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Abstract. In the context of a strongly local Dirichlet space we show that if a function
mapping the real line to itself (and fixing the origin) operates by composition on the left to map
the Dirichlet space into itself, then the function is necessarily locally Lipschitz continuous.
If, in addition, the Dirichlet space contains unbounded elements, then the function must be
globally Lipschitz continuous. The proofs rely on a co-area formula for condenser potentials.

1. Introduction. Let (E,D) be a strongly local regular Dirichlet form as in [13].
Specifically, letE be a locally compact second countable metric space, andm a Radon mea-
sure onE with full support. The domainD of the Dirichlet formE is a vector space contained
and dense inL2(m). The symmetric bilinear formE : D × D → R is non-negative definite,
and the augmented formE1 : (u, v) �→ E(u, v) + (u, v)m is a Hilbertian inner product onD.
(Here(u, v)m := ∫

E uvdm is the inner product inL2(m); the associated norm is‖u‖2.) The
formE is closable in the sense that if{un} is anE-Cauchy sequence with limn ‖un‖2 = 0, then
limn E(un, un) = 0 as well. Furthermore,(E,D) enjoys the following contraction property:
If K : R → R satisfies the conditions

(1.1) K(0) = 0

and

(1.2) |K(t)−K(s)| ≤ M|t − s| for all s, t ∈ R ,

then

(1.3) K � u ∈ D for all u ∈ D ,
and

(1.4) E(K � u,K � u) ≤ M2 · E(u, u) for all u ∈ D.
In the sequel we shall describe the property (1.3) by saying that “K operates onD”. Notice
that the elements ofD are actually classes of functions equal a.e. with respect tom, but that the
superposition operationu �→ K �u preservesm-classes. The modifier “regular” indicates that
D ∩ C0(E) is E1-dense inD and uniformly dense inC0(E). (Here,C0(E) denotes the class
of real-valued continuous functions onE with compact support.) Finally, “strongly local”
means that wheneveru andv are elements ofD such that the measuresu ·m andv ·m are of
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compact support andv is constant on a neighborhood of the support ofu ·m, then necessarily
E(u, v) = 0.

Our goal in this paper is to examine the following question: IfK operates onD, must it
be Lipschitz continuous, at least locally? This problem has been posed and solved by Marcus
and Mizel [17] in the context of Sobolev spacesW1,p(Ω) (1 ≤ p < ∞), where the bounded
Euclidean domainΩ ⊂ Rd is assumed to satisfy a cone condition. (The critical casep =
d ≥ 2, left open in [17], was treated by Bourdaud [5].) Their work was extended to general
Euclidean domains of finite measure by Labutin [15]. (See [2] for a monograph treatment of
these and related questions.) The intersection of our context with that of these authors is the
casep = 2, corresponding to Brownian motion. They found that ifK operates onW1,2(Ω),
thenK is locally Lipschitz (i.e.,K is absolutely continuous andK ′ ∈ L∞

loc(R)); if, in addition,
W1,2(Ω) contains essentially unbounded elements, thenK ′ ∈ L∞(R). We shall see that these
two conclusions remain valid for superpositions operating on the Dirichlet space of a general
diffusion process. (The second conclusion requires a mild secondary hypothesis in the general
case.)

Our methods are quite different from those used in the papers cited above and the con-
structions involved are less intricate. This simplification is due to a systematic use of con-
denser potentials, and to a related variant of the co-area formula that is of independent inter-
est. This formula, an explicit instance of the“energy image density” formula of Bouleau and
Hirsch [4], was suggested by a calculation found in recent work of Fukushima and Ying [14].

Our arguments are largely probabilistic, and in the balance of this section we shall de-
scribe the probabilistic context in which we shall be working, and we shall review some
relevant facts. The precise statement of our main result, and its proof, will occupy the next
section.

Associated with the Dirichlet form(E,D) is a symmetric Markov processX =
(Ω,F ,Ft , θt , Xt ,Px), with symmetry measurem. The processX is a Hunt process; in par-
ticular, the transition semigroup ofX, defined by

(1.5) Ptf (x) := Px[f (Xt)] , t ≥ 0 ,

mapsbB(E) (the class of bounded real-valuedB(E)-measurable functions onE) into itself.
HereB(E) denotes the class of Borel subsets ofE andPx [Z] denotes the expectation of the
random variableZ with respect to the measurePx . As noted already, the semigroup(Pt ) is
m-symmetric:

(1.6) (f, Ptg)m = (Ptf, g)m , f, g ∈ pB(E) .
Because(E,D) is strongly local,X is adiffusion in the sense that

