F ′ is reducible,C is G-invariant by (3.1); if the reduced schemeF ′
red of F ′ is

irreducible, thenC = F ′
red is clearlyG-invariant. So there is a homomorphismh : G →

Aut C.
Let σ be as in (i). Ifσ ∈ Kerh, thenC + H is σ -fixed. Soσ is trivial by (1.11). This is

impossible. Hence the lemma follows by showing thatσ ∈ Kerh if Ker h is not trivial.
Suppose that Kerh is not trivial. If G � Q8, we have thatσ ∈ Kerh since there is only

one element of order 2 inQ8. Now assume thatG � D8. If | Kerh| = 2, we get Kerh = 〈σ 〉
since a normal subgroup of order 2 must be contained in the center ofG; If | Kerh| = 4, let
α ∈ G be an element of order 4. Thenσ = α2 andh(α2) = h(α)2 = id. Soσ ∈ Kerh. �

LEMMA 3.3. (i) Let G be a nonabelian group of order 8. Assume that G ↪→ Aut C
for some smooth curve C of genus ≤ 1. Then G � D8. Moreover, if g(C) = 1, the elements
of order 4 of G act freely on C.

(ii) If G � D6 ↪→ Aut C for some smooth elliptic curve C, then the elements of order
3 of G act freely on C.
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PROOF. (i) If C � P 1, the lemma follows by the well known fact that a finite sub-
group of AutP 1 is isomorphic to one of the following groups:Cn, D2n, T12, O24 andI60,
whereT12, O24 andI60 are the polyhedral groups of indicated orders.

If C is an elliptic curve, thenG = T � A (a semi-direct product), whereT is a group of
translations andA ⊂ Aut C is a subgroup preserving the group structure. IfT � C2, thenG

must be abelian, which contradicts the assumption. Now assume that|T | = 4. Letα ∈ G be
an element of order 4. Then it is easy to see thatα2 ∈ T since|A| = 2 in this case. Soα2 and
henceα has no fixed points. This impliesα ∈ T . HenceT � C4, and the result follows.

(ii) follows by an argument similar to that in (i). �

LEMMA 3.4. Let f : S → B, g and G be as in (2.1). Assume that g = 3.
(i) If G � Q8, f is nonhyperelliptic.
(ii) If G � D8 or D6, f is hyperelliptic.

PROOF. (i) Otherwise, letτ be the hyperelliptic involution of a general fiberF of f .
Sinceg(F/G) = 1 by (1.15), we getτ 	∈ G. This impliesG ↪→ Aut P 1, since AutF is a
〈τ 〉-extension of a subgroup of AutP 1. This is impossible by Lemma 3.3.

(ii) Let F be a general fiber off . If G � D2n for n = 3 or 4, then by (1.9) we have
g(F ) + 2g(F/D2n) = g(F/〈α〉) + g(F/〈β1〉) + g(F/〈β2〉), whereα andβi are as in (1.9).
Sinceg(F/D2n) = 1 andg(F/〈α〉) = 1, we getg(F/〈βi 〉) = 2. SoF is étale over a curve of
genus 2. This impliesF is hyperelliptic by [Ac]. �

LEMMA 3.5. Let f : S → B be a nonhyperelliptic fibration of genus 3,and G ⊂ Aut S
a subgroup inducing the trivial action on B. Let F ′ be a fiber of f . Assume that G � Q8, and
that F ′ is either a smooth hyperelliptic curve or a multiple fiber 2C with C smooth of genus
2. Then the kernel of the homomorphism h : G → Aut F ′

red is not trivial.

PROOF. Suppose that kerh is trivial. Denote byσ the unique element of order 2 inG.
First we assume thatF ′ = 2C, whereC is a smooth curve of genus 2. Letp′ = f (F ′)

and fix a pointp ∈ B such thatf ∗p is smooth. LetB̃ → B be a double cover ramified exactly
at p andp′, and letπ ′ : S̃ → B̃ ×B S be the normalization. Thenπ := p2 ◦ π ′ : S̃ → S is
ramified alongf ∗p, andf̃ := p1 ◦ π ′ : S̃ → B̃ is a fibration of genus 3, wherep1 andp2 are
the projections of̃B ×B S onto its factors. Let̃p′ be the inverse image ofp′. ThenF̃ ′ := f̃ ∗p̃′
is a smooth hyperelliptic curve. SinceG induces the trivial action onB, B̃ ×B S ⊂ B̃ × S is
G-invariant. SoG acts onS̃, inducing the trivial action oñB. We haveG ↪→ Aut F̃ ′ if Ker h

