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Abstract. In the context of a strongly local Dirichlet space we show that if a function
mapping the real line to itself (and fixing the origin) operates by composition on the left to map
the Dirichlet space into itself, then the furaiis necessarily locally Lipschitz continuous.

If, in addition, the Dirichlet space contains unbounded elements, then the function must be
globally Lipschitz continuous. The proofs rely @ co-area formula for condenser potentials.

1. Introduction. Let (£,D) be a strongly local regular Dirichlet form as in [13].
Specifically, letE be a locally compact second countable metric spacepaadkadon mea-
sure onE with full support. The domai® of the Dirichlet form€ is a vector space contained
and dense i.2(m). The symmetric bilinear forn§ : D x D — R is non-negative definite,
and the augmented foré : (u, v) — E(u, v) + (u, v),, is a Hilbertian inner product ob.
(Here(u, v),, := [E uvdm is the inner product irL?(m); the associated norm js:||2.) The
form £ is closablein the sense that {z,, } is an&-Cauchy sequence with ligm|u, ||2 = 0, then
lim, E(u,, u,) = 0 as well. Furthermorg£, D) enjoys the following contraction property:
If K : R — R satisfies the conditions

(1D K@©0)=0

and

(1.2 |K(t) — K(@s)| < M|t —s| forall s,r eR,
then

(1.3) KoueD forall ueD,

and

(1.4) EKou,Kou)y <M?-Eu,u) forall ueD.

In the sequel we shall describe the property (1.3) by saying tKiadgerates orD”. Notice
that the elements @P are actually classes of functions equal a.e. with respect but that the
superposition operatian— K ou preserves:-classes. The modifier “regular” indicates that
D N Co(E) is £1-dense inD and uniformly dense i€o(E). (Here,Co(E) denotes the class
of real-valued continuous functions dahwith compact support.) Finally, “strongly local”
means that whenevarandv are elements db such that the measures m andv - m are of

2000Mathematics Subject Classification. Primary 31C25; Secondary 60J45, 46E35.



328 P. FITZSIMMONS

compact support andis constant on a neighborhood of the suppott ofz, then necessarily
E,v) =0.

Our goal in this paper is to examine the following questiork Ibperates oD, must it
be Lipschitz continuous, at least locally? This problem has been posed and solved by Marcus
and Mizel [17] in the context of Sobolev spad&s-?(£2) (1 < p < oo), where the bounded
Euclidean domain2 c R¢ is assumed to satisfy a cone condition. (The critical gase
d > 2, left open in [17], was treated by Bourdaud [5].) Their work was extended to general
Euclidean domains of finite mea® by Labutin [15]. (See [2] for a monograph treatment of
these and related questions.) The intersection of our context with that of these authors is the
casep = 2, corresponding to Brownian motion. They found thakibperates o 12(£2),
thenk is locally Lipschitz (i.e. K is absolutely continuous arid’ € L5 (R)); if, in addition,
Ww12(£2) contains essentially unbounded elements, tties L>°(R). We shall see that these
two conclusions remain valid for superpositions operating on the Dirichlet space of a general
diffusion process. (The second conclusion reggia mild secondary hypothesis in the general
case.)

Our methods are quite different from those used in the papers cited above and the con-
structions involved are less intricate. This simplification is due to a systematic use of con-
denser potentials, and to a related variant of the co-area formula that is of independent inter-
est. This formula, an explicit instance of tfenergy image density” formula of Bouleau and
Hirsch [4], was suggested by a calculation found in recent work of Fukushima and Ying [14].

Our arguments are largely probabilistic, and in the balance of this section we shall de-
scribe the probabilistic context in which we shall be working, and we shall review some
relevant facts. The precise statement of ourmmasult, and its proof, will occupy the next
section.

Associated with the Dirichlet form&, D) is a symmetric Markov proces¥ =
(2, F, Fi, 6, X;, PY), with symmetry measura. The process is a Hunt process; in par-
ticular, the transition semigroup &f, defined by

(1.5 P f(x) =P [f(Xn], t=0,

mapsbB(E) (the class of bounded real-valugdE)-measurable functions of) into itself.
Here B(E) denotes the class of Borel subsetszodndP*[Z] denotes the expectation of the
random variableZ with respect to the measuRe'. As noted already, the semigrogp;) is
m-symmetric:

(1.6) fs PiPm =P f, Pm, f.g€ pBE).