(1.7)

(i) The Pm-completion(Ft )t≥0 of the natural filtrationσ {Xs ; 0 ≤ s ≤ t}, t ≥ 0,
is quasi-left-continuous and the lifetime ofX, denotedζ , is an(Ft ) predictable
stopping time;

(ii) t �→ Xt is continuous on[0, ζ [, Pm-a.s.
HerePm[ · ] := ∫

E
Px[ · ]m(dx). Also, ζ , the lifetime ofX, is the time at whichX retires

to the cemetery state∆, which has been adjoined toE (as the point at infinity ifE is not
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compact) to allow for the possible mass defectPt1E(x) < 1. By convention any function
(resp. measure) defined onE (resp.E) is extended to the cemetery state∆ by declaring its
value at∆ (resp.{∆}) to be 0. Consequently, every(Ft )-stopping time isPm-predictable, and
every(Ft )-martingale has continuous paths (Pm-a.s.). See [21, §47]. As general references
on Markov processes, the reader can consult [3] and [21].

Let us now recall more about the specifics of the association between(E,D) andX.
Because of (1.6),(Pt ) restricted tobB(E)∩L2(m) extends uniquely to a strongly continuous
contraction semigroup of self-adjoint operators inL2(m). The Dirichlet formE is given by
the formula

(1.8) E(u, v) := lim
t↓0
t−1(u, v − Ptv)m ,

and its domain is specified by

(1.9) D := {
u ∈ L2(m) ; sup

t>0
t−1(u, u− Ptu)m < ∞}

.

We shall often writeE(u) instead ofE(u, u).
REMARK 1.10. In the discussion at hand, there is nothing to be gained by working

in the more general context of quasi-regular Dirichlet forms, as developed in [16]. Indeed,
the main result of [7] asserts that every quasi-regular Dirichlet form is quasi-homeomorphic
to a regular Dirichlet form, and it is a simple matter to check that our hypotheses and our
conclusions are preserved by quasi-homeomorphisms.

Thehitting time inf{t > 0 ;Xt ∈ B} of B ∈ B(E) is denoted byTB ; theexit time from
B, namelyTBc , is denoted byτ (B). An increasing sequence{Bn} of Borel subsets ofE is a
nest providedPm[limn τ (Bn) < ζ ] = 0. The reader is referred to [16, Lemma IV. 4.5] for a
characterization of this notion in terms of the Dirichlet form(E,D).

Each elementu ∈ D admits a Borel measurablem-modificationũ such thatt �→ ũ(Xt )

is right continuous on[0,∞ [, Pm-a.s.; becauseX is a diffusion, we then have the automatic
left continuity of t �→ ũ(Xt ) on ]0, ζ [, Pm-a.s. The functioñu is quasi-continuous in the
sense that there is a nest(Kn) of compact subsets ofE such that̃u|Kn ∈ C(Kn) for everyn.

A Borel setN ⊂ E is said to beexceptional providedPm[τ (E \N) < ζ ] = 0. It can be
shown thatN ∈ B(E) is exceptional if and only if there is a nest of compacts{Kn} such that
N ⊂ ⋂

n K
c
n. A statement or property depending onx ∈ E is said to hold quasi-everywhere

(q.e.) provided the set of points where it fails to hold is exceptional.
Givenu ∈ D, we have Fukushima’s decomposition [13, Theorem 5.2.2]:

(1.11) ũ(Xt )− ũ(X0) = Mu
t +Nut , for all t ≥ 0 ,Px-a.s. for q.e.x ∈ E ,

whereMu andNu are continuous additive functionals (CAFs) ofX,Mu is a martingale such
that supt>0 t

−1Pm[[Mu
t ]2] < ∞, and limt→0 t

−1Pm[[Nut ]2] = 0. This decomposition is
unique.

For u ∈ D we haveE(u) = 0 if and only if ũ(Xt ) = ũ(X0) for all t > 0, Pm-a.s. In
particular, ifE(u) = 0 thenK � u ∈ D for every Borel measurable functionK : R → R such
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thatK � u ∈ L2(m), as follows immediately from (1.9). For this reason we shall impose the
following (very mild) non-degeneracy condition, without which no conclusions can be drawn
about functions that operate onD :

(1.12) There existsu ∈ D such thatE(u) > 0 .

If (1.12) were to fail thenm-a.e.x ∈ E would be atrap, in the sense thatPx[Xt = x for all
t ≥ 0] = 1.