is trivial. Hence the lemma is reduced to the case whenF ′ is a smooth hyperelliptic curve.
Now assume thatF ′ is a smooth hyperelliptic curve. Letτ be the hyperelliptic involution

of F ′. If τ 	∈ G, thenG ↪→ Aut P 1 since AutF ′ is a〈τ 〉-extension of a subgroup of AutP 1.
This is impossible by Lemma 3.3. So we can assume thatσ is the hyperelliptic involution
of F ′. Then there are eightσ -fixed points onF ′. By (1.3), there exists aσ -fixed curveD

passing through these points. SinceG � Q8 ↪→ Aut F ′ by assumption, we getF ′ 	= D.
Now for a general fiberF , there are at least #(D ∩ F) = DF = DF ′ ≥ 8 σ -fixed points.
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This implies thatσ is the hyperelliptic involution ofF , contradicting the assumption thatf is
nonhyperelliptic. �

LEMMA 3.6. Let f : S → B, H , g and G be as in (2.1). Assume that g = 3 and G

is a nonabelian group of order 8. Let F ′ be a singular fiber of f and C < F ′ an irreducible
component. Denote by C̃ the normalization of C. If g(C̃) ≥ 2, then F ′ belongs to one of the
following possible types.

(i) F ′ = 2C, and C is smooth;
(ii) F ′ = C is an irreducible curve with one node, and the normalization of F ′ is a

curve of genus 2;
(iii) F ′ = C +D, where C and D are irreducible smooth curves meeting transversally

at two points, and g(C) = 2 and g(D) = 0.

PROOF. We have eitherpa(C) = 3 or C = C̃. In the former case,F ′ = C is an
irreducible curve with one singularity, sayq, and its normalization is a curve of genus 2. If
q ∈ F ′ is a cusp, the inverse imagẽq of the cuspq ∈ F ′ under the normalization map is
G-fixed. This impliesG is cyclic by (1.12), a contradiction. SoF ′ is of type (ii). In the latter
case, sinceKSC = 2 − C2 ≥ 2 andKSF ′ = 4, we get eitherC2 = 0 (F ′ is of type (i))
or multC F ′ = 1. Now assume that multC F ′ = 1. ThenF ′ is 1-connected. LetD < F ′ be
an irreducible curve such thatDC > 0. If #(D ∩ C) = 1, G is cyclic, a contradiction. So
#(D ∩ C) ≥ 2 and henceDC ≥ 2. Note thatpa(D + C) ≤ 3, hence we haveDC = 2 and
F ′ is of type (iii). �

PROOF OFPROPOSITION2.7, THE CASEg = 3. Letf : S → B be the canonical fibra-
tion associated withφS . By (2.2),G induces the trivial action onB, andG ↪→ Aut F , where
F is a general fiber off . Assumeg = 3. By Lemma 2.5, if|G| > 4, thenG is isomorphic to
Q8, D8 or D6. Now the result follows by the next claims. �

CLAIM 3.7. G � Q8 does not occur.

PROOF. SupposeG � Q8. Then by Lemma 3.4,f is nonhyperelliptic. Sinceg(B) ≤ 1
by (1.7),f has singular fibers.

Let F ′ be a singular fiber off , and letC < F ′ be an irreducible component such that
CH 	= 0. By Lemma 3.2 (ii), we haveG ↪→ Aut C. By Lemmas 3.3 (i), 3.5 and 3.6, we have
thatF ′ is of type (ii) or (iii) of (3.6).

If F ′ is of type (iii) of (3.6), we have that eitherD 	< V or HD > 0, whereV is as in
(2.1). Indeed, if bothD < V andHD = 0 hold, thenC 	< V and thusV D < 0. But from
0 = KSD = (M + H + V )D, we getV D = 0, a contradiction. Now by Lemma 3.2 (ii) and
(1.14.2),Q8 ↪→ Aut D. This is impossible by Lemma 3.3 (i).