Because&, D) is strongly local X is adiffusion in the sense that

(i) The P™-completion(F;);>0 of the natural filtrationo {X; ;0 < s <}, > 0,
is quasi-left-continuous and the lifetime &f denoted;, is an(F;) predictable
stopping time;

(i) ¢+~ X,iscontinuous o0, ¢ [, P™-a.s.

HereP™[.] := fE P*[-1m(dx). Also, ¢, the lifetime ofX, is the time at whichX retires

to the cemetery state, which has been adjoined # (as the point at infinity ifE is not

(1.7)
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compact) to allow for the possible mass deféctg(x) < 1. By convention any function
(resp. measure) defined dh(resp.£) is extended to the cemetery stateby declaring its
value atA (resp.{A}) to be 0. Consequently, eve(s;)-stopping time i$*"" -predictable, and
every (F;)-martingale has continuous pathi¥’(-a.s.). See [21, 847]. As general references
on Markov processes, the reader can consult [3] and [21].

Let us now recall more about the specifics of the association bet¢@fedn) and X.
Because of (1.6),P;) restricted tdbB(E) N L?(m) extends uniquely to a strongly continuous
contraction semigroup of self-adjoint operatorsif(m). The Dirichlet form& is given by
the formula

(1.8) Eu,v) =limt Y, v— P,
tl0

and its domain is specified by

(1.9 D:={uce L?(m); supt ™ *(u, u — Pu)y < oo} .
t>0

We shall often writef (1) instead of€ (u, u).

REMARK 1.10. In the discussion at hand, there is nothing to be gained by working
in the more general context of quasi-regular Dirichlet forms, as developed in [16]. Indeed,
the main result of [7] asserts that every quasi-regular Dirichlet form is quasi-homeomorphic
to a regular Dirichlet form, and it is a simple matter to check that our hypotheses and our
conclusions are preserved by quasi-homeomorphisms.

Thehitting timeinf{r > 0; X, € B} of B € B(E) is denoted byl'z; the exit time from
B, namelyTpe, is denoted byt (B). An increasing sequendd,,} of Borel subsets oF is a
nest providedP™[lim,, t(B,) < ¢] = 0. The reader is referred to [16, Lemma IV. 4.5] for a
characterization of this notion in terms of the Dirichlet fofé D).

Each element € D admits a Borel measurabbe-modificationz such that +— i (X;)
is right continuous o0, oo [, P™-a.s.; becaus# is a diffusion, we then have the automatic
left continuity oft — &(X;) on]0, ¢[, P™-a.s. The function is quasi-continuous in the
sense that there is a n€sf,) of compact subsets @& such thaii|x, € C(K},) for everyn.

A Borel setN C E is said to bexceptional providedP™[t(E \ N) < ¢] = 0. It can be
shown thatV € B(E) is exceptional if and only if there is a nest of compddts} such that
N c ), K§. A statement or property depending ore E is said to hold quasi-everywhere
(g.e.) provided the set of points where it fails to hold is exceptional.

Givenu € D, we have Fukushima’s decomposition [13, Theorem 5.2.2]:

(1.11 i(X;) —iu(Xo) =M+ N;, forall t>0,P*-as. for g.ex € E,

whereM* and N" are continuous additive functionals (CAFs)Xf M* is a martingale such
that sup_qt~*P"[[M*]%] < oo, and lim_o¢~P™[[N*]?] = 0. This decomposition is
unique.

Foru € D we have€(u) = 0 if and only ifii(X;) = i (Xp) forallz > 0, P™-a.s. In
particular, if€ (1) = 0 thenkK ou € D for every Borel measurable functiokl : R — R such
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thatK o u € L?(m), as follows immediately from (1.9). For this reason we shall impose the
following (very mild) non-degeneracy condition, without which no conclusions can be drawn
about functions that operate @n:

(112 There exists € D such that (u) > 0.

If (1.12) were to fail thenn-a.e.x € E would be atrap, in the sense thd&*[X; = x for all
t>0]=1.