If u ∈ D then the martingale CAFMu admits a quadratic variation process〈Mu〉; i.e.,
〈Mu〉 is a PCAF such that(Mu)2 − 〈Mu〉 is a martingale on[0, ζ [. The Revuz measure of
〈Mu〉 (the so-called energy measure ofu) is the smooth measureµ〈u〉 onE determined by

(1.13) µ〈u〉(f ) =↑ lim
t→0

t−1Pm
[ ∫ t

0
f (Xs)d〈Mu〉s

]
, f ∈ pB(E) .

The measureµ〈u〉 has finite total mass; indeed,

E(u, u) = 1

2
µ〈u〉(E) , u ∈ D .

Given two elementsu andv of D, the quadratic covariation〈Mu,Mv〉 is a (signed) CAF of
X and, since〈Mu,Mv〉 = (1/4)[〈Mu+v〉 − 〈Mu−v〉], we have

(1.14) µ〈u,v〉 = 1

4
[µ〈u+v〉 − µ〈u−v〉]

and

(1.15) E(u, v) = 1

2
µ〈u,v〉(E) , u, v ∈ D .

We close this section with two results that will be useful in the constructions of the next
section.

PROPOSITION 1.16. Let F : R → R be an absolutely continuous function with
F(0) = 0. Given u ∈ D, if F � u ∈ L2(m) and F ′ � ũ ∈ L2(µ〈u〉), then F � u ∈ D
and

(1.17) dµ〈F �u〉 = [F ′ � ũ]2dµ〈u〉 .

PROOF. Let ξ denote the image of(1/2)µ〈u〉 under the mappingx �→ ũ(x). This is a
finite measure on the Borel subsets ofR . Moreover,ξ is absolutely continuous with respect
to Lebesgue measure onR by [4, Theorem I.7.1.1]. Thus the derivativeF ′ ∈ L1

loc(R) is
uniquely determined up toξ -null sets, and the hypothesisF ′ � ũ ∈ L2(µ〈u〉) (equivalently
F ′ ∈ L2(ξ)) is meaningful. Letη denote the standard Gaussian measure onR . Thenξ + η is
a regular Borel measure onR , hence there is a sequence{ϕn} in C0(R) such thatϕn → F ′ in
L2(ξ + η); see [12, Proposition 7.9]. DefineFn(t) := ∫ t

0 ϕn(s)ds for t ∈ R . Evidently,Fn
is globally Lipschitz continuous, so thatFn � u ∈ D by the fundamental contraction property
of Dirichlet spaces. Moreover, becauseFn ∈ C1(R) we can apply [13, Theorem 3.2.2] to
deduce that

(1.18) dµ〈Fn�u〉 = [
ϕn � ũ]2

dµ〈u〉
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for all n ∈ N . Consequently,

(1.19) E(Fm � u− Fn � u) = 1

2

∫
E

[
ϕm � ũ− ϕn � ũ]2

dµ〈u〉 =
∫

R
[ϕm − ϕn]2 dξ .

It follows from (1.19) and the choice of{ϕn} that the sequence{Fn � u} is E-Cauchy inD.
Also,

|Fn(t)− F(t)| ≤
∫ |t |

−|t |
|ϕn(s)− F ′(s)|ds

≤ √
2πet

2/2
∫ |t |

−|t |
|ϕn(s)− F ′(s)|(2π)−1/2e−s2/2ds

≤ √
2πet

2/2‖ϕn − F ′‖L2(η) ,

from which it follows that limn Fn(t) = F(t) for eacht ∈ R . In particular,Fn � u converges
pointwise toF � u asn → ∞. Thus,F � u is an element of the extended Dirichlet space
De, see [13, page 35]. SinceF � u ∈ L2(m) by hypothesis, we even haveF � u ∈ D by [13,
Theorem 1.5.2 (iii)].

BecauseE(Fn � u − F � u) → 0 asn → ∞, the left side of (1.18) converges in total
variation norm todµ〈F �u〉, see [13, 5.2.12] and [9, Lemma 5.6]. On the other hand, the right
side of (1.18) converges (setwise) to[F ′ � ũ]2dµ〈u〉, becauseϕn � ũ → F ′ � ũ in L2(µ〈u〉).
This proves (1.17). �

LEMMA 1.19. There is a non-negative w ∈ D ∩ C0(E) and constants 0 < α < β

such that

(1.20) Pm[w(X0) ≤ α, T{w>β} < ζ ] > 0 .