Now if F ′ is of type (ii) of Lemma 3.6, we show thatF ′ is nonhyperelliptic.
Letσ be the generator of the center ofG. We haveG/〈σ 〉 � C2×C2. First we claim that

the nodeq ∈ F ′ is an isolatedσ -fixed point. Otherwise, there is aσ -fixed curveD passing
throughq. By (1.14.1),D < H . Sinceq ∈ F ′ is G-fixed,q ∈ H is G/〈σ 〉-fixed. By Lemma
3.2 (i) and (1.12),G/〈σ 〉 is cyclic, a contradiction.
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Second, we claim thatσ preserves the local two branches atq. Indeed, letG′ ⊂ G be
the subgroup preserving the local two branches atq. ClearlyG′ is cyclic of order 4. Letα be
a generator ofG′. If σ 	∈ G′, thenσ andα generateG, and it is easy to see thatσασ = α−1.
This implies thatG � D8, a contradiction.

Now we have thatq is an isolatedσ -fixed point and thatσ preserves the local two
branches atq. Soh∗

σ (f (q)) consists of two irreducible smooth curves meeting transversally
at two points, wherehσ : Pσ → B is as in (1.2). Sincehσ is of genus 1,σ is a hyperelliptic
involution of the normalizationF̃ ′ of F ′. This implies thatF ′ is a nonhyperelliptic fiber.
Indeed, if there exists an involutionτ on F ′ such thatF ′/〈τ 〉 � P 1, thenτ exchanges the
local two branches atq, andτ is a hyperelliptic involution ofF̃ ′. This implies thatσ = τ on
F ′, which is absurd since one preserves the local two branches atq while the other not.

By the above argument, we have that any singular fiberF ′ of f is a nonhyperelliptic
irreducible curve with one node. By Lemma 3.5 and (1.14.2),f has no smooth hyperelliptic
fibers. Thusf has no fibersF ′ with non-vanishingH(S/B, f (F ′)) (see (1.5) for the notation).
By (1.5), we have that

K2
S = 3χ(OS) + 10(g(B) − 1) .

We get a contradiction by (1.6.1). �

CLAIM 3.8. G � D8 or D6 does not occur.

PROOF. SupposeG � D6. The proof of the caseG � D8 is similar and is left to the
reader. By Lemma 3.4,f is hyperelliptic. We will show that

(3.8.1) any singular fiber off belongs to one of the following types:
(i) F ′ = C is an irreducible curve with one node, and the normalization ofF ′ is a

curve of genus 2;
(ii) F ′ = C is an irreducible curve with three nodes, and the normalization ofF ′ is

isomorphic toP 1;
(iii) F ′ = C + D, whereC andD are irreducible smooth curves meeting transversally

at two points, andg(C) = 2 andg(D) = 0.
We note that, ifF ′ belongs to one of the types (i)–(iii), the singularitiessi(F

′) = 0 for
i ≥ 3 (see (1.4.1) for the definition). (We check it whenF ′ is of the type (iii); the other cases
are similar. Letq1 andq2 be nodes ofF ′ = C + D. Let τ be the hyperelliptic involution
of f . Let the notation be as in (1.2) and (1.4). Since the dual graph ofhτ (f (F ′)) is a tree,
we haveτq1 = q2. Let C̄ andD̄ be the images ofC andD underπ , respectively. Then
hτ (f (F ′)) = C̄+D̄ consists of two smooth rational curves meeting transversally at one point,
andR̃ meetsC̄ (resp.D̄) transversally at six (resp. two) points. By the choice ofφ : Pτ → P ,
φ contractsD̄. Thus there is only one singular point of order 2 ofR on the image ofF ′ and
hence by (1.4.1)si (F ′) = 0 for i ≥ 3.)

Admitting (3.8.1) for the moment, we have thatf has no essential fibers, and hence by
(1.4)

K2
S = 8

3
χ(OS) − 32(g(B) − 1)

3
.
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On the other hand, by (1.6.1),K2
S ≥ 4(χ(OS) − 2), a contradiction.

It remains to prove (3.8.1). Letα ∈ D6 (resp.σ ∈ D6) be an element of order 3 (resp.
2). By the proof of Lemma 2.5,H is α-fixed. LetF ′ be a singular fiber off . Let C < F ′
be an irreducible component such thatCH 	= 0, andC̃ the normalization ofC. ThenC is
α-invariant by Lemma 3.1, and the homomorphismh of G into AutC is injective. (Other-
wise, Kerh = 〈α〉 or G since the nontrivial normal subgroup ofG is 〈α〉. Henceα is trivial
on C + H , which is impossible by (1.11).) We distinguish two cases according to whether
fH : Hred → B is étale atH ∩ F ′ or not.