If u € D then the martingale CAB/* admits a quadratic variation proce§g"); i.e.,
(M") is a PCAF such thatM*)2 — (M") is a martingale oii0, [. The Revuz measure of
(M*) (the so-called energy measurefis the smooth measuye,) on E determined by

t
(113 Py (f) =1 J@O;—lpm[/o f(Xs)d(M”)s] f € pB(E).
The measure ) has finite total mass; indeed,

1
Eu,u) = EM“)(E), ueD.

Given two elementa andv of D, the quadratic covariatiotM*, M?) is a (signed) CAF of
X and, sincé M*, M) = (1/4)[(M"*TY) — (M“~)], we have

1
(1.19 Mu,v) = Z[,U«(LH»U) — Mu—v)]
and
1
(1.15 E(u,v) = Emu,v)(E), u,veD.

We close this section with two results that will be useful in the constructions of the next
section.

PrROPOSITION 1.16. Let F : R — R be an absolutely continuous function with
F() = 0. Givenu € D, if Fou € L?m)and F' o ii € L?(uy), then Fou € D
and

(1.17) dpirony = [F o i)djuy,) .

PrROOF Leté& denote the image afl/2)u(,y under the mapping +— iu(x). Thisis a
finite measure on the Borel subsetsRaf Moreover £ is absolutely continuous with respect
to Lebesgue measure ¢ by [4, Theorem 1.7.1.1]. Thus the derivativ€ < Lﬁ)C(R) is
uniquely determined up t&-null sets, and the hypothesls o i € Lz(uw)) (equivalently
F’ € L2(&)) is meaningful. Let) denote the standard Gaussian measur ofhené + 7 is
a regular Borel measure &, hence there is a sequer{gg} in Co(R) such thaty, — F’ in
L?(& + n); see [12, Proposition 7.9]. Defing, (1) := f(; on(s)ds fort € R. Evidently, F,
is globally Lipschitz continuous, so tha}, o u € D by the fundamental contraction property
of Dirichlet spaces. Moreover, becauBg € C'(R) we can apply [13, Theorem 3.2.2] to
deduce that

)
(1.18 A (Fouy = [on o i) d i)
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forall n € N. Consequently,

1 - -
(119 6<Fmou—Fnou)=5/ [wmou—conou]zdmm=/R[<om—¢n]2ds.
E

It follows from (1.19) and the choice dfy,} that the sequencgF,, o u} is £-Cauchy inD.
Also,
I

Fu(t) — F(1)] < / (on(s) — F/()lds

—ltl

2]
<2re’ 12 / lon(s) — F'()|(2m) Y2124

|7]
2
< V2w Plon — F'li 2 -

from which it follows that lim, F,,(r) = F(¢) for eacht € R. In particular,F, o u converges
pointwise toF o u asn — oo. Thus, F o u is an element of the extended Dirichlet space
D, see [13, page 35]. Sindéo u € L?(m) by hypothesis, we even haveo u € D by [13,
Theorem 1.5.2 (iii)].

Because€ (F, ou — F ou) — 0 asn — oo, the left side of (1.18) converges in total
variation norm tad i (r..), See [13, 5.2.12] and [9, Lemma 5.6]. On the other hand, the right
side of (1.18) converges (setwise)[tB’ o ﬁ]zduw), becaus&, cu — F'oiin L2(u<u>).

This proves (1.17). O

LEMMA 1.19. Thereisa non-negative w € D N Co(E) and constants 0 < o < B
such that
(1.20 P"[w(Xo) <o, Tiwspy <¢1>0.
PrROOF. If not, then by varyingr andg in (1.20) we see that
(1.22) P"[w(Xo) < Sug)w(Xs)] =0,
5>

for all non-negativav € D N Co(E). An application of the simple Markov property at each
positive rational time leads from (1.21) to

w(X;) > supw(Xy), forallrationalt >0, P"-a.e,

s>t

and the continuity ofv now yields
(1.22 t = w(X;) is non-increasingP™-a.e.,

for every non-negativev € D N Co(E). From (1.22) and Fukusima’s decomposition we
deduce that the martingal™ has paths of zero quadratic variation. That{i”) = 0, P"-

a.e., from which it follows thaE (w) = 0. The&-density of D N Co(E) in D now implies
that€(u) = O, first for all non-negativa € D and then for all: € D as we see by expressing

u € D as the difference of its positive and negative parts. This contradicts the non-degeneracy
hypothesis (1.12), proving the Lemma. O
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2. Theorem and proof. This section is devoted to the proof of the following theorem,
our main result. The setting is as detailed in section 1; in particular the hypothesis (1.12) is in
force.