PROOF. If not, then by varyingα andβ in (1.20) we see that

(1.21) Pm
[
w(X0) < sup

s>0
w(Xs)

] = 0 ,

for all non-negativew ∈ D ∩ C0(E). An application of the simple Markov property at each
positive rational time leads from (1.21) to

w(Xt ) ≥ sup
s>t

w(Xs) , for all rational t > 0 , Pm-a.e.,

and the continuity ofw now yields

(1.22) t �→ w(Xt ) is non-increasing,Pm-a.e.,

for every non-negativew ∈ D ∩ C0(E). From (1.22) and Fukushima’s decomposition we
deduce that the martingaleMw has paths of zero quadratic variation. That is,〈Mw〉 ≡ 0, Pm-
a.e., from which it follows thatE(w) = 0. TheE1-density ofD ∩ C0(E) in D now implies
thatE(u) = 0, first for all non-negativeu ∈ D and then for allu ∈ D as we see by expressing
u ∈ D as the difference of its positive and negative parts. This contradicts the non-degeneracy
hypothesis (1.12), proving the Lemma. �
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2. Theorem and proof. This section is devoted to the proof of the following theorem,
our main result. The setting is as detailed in section 1; in particular the hypothesis (1.12) is in
force.

By essentially unbounded we shall mean thatm(x ∈ E ; |u(x)| > t) > 0 for eacht > 0.
If D contains no essentially unbounded elements, thenD ⊂ L∞(m), in which case it is easy
to see that every locally Lipschitz function operates onD. A Borel setD ⊂ E is said to be an
exit set provided supx∈E Px [τ (D)] < ∞.

THEOREM 2.1. Let K : R → R be Borel measurable, with K(0) = 0.
(a) If

(2.2) K � u ∈ D for all u ∈ D ∩ L∞(m) ,

then K is locally Lipschitz continuous, in the sense that for each N ∈ N there exists MN ∈
]0,∞[ such that

(2.3) |K(t)−K(s)| ≤ MN |t − s| for all s, t ∈ [−N,N] .
Equivalently, K is absolutely continuous, and the a.e. defined derivative K ′ is an element of
L∞

loc(R).
(b) If

(2.4) K � u ∈ D for all u ∈ D
and if D contains an essentially unbounded element vanishing outside an exit set, then K is
globally Lipschitz continuous in the sense that there exists M ∈ ]0,∞[ such that

(2.5) |K(t)−K(s)| ≤ M|t − s| for all s, t ∈ R .

Equivalently, K is absolutely continuous and the a.e. defined derivative K ′ is an element of
L∞(R).

REMARK 2.6. By an argument found on pp. 503–504 of [11], it can be shown that if
there is a non-empty exceptional set (for example, ifX is Brownian motion in a Euclidean
domain of dimensiond ≥ 2), then there is an essentially unbounded element ofD vanishing
outside an exit set. If there are no non-empty exceptional sets, then the transition measures of
X are absolutely continuous with respect tom and each point ofE is regular for itself. The
author does not know whether, in this latter case, the existence of an unbounded element of
D guarantees the existence of such an element vanishing outside an exit set. An illustrative
example of a process with no non-empty exceptional sets but with unbounded elements in its
Dirichlet space is the 3-dimensional Bessel process on]0,∞[.

Condenser potentials play a key role in the proof of Theorem (2.1), and in preparation
we discuss some of their basic properties. Recall from [13, page 68] that a Borel setB ⊂ E

is quasi closed if (and only if) there is a nest{Fn} of closed subsets ofE such thatB ∩ Fn is
a closed set for eachn ∈ N . For example, ifu ∈ D andα ∈ R , then{x ∈ E ; ũ(x) ≤ α} is
quasi closed. LetA andB be quasi closed Borel subsets ofE such thatA ∩ B is exceptional.
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Thecondenser potential

p(x) = pA,B(x) := Px [TA < TB ]
is an excessive function ofX killed at timeTB ; consequentlyp is quasi-continuous. Notice
thatp(x) = 1 for q.e.x ∈ A andp(x) = 0 for q.e.x ∈ B. If the convex set

U = UA,B := {u ∈ D ; ũ = 1 q.e. onA, ũ = 0 q.e. onB}
is nonempty, then

E(p) = min{E(u) ; u ∈ U} .
Unless the processX killed atTBc is transient, there may be other elements ofU at which the
above minimum is attained. Evidently,U is non-empty if and only ifp ∈ D. See [8] and [20,
§2] for more details on these matters.

If p = pA,B ∈ D, then there is a finite signed smooth measureν = νA,B such that

(2.7) E(u, p) =
∫
E

ũdν , u ∈ D .