Case 1. fH is étale atH ∩ F ′. In this caseH ∩ F ′ consists of two points, sayp1 and
p2. SinceHF ′ = 4, by Remark 2.6,F ′ is smooth at these points. SinceH is α-fixed,p1 and
p2 areα-fixed. By the choice ofC, there are at least twoα-fixed points (p1 andp2) on it, and
C is smooth atpi for i = 1 and 2.

If g(C̃) = 2, then by the proof of Lemma 3.6, we have thatF ′ is (i) or (iii).
If g(C̃) = 1, then by Lemma 3.3 (ii), we get a contradiction.
Now we assumeg(C̃) = 0. We show that in this case eitherF ′ is of type (ii) or there

exists aσ -fixed pointp ∈ C with 2 � multpF ′. We consider three cases according to the
singularities ofC.

(i) There is a point p ∈ Csing with multp C ≥ 3. Thenp ∈ C is an ordinary triple
point andC \ {p} is smooth andF ′ = C. Sop is σ -fixed and multp F ′ = 3.

(ii) Csing 	= ∅ and for any point p ∈ Csing, with multp C = 2. Sincep1 andp2 are
α-fixed andα has exactly two fixed points oñC � P 1, we haveα(p) 	= p if p ∈ Csing. Hence
eitherF ′ is of type (ii), orF ′ = C is an irreducible curve with three cusps (sayq1, q2 andq3)
and the normalization ofF ′ is isomorphic toP 1. In the latter case, let̃qi (i = 1, 2, 3) be the
inverse image ofqi under the normalization map̃C → C. Since{q1, q2, q3} is σ -invariant
and there are exactly twoσ -fixed points onC̃ � P 1, there must be a point̃p ∈ C̃ \{q1, q2, q3}
which isσ -fixed. Letp be the image of̃p under the normalization map. Thenp is σ -fixed
and multp F ′ = 1.

(iii) C is a smooth rational curve. SinceF ′ is 1-connected, there is an irreducible
curveD < F ′ such thatDC > 0. SinceD ∩ C is α-invariant by Lemma 3.1, if #(D ∩ C) 	≡
0 (mod 3), α has at least there fixed points (p1, p2 and a point inD ∩ C) onC. This implies
α is trivial on C and hence onC + H , which is impossible by (1.11). So we can assume
#(D ∩ C) ≡ 0 (mod 3). Sincepa(C + D) ≤ 3, we haveDC ≤ 4. So #(D ∩ C) = 3.
SinceD ∩ C is σ -invariant and there are exactly twoσ -fixed points onC̃ � P 1, there is a
point p ∈ C \ D ∩ C which isσ -fixed. We claim that multp F ′ = 1. Otherwise, there is an
irreducible curveD′ < F ′ passing throughp. By the above argument, we can assume that
#(D′ ∩ C) ≡ 0 (mod 3). This impliespa(C + D + D′) > 3, a contradiction.

Now by the above argument, we have that eitherF ′ is of type (ii) or there is aσ -fixed
point p ∈ C with 2 � multpF ′. In the latter case, letu : S̃ → S be as in (1.2). Ifp is an
isolatedσ -fixed point, then the inverse imageE = u−1(p) of p is aσ -fixed (−1)-curve, and
the coefficient ofE in (f ◦ u)∗(f (F ′)) is not divisible by 2. This is impossible by (1.2.1).
So there is aσ -fixed curveD passing throughp. ClearlyD 	= C by (1.11). By (1.14.1),
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D < Bs|KS |, and henceD < H . Sinceα andσ generateG, this implies there is aG-fixed
pointp′ ∈ H ∩ F , and thusG is cyclic by (1.12), a contradiction.

Case 2. fH is not étale atH ∩ F ′. ThenH ∩ F ′ consists of one point, sayp. By the
choice ofC, C passes throughp. SinceG ↪→ Aut C, by (1.12),p ∈ C is a singular point.