By essentially unbounded we shall mean that(x € E; |u(x)| > t) > 0 foreachr > 0.

If D contains no essentially unbounded elements, fhen L°°(m), in which case it is easy
to see that every locally Lipschitz function operatesamA Borel setD C E is said to be an
exit set provided sup.; P*[t(D)] < oo.

THEOREM 2.1. Let K : R — R beBorel measurable, with K (0) = 0.
(@ If

(2.2) KoueD foral ueDNL®@m),

then K islocally Lipschitz continuous, in the sense that for each N € N there exists My €
10, oo[ such that

(2.3 K@) — K(s)| < My|t —s| forall s,t €[N, N].
Equivalently, K is absolutely continuous, and the a.e. defined derivative K’ is an element of
L5.(R).
(b) If
(2.4) KoueD foral ueD

and if D contains an essentially unbounded element vanishing outside an exit set, then K is
globally Lipschitz continuousin the sense that there exists M € ]0, oo[ such that

(2.5 |[K(t) — K(s)| < M|t —s| forall s,reR.

Equivalently, K is absolutely continuous and the a.e. defined derivative K’ is an element of
L*®°(R).

REMARK 2.6. By an argument found on pp. 503-504 of [11], it can be shown that if
there is a non-empty exceptional set (for exampleX ifs Brownian motion in a Euclidean
domain of dimensio@ > 2), then there is an essentially unbounded elemefit ednishing
outside an exit set. If there are no non-emptgeptional sets, then the transition measures of
X are absolutely continuous with respectitcand each point of is regular for itself. The
author does not know whether, in this latter case, the existence of an unbounded element of
D guarantees the existence of such an element vanishing outside an exit set. An illustrative
example of a process with no non-empty exceptional sets but with unbounded elements in its
Dirichlet space is the 3-dimensional Bessel procesfomo.

Condenser potentials play a key role in the proof of Theorem (2.1), and in preparation
we discuss some of their basic properties. Recall from [13, page 68] that a BoBlset
is quas closed if (and only if) there is a nedtF},} of closed subsets af such thatB N F,, is
a closed set for each € N. For example, it € D anda € R, then{x € E; ii(x) < a}is
quasi closed. Le#t andB be quasi closed Borel subsetsiosuch thatdA N B is exceptional.
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The condenser potential
p(x) = pa,p(x) :=P*[Ty < Tg]
is an excessive function of killed at time Ty; consequently is quasi-continuous. Notice
thatp(x) = 1forg.e.x € A andp(x) = 0 for g.e.x € B. If the convex set
U=Usp:={ueD; u=1qg.e.0nA,u =0q.e.onB}
is nonempty, then
E(p) =min{Ew); u € U}.
Unless the process killed at Tz is transient, there may be other element&/ @t which the
above minimum is attained. Evidently,is non-empty if and only ifp € D. See [8] and [20,

§2] for more details on these matters.
If p = pa.p € D, then there is a finite signed smooth measute v, g such that

(2.7) E(M,p)zfﬁdv, ueD.
E

Indeed, the Hahn-Jordan decomposition— v~ of v is such that both* andv~ are smooth
measures, and' is carried byA while v~ is carried byB. (See the discussion on pp. 75-76
of [6], and (2.15) below). Notice that

(2.8) C(A,B) :=E(p,p) = / pdv = v(A) = vH(E).
E

The following instance of the Bouleau-Kth “energy image density” theorem [4,
Theorem 1.7.1.1] is our main tool. This formula was suggested by a calculation in [14]. In
the context of Brownian motion, a different proof can be fashioned out of the co-area and
divergence formulas, as was shown to the author by Bruce Driver.