Indeed, the Hahn-Jordan decompositionν+ − ν− of ν is such that bothν+ andν− are smooth
measures, andν+ is carried byA while ν− is carried byB. (See the discussion on pp. 75–76
of [6], and (2.15) below). Notice that

(2.8) C(A,B) := E(p, p) =
∫
E

pdν = ν(A) = ν+(E) .

The following instance of the Bouleau-Hirsch “energy image density” theorem [4,
Theorem I.7.1.1] is our main tool. This formula was suggested by a calculation in [14]. In
the context of Brownian motion, a different proof can be fashioned out of the co-area and
divergence formulas, as was shown to the author by Bruce Driver.

PROPOSITION 2.9. Fix A and B as above, and assume that p = pA,B lies in D. Then
for every Borel function g : [0,1] → [0,∞],

(2.10)
1

2

∫
E

g(p(x))dµ〈p〉(dx) = C(A,B)

∫ 1

0
g(t)dt .

PROOF. It suffices to prove (2.10) wheng is continuous and real-valued. Define
G(y) := ∫ y

0 g(t)dt. ThenG � p ∈ D and, by (2.7) and (2.8),

E(G � p,p) =
∫
A

G � pdν = G(1)ν(A) =
∫ 1

0
g(t)dt · C(A,B) .

On the other hand, by the polarized form of (1.17),

E(G � p,p) = 1

2

∫
E

µ〈G�p,p〉(dx) = 1

2

∫
E

g(p(x))µ〈p〉(dx) . �

The proof of Theorem (2.1) will be accomplished through a series of lemmas. In the
remainder of this section we suppose thatK : R → R is a Borel function withK(0) = 0,
and that (2.2) holds.

LEMMA 2.11. K is continuous.
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PROOF. Arguing by contradiction, let us suppose thatK is not continuous. We may
assume that lim infs↑1K(s) < K(1); all other cases can be reduced to this case by suitable
linear transformations ofK. Thus,κ := lim inf t↑1K(t) < K(1), so that there is a strictly
increasing sequence{tn} of real numbers witht0 = 0 and limn tn = 1, such that limn K(tn) =
κ . We can (and do) assume that

∑
n

√
tn − tn−1 < ∞. (This can always be arranged by

passing to a subsequence; letn(k) be the smallest positive integern such thattn ≥ 1 − 2−k,
thentn(k)− tn(k−1) ≤ 2−(k−1).) Define a second increasing sequence of positive numbers{βn}
by their differences:β0 := 0 and

β2n − β2n−1 = β2n+1 − β2n = C
√
tn − tn−1 ,

where the constantC is chosen so that limn βn = 1. By Lemma (1.19) there is a non-negative
w ∈ D∩C0(E) such thatPm[w(X0) ≤ α, T{w>1} < ζ ] > 0 for someα ∈ ]0,1[. Sincem{x ∈
E ; w(x) = s} is non-zero for at most countably many values ofs > 0, we can adjustα andw
slightly (by multiplying both by a suitable constant) to ensure thatm{x ∈ E ; w(x) = 1} = 0
as well. Define relatively compact open setsB1, B2, . . . by Bn := {w > βn}. Let pn ∈ D
be the condenser potential defined bypn(x) := Px[TB2n

< TBc2n−1
], n = 1,2, . . . . Then

pn = 1 q.e. onB2n andpn = 0 q.e. onBc2n−1. Defineu(x) := ∑∞
n=1(tn − tn−1)pn(x).

Eachpn is quasi-continuous, and the series definingu converges uniformly, and henceu is
quasi-continuous. Nowpn is an element ofUB2n,B

c
2n−1

:= {v ∈ D; ṽ = 1 q.e. onB2n, ṽ = 0

q.e. onBc2n−1} of least energy; thus, if we set

wn := [(β2n − β2n−1)
−1(w − β2n−1)

+] ∧ 1 ∈ UB2n,B
c
2n−1

,

then

E(pn) ≤ E(wn) ≤ (β2n − β2n−1)
−2E(w) .

In view of (2.7) and the subsequent discussion,E(pj , pk) = 0 if j �= k. Therefore, writing
un = ∑n

k=1(tk − tk−1)pk, we have

E(un) =
n∑
k=1

(tk − tk−1)
2E(pk)

≤ E(w)
n∑
k=1

(tk − tk−1)
2(β2k − β2k−1)

−2

= E(w) · C−2
n∑
k=1

(tk − tk−1) ≤ E(w) · C−2.