SinceHF ′ = 4, we have multC F ′ = 1 and multp C = 2. If p ∈ C is a cusp, it is easy to
seeG is cyclic by (1.12). So we can assume thatp ∈ C is a node. BlowupS atp, and letE be
the exceptional curve and̃H the strict transform ofH . If p is an ordinary node ofC, thenα

preserves the local branches ofC atp since the order ofα is 3. Soα preserves the three local
branches ofC + H at p. This impliesE and henceE + H̃ is α-fixed. By (1.11)α is trivial
onS, a contradiction. Now we can assume thatp ∈ C is a node which can be resolved by at
least two successive blowups. Thenpa(C) ≥ 2 andg(C̃) ≤ 1, whereC̃ is the normalization
of C. If g(C̃) = 1, by Lemma 3.3(ii),α is a translation ofC̃, which is impossible sinceα
preserves the local branches ofC at p. Now we assumeg(C̃) = 0. If F ′ is reducible, letD
be an irreducible curveD < F ′ such thatDC > 0. SinceD ∩C is α-invariant by Lemma 3.1
and there are exactly twoα-fixed points onC̃ � P 1, we have #(D ∩ C) ≡ 0 (mod 3). This
impliespa(C + D) > 3, a contradiction. Now we can assumeF ′ = C. If there is a point
q ∈ Csing \ {p}, thenq is α-fixed and miltq C = 2 sincepa(C) = 3, and hence there are at
least fourα-fixed points onC̃. This impliesα is trivial on C̃ and hence onC, a contradiction.
So we can assume thatC \ {p} is smooth. Thenp is σ -fixed. If σ preserves the local branches
of C at p, thenG also does. This impliesG is cyclic by (1.12), a contradiction. So we can
assumeσ exchanges the local branches ofC atp. This implies there are twoσ -fixed points on
C \ {p}. Now by the same argument as in the last paragraph of Case 1, we get a contradiction.
This completes the proof of (3.8.1). �

4. Proof of Proposition 2.7, the case g = 4, 5.

LEMMA 4.1. Let f : S → B, H , Γi , g and G be as in (2.1). Assume that g = 4 and
|G| = 6. Then H is reduced and Γi is nonsingular for every i.

PROOF. Let F be a general fiber off . Using the Hurwitz formula forπ : F → F/G,
we get thatg(F/G) = 1 (note thatg(F/G) ≥ 1 by (1.15)) andπ has six ramification points.
By (2.4.1), we have #(H ∩F) ≥ 6. This impliesH is reduced. Since #(H ∩F) ≤ 2g −2 = 6,
we haveRF = H ∩ F . By (2.4.2),Γi is nonsingular for everyi. �

LEMMA 4.2. Let S be a minimal surface whose canonical map is composed with a
pencil, and f : S → B the associated canonical fibration of genus g . Assume that g = 4, and
that the horizontal part H of the fixed part of |KS | is reduced and each irreducible component
of H is nonsingular. Then χ(OS) ≤ 188.

PROOF. Let the notation be as in (2.1). Under the assumption, we have

KS ≡ M +
t∑

i=1

Γi + V , (t ≤ 6) .
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Let gi = g(Γi). FromKSΓi ≥ MΓi + Γ 2
i and the adjunction formula forΓi , we get

(1) KSΓi ≥ MΓi

2
+ gi − 1 .

So

K2
S ≥ KSM +

∑
KSΓi ≥ 6d +

∑
MΓi

2
+

∑
(gi − 1)

= 9d +
∑

(gi − 1) .
(∑

MΓi = MH = dFH = 6d
)(2)

On the other hand, using the logarithmic Miyaoka-Yau inequality for(S, Γi) (1.8), we have
K2

S ≤ 9χ(OS) + (gi − 1) − KSΓi/4 for everyi. Hence

K2
S ≤ 9χ(OS) +

∑
(gi − 1)

t
−

∑
KSΓi

4t

≤ 9χ(OS) + 3
∑

(gi − 1)

4t
− 3d

4t
(by (1)) .

(3)

Combining (2) and (3), we get

3d ≤ (4t − 3)
∑

(1 − gi ) + 36t (χ(OS) − d) .

Note thatt ≤ 6, andd = χ(OS) if g(B) = 1 andd = χ(OS) − 2+ q(S) if g(B) = 0 (2.1.2).
Hence we getχ(OS) ≤ 188. �

PROOF OFPROPOSITION2.7, THE CASEg = 4. Letf : S → B be the canonical fibra-
tion associated withφS , F the general fiber off , andH the horizontal part of the fixed part of
|KS |. We have thatG induces the trivial action onB, andG ↪→ Aut F by (2.2). By Lemma
2.5, if |G| > 4 then either|G| = 6 or G is a nonabelian group of order 8 or 12 (|G| 	= 5 by
the Hurwitz formula).