PROPOSITION 2.9. Fix A and B asabove, and assumethat p = p4 g liesinD. Then
for every Borel function ¢ : [0, 1] — [0, <],

2
PrRooOFE It suffices to prove (2.10) whep is continuous and real-valued. Define
G(y) := [§ g(t)dt. ThenG o p € D and, by (2.7) and (2.8),

1 1
(2.10 - /E 9(p))d(p)(dx) = C(A, B) /0 g(t)ds .

1
EGop,p) = / G o pdv = G(L)v(A) = / g(t)dt - C(A, B).
A 0

On the other hand, by the polarized form of (1.17),
1 1
EGop,p) = —/ W(Gop,p)(dx) = —/ g(p(x)) i (py(dx) . O
2 JE 2 JE
The proof of Theorem (2.1) will be accomplished through a series of lemmas. In the

remainder of this section we suppose thkat R — R is a Borel function withk (0) = 0,
and that (2.2) holds.

LEMMA 2.11. K iscontinuous.
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PROOF. Arguing by contradiction, let us suppose thatis not continuous. We may
assume that liminky K (s) < K(1); all other cases can be reduced to this case by suitable
linear transformations ok. Thus,x := liminf;41 K(1) < K (1), so that there is a strictly
increasing sequende,} of real numbers withg = 0 and lim, ¢, = 1, such that lim K (¢,,) =
k. We can (and do) assume that, /1, — 1,1 < oo. (This can always be arranged by
passing to a subsequence;i¢k) be the smallest positive integersuch that, > 1 — 2%,
thens, ) — thk—1) < 2~ (=D ) Define a second increasing sequence of positive nunipgys
by their differencesgp := 0 and

Bon — Ban—1 = Bon+1 — Bon = C\/ty — tn—1,

where the constant is chosen so that li;B, = 1. By Lemma (1.19) there is a non-negative
w € DNCo(E) such thaP™[w(Xo) < o, Tw>13 < {1 > 0forsomex €10, 1[. Sincem{x €
E ; w(x) = s} is non-zero for at most countably many values of 0, we can adjust andw
slightly (by multiplying both by a suitable constant) to ensure tht € £; w(x) =1} =0
as well. Define relatively compact open s@&g Bo, ... by B, := {w > B,}. Letp, € D
be the condenser potential defined py(x) = PX[TB—E < TBE},_l]' n=12.... Then
pn = 1q.e.0nBy, andp, = 0 q.e. onB;, _,. Defineu(x) := Z;’,"zl(t,, — th—1) pn(x).
Eachp, is quasi-continuous, and the series definingonverges uniformly, and heneeis
quasi-continuous. Now, is an element OMBT,,.,Bgl,l ={veD;v=1q.e.0nBy,, v =0
g.e.onB;, _,} of least energy; thus, if we set

wn = [(Bon — Bon—1) T — Pon-D)TIA L €U e

then

E(pn) < Ewy) < (B2a — Pou-1)"2Ew) .
In view of (2.7) and the subsequent discussi&p;, pr) = 0if j # k. Therefore, writing
up = Y p_1(tk — tx—1) px, we have

Eun) =Y (1 — t6-1)°E(px)

k=1

<Ew) Y ( — ti-1)*(Ba — P17

k=1

n
=Ew)-C72Y (e — 1) < Ew) - C2
k=1

In addition, because, vanishes g.e. outside; and 0< u,, < 1, we have1|un||§ <m(B1) <

/31‘1 [z wdm < oo. By the Banach-Saks theorem, the Cesaro means of some subsequence
of {u,} converge inD; the limit must coincide with the pointwise limit of thig:,,}, namely

u. It follows thatu € D. NoticethatO< u < 1,u = 1 on{w > 1}, andu = 1, g.e. on

B2y \ Boni1 D {x € E; Boy < w(x) < Bany1).
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If »: R — R is Borel measurable, then

esslimsup(s) := lim esssupi(s),
st 340 sz, 145
where “ess sup” denotes essential supremum with respect to Lebesgue measure. The notions
essliminf; and esslim,, are defined analogously, as are their counterparts from the left. If
v € D thent — v(X,(w)) is continuous o0, ¢ (w)[ for P"-a.e.w € £2. Also, P"[v(X;) #
v(X))] = mP(v # v) < m(v # v) = 0. Consequently, by Fubini's theore(X,(w)) =
v(X;(w)) fora.e.r > 0, forP™-a.e.w € £2. Therefore,

(2.12) 1( Xy (w)) = essTIimv(XS(a))) = essilimv(XS(a))), forall r €10, ¢(w)[,
st syt

for P"-a.e.w € 2. DefineP*[ -] := f{wfa} P¥[-1m(dx), and letr denote the hitting time
of {w > 1}. Observe that

o0 o o
p" I:/(; 1{u,:1}(X,)dt:| = /(; mPy(w = 1)dt < /(; m(w = 1dt =0.