In addition, becauseun vanishes q.e. outsideB1 and 0≤ un ≤ 1, we have‖un‖2
2 ≤ m(B1) ≤

β−1
1

∫
E
wdm < ∞. By the Banach-Saks theorem, the Cesàro means of some subsequence

of {un} converge inD; the limit must coincide with the pointwise limit of the{un}, namely
u. It follows thatu ∈ D. Notice that 0≤ u ≤ 1, u ≡ 1 on {w > 1}, andu = tn q.e. on
B2n \ B2n+1 ⊃ {x ∈ E ; β2n < w(x) < β2n+1}.
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If h : R → R is Borel measurable, then

ess lim sup
s↓t

h(s) := lim
δ↓0

ess sup
s∈]t,t+δ[

h(s) ,

where “ess sup” denotes essential supremum with respect to Lebesgue measure. The notions
ess lim infs↓t and ess lims↓t are defined analogously, as are their counterparts from the left. If
v ∈ D thent �→ ṽ(Xt (ω)) is continuous on[0, ζ(ω)[ for Pm-a.e.ω ∈ Ω . Also, Pm[ṽ(Xt ) �=
v(Xt )] = mPt (ṽ �= v) ≤ m(ṽ �= v) = 0. Consequently, by Fubini’s theorem,ṽ(Xt (ω)) =
v(Xt (ω)) for a.e.t ≥ 0, for Pm-a.e.ω ∈ Ω . Therefore,

(2.12) ṽ(Xt (ω)) = ess lim
s↑t v(Xs(ω)) = ess lim

s↓t v(Xs(ω)) , for all t ∈ ]0, ζ(ω)[ ,

for Pm-a.e.ω ∈ Ω . DefineP∗[ · ] := ∫
{w≤α} Px [ · ]m(dx), and letτ denote the hitting time

of {w > 1}. Observe that

Pm
[∫ ∞

0
1{w=1}(Xt )dt

]
=

∫ ∞

0
mPt (w = 1)dt ≤

∫ ∞

0
m(w = 1)dt = 0 .

This implies that

(2.13) P∗[there existsδ > 0 such thatw(Xt ) = 1 for all t ∈ ]τ − δ, τ [ ; τ < ζ ] = 0 .

Recall thatw andα were chosen so thatP∗[τ < ζ ] > 0, and clearlyP∗[τ = 0] = 0. Let
ω ∈ {X0 ≤ α} be a sample point such thatt �→ Xt(ω) is continuous and (2.12) holds with
v = K � u. Because of (2.13) we may suppose thatt �→ w(Xt(ω)) is not identically 1 in any
interval of the form]τ (ω) − δ, τ (ω)[. Thus, givenδ ∈ ]0, τ (ω)[, there existstδ ∈ ]τ (ω) −
δ, τ (ω)[ such thatw(Xtδ (ω)) < 1, which implies thatt �→ w(Xt (ω)) takes on every value
betweenw(Xtδ (ω)) and 1 during the time interval]τ (ω)−δ, τ (ω)[ becausew(Xτ(ω)(ω)) = 1
if τ (ω) < ζ(ω). Consequently, there is a positive integern0(ω, δ) such that for eachn ≥
n0(ω, δ), Xt(ω) ∈ {β2n < w < β2n+1} ⊂ B2n \ B2n+1 for somet ∈ ]τ (ω) − δ, τ (ω)[.
Becauset �→ Xt(ω) is continuous and{β2n < w < β2n+1} is open, we conclude that the
Lebesgue measure of{t ∈ ]τ (ω) − δ, τ (ω)[ ; Xt(ω) ∈ B2n \ B2n+1} is strictly positive for
eachn ≥ n0(ω, δ). Becauseu(x) = tn for q.e.x ∈ B2n \ B2n+1 we therefore have

ess inf
τ (ω)−δ<t<τ(ω)

K(u(Xt(ω))) ≤ inf
n≥n0(ω,δ)

K(tn) .

In view of (2.12) (which, in particular, guarantees the existence of ess limt↑τ K(u(Xt)) ), this
last display implies that

K̃ � u(Xτ ) = ess lim
t↑τ K(u(Xt)) ≤ lim

n
K(tn) = κ < K(1)

P∗-a.s. on the event{τ < ζ }. On the other hand, because{w > 1} is open, ifτ (ω) < ζ(ω)

then for everyδ > 0 the set{t ∈ ]τ (ω), τ (ω) + δ[ ;w(Xt(ω)) > 1} has positive Lebesgue
measure. Becauseu ≡ 1 on{w > 1} we therefore have

K̃ � u(Xτ ) = ess lim
t↓τ K(u(Xt )) = K(1)
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P∗-a.s. on the event{τ < ζ }. SinceP∗[τ < ζ ] > 0, the last two displays provide the desired
contradiction. �

LEMMA 2.14. K is absolutely continuous, andK ′ ∈ L2
loc(R).