First we suppose that|G| = 6 or 12. Then by Lemmas 2.5 and 4.1, we have thatH is
reduced and each irreducible component ofH is smooth. So by Lemma 4.2,χ(OS) ≤ 188,
contradicting the assumption.

Second, we suppose thatG is a nonabelian group of order 8. Then eitherG � D8 or
G � Q8.

(i) The caseG � D8 does not occur.
Otherwise,D8 ↪→ Aut F for a general fiberF of f . By (1.9), we have 4+ 2g(F/D8) =

g(F/〈α〉) + g(F/〈β1〉) + g(F/〈β2〉), whereα, βi are as in (1.9). But this is impossible since
g(F/D8) = 1, g(F/〈α〉) = 1, andg(F/〈βi 〉) ≤ 2 for everyi by the Hurwitz formula.

(ii) The caseG � Q8 does not occur.
Otherwise, letσ be a generator of stab(p) for some pointp ∈ H ∩ F . By the proof of

Lemma 2.5,σ is of order 4. Consider the commutative diagram

F
π−−→ F/〈σ 〉�

�λ

C
:=−−→ F/〈σ 2〉.
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Since the ramification index ofπ atp ∈ F is 4,λ cannot be étale. This impliesg(C) = 2.
SinceQ8 has only one element of order 2,〈σ 2〉 is a normal subgroup ofQ8 andG :=

Q8/〈σ 2〉 � C2 × C2. Using the Hurwitz formula forC → C/G � F/Q8, (note that
g(F/Q8) = 1,) by (1.13), we get|G| ≤ 2. This is a contradiction. �

PROOF OFPROPOSITION2.7, THE CASEg = 5. Letf : S → B be the canonical fibra-
tion associated toφS , andF a general fiber off . Let M, H , V , Γi , ni andd be as in (2.1).
Setb = g(B). First we suppose thatn1 < g. Sincen1KS/B + H + V is nef,

((n1 + 1)KS − M − n1(2b − 2)F )H = (n1KS/B + H + V )H ≥ 0 .

So

KSH ≥ (2g − 2)(d + n1(2b − 2))

n1 + 1
≥ (2g − 2)(d + n1(2b − 2))

g
.

On the other hand, using the Miyaoka-Yau inequality (cf. [Mi, Y]), we have

9χ(OS) ≥ K2
S = KS(M + H + V ) ≥ (2g − 2)d + KSH .

Combining these two inequalities, we getχ(OS) ≤ 34, which contradicts the assumption.
Now we can assume thatn1 ≥ g. ThenΓ1 is a section off . This impliesΓ1 and hence

the pointF ∩ Γ1 ∈ F is G-fixed. By (1.12),G is cyclic. Using the Hurwitz formula for
F → F/G, (note thatg(F/G) ≥ 1 (1.15) and by (1.13) wheng(F/G) = 1) we getG � C5

and #(R ∩ F) = 2 if |G| > 4.
Now we prove that the caseG � C5 does not occur. Otherwise, by (2.4.1), #(R ∩ F) ≥

2. Since(H − n1Γ1)F = 8 − n1 ≤ 3 and|G| = 5, we must have #(R ∩ F) = 2. So
H = nΓ1 + (8 − n)Γ2 with 5 ≤ n ≤ 7 andΓ2F = 1. SinceΓ1 + Γ2 is G-fixed, by (1.11),
Γ1Γ2 = 0. FromKSΓ1 = (M + H + V )Γ1 ≥ d + nΓ 2

1 and the adjunction formula forΓ1,
we get

KSΓ1 ≥ d + n(2b − 2)

n + 1
.

Similarly, we have

KSΓ2 ≥ d + (8 − n)(2b − 2)

9 − n
.

Using the logarithmic Miyaoka-Yau inequality (1.8), we have

9χ(OS) + (b − 1) − 1

4
KS(Γ1 + Γ2) ≥ K2

S = KS(M + nΓ1 + (8 − n)Γ2 + V )

≥ (2g − 2)d + nKSΓ1 + (8 − n)KSΓ2 .

Combining these inequalities, we getχ(OS) ≤ 60, which contradicts the assumption. �
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