This implies that
(213 P*[there exist$ > O such thaiw(X,) =1 forall r €]t —§,7[; 7 < ¢]=0.

Recall thatw anda were chosen so th&*[t < ¢] > 0, and clearlyP*[t = 0] = 0. Let
w € {Xo < a} be a sample point such that—> X;(w) is continuous and (2.12) holds with
v = K ou. Because of (2.13) we may suppose that w(X;(w)) is notidentically 1 in any
interval of the form]t(w) — §, t(w)[. Thus, givers € 10, t(w)[, there exists; € Jt(w) —
8, T(w)[ such thatw (X, (w)) < 1, which implies that — w(X;(w)) takes on every value
betweernw(X;, (w)) and 1 during the time intervdt (w) — 3§, t(w)[ becausev (X () (w)) =1
if (w) < ¢(w). Consequently, there is a positive integelw, §) such that for each >
no(w, 8), Xi(@) € {B2a < w < Poat1} C B2y \ Boata for somer € Jz(w) — 6, t(w)l.
Because — X;(w) is continuous andpBz, < w < B2,+1} is open, we conclude that the
Lebesgue measure ¢f € 1t(w) — 8, T(w)[; X;(w) € Bz, \ Ba.41} is strictly positive for
eachn > no(w, 8). Because:(x) = 1, for g.e.x € By, \ B2,+1 We therefore have
essinf  Ku(X;(w))) < inf K(,).

T(w)—8<t<7(w) n>no(w,d)
In view of (2.12) (which, in particular, guarantees the existence of esgdifi(u(X,)) ), this
last display implies that

Kou(Xs) = es%limK(u(Xt)) <limK(t) =« < K1)
T n
P*-a.s. on the ever{t < ¢}. On the other hand, becauge > 1} is open, ift(w) < ¢(w)

then for everys > O the set{r € Jt(w), t(w) + [ ; w(X;(w)) > 1} has positive Lebesgue
measure. Because= 1 on{w > 1} we therefore have

K ou(X,) = es%limK(u(X,)) =K()
T
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P*-a.s. on the everftr < ¢}. SinceP*[r < ¢] > 0, the last two displays provide the desired
contradiction. a

LEMMA 2.14. K isabsolutely continuous, and K’ € L2 (R).

PROOF. We begin by showing thak is absolutely continuous of®, 1[ with K’ €
L%C (10, 1]). For this it suffices to prove that there is a const@rsuch that

1
(2.15 ‘/ K@)y (s)ds| < Cllyl2, forally e C3°(10, 1]).
0

Fix ¥ € C3° (10, 1)) and definel (t) := fé ¥ (s)ds. LetU andV be non-empty open rela-
tively compact subsets df such that/ c V. Let p be the condenser potential associated
with A = U andB = V¢. From [6, (3.4)] we know that there are PCAE$ andC? with C4
(resp.C®) increasing only whel is in A (resp. inB) such that the Fukushima decomposition
associated withp is

(2.16) p(X))—pXo) =M + N/ =mf —cr+cB, 0<t<c¢.

Indeed,C# (resp.C?) is the PCAF with Revuz measure [13, Section 5:1] (resp.v™),
wherevt — v~ is the Hahn-Jordan decomposition of the signed smooth measure associated
with p. Now ¥ o p € D, and from (2.16) and It6’s formula it follows that

o 1 ! ’
(217) NP = 5/0 ¥ (p(X))d(MP),, 1= 0.