PROOF. We begin by showing thatK is absolutely continuous on]0,1[ with K ′ ∈
L2

loc (]0,1[). For this it suffices to prove that there is a constantC such that

(2.15)

∣∣∣∣
∫ 1

0
K(s)ψ ′(s)ds

∣∣∣∣ ≤ C‖ψ‖2 , for all ψ ∈ C∞
0 (]0,1[) .

Fix ψ ∈ C∞
0 (]0,1[) and defineΨ (t) := ∫ t

0 ψ(s)ds. LetU andV be non-empty open rela-
tively compact subsets ofE such thatŪ ⊂ V . Let p be the condenser potential associated
with A = Ū andB = V c. From [6, (3.4)] we know that there are PCAFsCA andCB with CA

(resp.CB ) increasing only whenX is inA (resp. inB) such that the Fukushima decomposition
associated withp is

(2.16) p(Xt )− p(X0) = M
p
t +N

p
t = M

p
t − CAt + CBt , 0 ≤ t < ζ .

Indeed,CA (resp.CB ) is the PCAF with Revuz measure [13, Section 5.1]ν+ (resp.ν−),
whereν+ − ν− is the Hahn-Jordan decomposition of the signed smooth measure associated
with p. NowΨ � p ∈ D, and from (2.16) and Itô’s formula it follows that

(2.17) N
Ψ �p
t = 1

2

∫ t

0
ψ ′(p(Xs))d〈Mp〉s , t ≥ 0 .

By a result of Nakao [19, §3], (2.17) yields

(2.18) E(v, Ψ � p) = −1

2

∫
E

ṽ(x)ψ ′(p(x)) µ〈p〉(dx) ,

for any boundedv ∈ D. In particular, by (2.10),

E(K � p,Ψ � p) = −1

2

∫
E

K(p(x))ψ ′(p(x)) µ〈p〉(dx) = −C(A,B)
∫ 1

0
K(s)ψ ′(s)ds .

On the other hand,

|E(K � p,Ψ � p)| ≤ E(K � p)1/2E(Ψ � p)1/2
= E(K � p)1/2C(A,B)1/2‖ψ‖2 ,

where we have used (1.15) and (2.10) for the equality. Thus (2.15) holds withC = [E(K �p)/
C(A,B)]1/2.

Now notice thatJ (x) := K(|4x − 1| − 1) satisfies (2.2). By the preceding paragraph,J

is absolutely continuous on]0,1[ andJ ′ ∈ L2
loc (]0,1[). But the restriction ofJ to [1/4,3/4]

is x �→ K(4x − 2). It follows thatK is absolutely continuous on[−1,1] and thatK ′ ∈
L2[−1,1]. Finally, for b > 0, the preceding applies toKb(x) := K(bx), the upshot being
thatK is absolutely continuous on[−b, b] with K ′ ∈ L2[−b, b] �
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LEMMA 2.19. K ′ ∈ L∞
loc(R).

PROOF. Arguing as at the end of the proof of (2.14), it is enough to show thatK ′ ∈
L∞[0,1]. For this we need only to show that if 0≤ f ∈ L1[0,1], then∫ 1

0
[K ′(s)]2f (s)ds < ∞ .

Fix such anf and defineϕ : [0,1] → [0,1] by the formula

t = γ−1
∫ ϕ(t)

0

1

1 + f (s)
ds , 0 ≤ t ≤ 1 ,

whereγ := ∫ 1
0 [1 + f (s)]−1ds. Evidently,ϕ is a strictly increasing map of[0,1] onto itself,

andϕ is an absolutely continuous function withϕ(0) = 0 and

(2.20) ϕ′(t) = γ [1 + f (ϕ(t))]
for Lebesgue a.e.t ∈ [0,1]. Let the condenser potentialp be as in the proof of Lemma (2.14).
Observe thatϕ �p is bounded andm(ϕ �p �= 0) ≤ m(p > 0) < ∞; thereforeϕ �p ∈ L2(m).
By Proposition (1.16),ϕ � p ∈ D because

1

2

∫
E

[ϕ′ � p]2dµ〈p〉 = C(A,B)

∫ 1

0
[ϕ′(s)]2ds = γC(A,B)

∫ 1

0
[1 + f (t)]dt < ∞ .

ThereforeK � ϕ � p ∈ D, and hence∫ 1

0
[K ′(t)]2[1 + f (t)]dt = 1

γ

∫ 1

0
[K ′(ϕ(s)]2[ϕ′(s)]2ds

= 1

2γC(A,B)

∫
E

[K ′(ϕ(p(x)))]2[ϕ′(p(x))]2µ〈p〉(dx)

= 1

γC(A,B)
E(K � ϕ � p) < ∞ . �

LEMMA 2.21. If D contains an essentially unbounded element vanishing outside an
exit set, thenK ′ ∈ L∞(R).

PROOF. It suffices to show thatK ′ ∈ L∞[0,∞[, and for this it is enough to show that∫ ∞

0
[K ′(s)]2f (s)ds < ∞

for each non-negativef ∈ L1[0,∞[. Fix such anf . Let v be an essentially unbounded
element ofD such that{ṽ �= 0} is an exit set; substituting|v| for v if necessary, we can
and do assume thatv ≥ 0. Forn ∈ N define quasi closed setsAn := {ṽ ≥ 2n + 1} and
Bn := {ṽ ≤ 2n}, and letpn be the associated condenser potentialpAn,Bn . Becausev is
essentially unbounded, the condenser capacities

Cn := C(An,Bn)

are strictly positive and finite. Notice that

E(pn, pm) = 0 if m �= n .
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Because

Cn ≤ E((v − 2n)+ ∧ 1) = 1

2

∫
E

1[2n,2n+1](ṽ(x)) µ〈v〉(dx) → 0 as n → ∞ ,

we have
∑
n C

−1
n = ∞. Next observe that

x2 ≤
∫ x

0
[e−s + f (s)]ds ·

∫ x

0
[e−s + f (s)]−1ds ,

and hence the integrability ofs �→ e−s + f (s) implies that

lim
x→∞

∫ x

0
[e−s + f (s)]−1ds = ∞ .

Therefore a strictly increasing functionϕ : [0,∞[→ [0,∞[ is well-defined by

t =
∫ ϕ(t)

0

1

e−s + f (s)
ds , t ≥ 0 .

Clearly,ϕ′(s) = e−ϕ(s)+f (ϕ(s)) for Lebesgue a.e.s > 0,ϕ(0) = 0, and lims→∞ ϕ(s) = ∞.
Let us now check that the functionu defined by

u(x) := ϕ

( ∞∑
k=1

C−1
k pk(x)

)
, x ∈ E ,

is an element ofD. Proposition (1.16) implies that for eachn ∈ N ,

un(x) := ϕ

( n∑
k=1

C−1
k pk(x)

)
, x ∈ E ,

is an element ofD. Clearly,u is the pointwise limit of the sequence{un}. An application of
the Banach-Saks theorem (as in the proof of Lemma (2.11)) shows that the asserted inclusion
of u ∈ D will follow once we check that bothE(un) and‖un‖2 are bounded functions ofn.
Now, becausepk is 1 on the support ofpj for j > k, we haveµ〈pj ,pk〉 = 0 for j > k. Thus,

definingx0 := 0 andxk := C−1
1 + · · · + C−1

k for k ≥ 1, the key formula (2.10) yields that
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E(un) =
n∑
k=1

∫
E

[ϕ′(xk−1 + C−1
k pk(x))]2C−2

k µ〈pk〉(dx)

=
n∑
k=1

Ck

∫ 1

0
[ϕ′(xk−1 + C−1

k s)]2C−2
k ds

=
n∑
k=1

∫ 1

0
[ϕ′(xk−1 + C−1

k s)]2C−1
k ds

=
n∑
k=1

∫ C−1
k

0
[ϕ′(xk−1 + t)]2 dt

=
∫ xn

0
[ϕ′(z)]2 dz ≤

∫ ∞

0
[ϕ′(z)]2dz

=
∫ ∞

0
ϕ′(ϕ−1(t))dt

=
∫ ∞

0
[e−t + f (t)]dt < ∞ .

Becauseun vanishes outside the exit set{ṽ > 0}, we have (by [22, Theorem 3.1] or [10,
(1.19)] applied toX killed at the exit time from{ṽ > 0})

‖un‖2
2 ≤ c1E(un) ≤ c1

∫ ∞

0
[e−t + f (t)]dt < ∞ ,

wherec1 := supx∈E Px[T{ṽ=0}] < ∞. Thus,u ∈ D, henceK � u ∈ D. Computing as above,
we find, because limn→∞ xn = ∞,

∞ > E(K � u) =
∫ ∞

0
[K ′(t)]2[e−t + f (t)]dt ≥

∫ ∞

0
[K ′(t)]2f (t)dt ,

as desired. �
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