By a result of Nakao [19, §3], (2.17) yields

1
2.18) Ew.W o p) = /E BV (p()) 1) (@) |

for any bounded € D. In particular, by (2.10),

1 1
EK o p W o p) = —E/EK(p(X))w’(p(x))mp)(dx) _ —C<A,B>/O K(s)y'(s)ds
On the other hand,

IEK o p,W o p)| < EK o p)Y2EW o p)Y/2
=E(K o pY2C(A, BY?||y |2,

where we have used (1.15) and (2.10) for the equality. Thus (2.15) hold§w4HE (K o p)/
C(A, B)|Y2.

Now notice that/ (x) := K (]4x — 1| — 1) satisfies (2.2). By the preceding paragraph,
is absolutely continuous 0@, 1[ andJ’ € Lﬁ)c (10, 1]). But the restriction of/ to [1/4, 3/4]
is x — K(4x — 2). It follows that K is absolutely continuous op-1, 1] and thatK’ €
L?[—1, 1]. Finally, forb > 0, the preceding applies %, (x) := K (bx), the upshot being
thatK is absolutely continuous dr-b, b] with K’ € L2[—b, b] O
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LEMMA 2.19. K’ e LS. (R).

PrROOF Arguing as at the end of the proof of (2.14), it is enough to show kHat
L°°[0, 1]. For this we need only to show that if© f € L1[0, 1], then

1
f [K'()12f(s)ds < 00.
0

Fix such anf and definey : [0, 1] — [0, 1] by the formula
p(1) 1
-1
t = ds s 0 <t = 17
Y /o 1+ /6
wherey = fol[l + f(s)]"ds. Evidently,¢ is a strictly increasing map ¢0, 1] onto itself,
andg is an absolutely continuous function wigti0) = 0 and
(2.20) @'(1) = y[1+ f(p)]

for Lebesgue a.e.< [0, 1]. Let the condenser potentialbe as in the proof of Lemma (2.14).
Observe thap o p is bounded angh (¢ o p # 0) < m(p > 0) < oo; thereforepo p € L2(m).
By Proposition (1.16)p o p € D because

2
Thereforek o ¢ o p € D, and hence

1 1 1
= /E [¢ o plPdp(py = C(A, B) /0 [¢/(5)]°ds = yC(A, B) /0 [1+ f(0))dt < o0.

1 1 1
/0 [KOFIL+ fOldr =~ /0 (K (o) Pl ()12ds

_é l 2r 1 2
Ty /E (K (9 (p ()P0 (PN ) (dx)

1
~ yC(A,B)
LEMMA 2.21. If D contains an essentially unbounded element vanishing outside an
exit set, then K’ € L*°(R).

E(Kogpop) <oo. a

PrROOF. It suffices to show thak’ € L°°[0, oo[, and for this it is enough to show that
o0
/ [K'()1? f (s)ds < o0
0

for each non-negativg e L'[0, oo[. Fix such anf. Letv be an essentially unbounded
element ofD such that{t # 0} is an exit set; substitutingy| for v if necessary, we can
and do assume that > 0. Forn € N define quasi closed sets, := {t > 2n + 1} and
B, := {v < 2n}, and letp, be the associated condenser potentig| z,. Becausev is
essentially unbounded, the condenser capacities

Cp:=C(An, By)
are strictly positive and finite. Notice that
EPpn,pm) =0 if m#n.
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Because
+ 1 =
Ch <&E((w—=2n)" A1 = > 120, 20+1)(V(X)) vy (dx) — 0 asn — oo,
E

we haved", C, 1 = co. Next observe that

@< [T ponds- [1e 4 portas,
0 0
and hence the integrability ofr— ¢ + f(s) implies that

/x[é’*s + ()] s = 00.
0

lim
X—>00

Therefore a strictly increasing functign: [0, oo[— [0, oo[ is well-defined by

(1) 1
t= / ——ds, t>0.
o e+ f()

Clearly,¢’(s) = e %) + f(¢(s)) for Lebesgue a.8.> 0,¢(0) = 0, and lim_, o, ¢(s) = o0o.
Let us now check that the functiondefined by

ulx) = ¢<2Cklpk(x)>, xeFE,

k=1

is an element oD. Proposition (1.16) implies that for eashe N,

tn (x) 1= (ﬂ(zcklpk(x)) . x€E,
k=1

is an element oD. Clearly,u is the pointwise limit of the sequenge, }. An application of
the Banach-Saks theorem (as in the proof ahibga (2.11)) shows that the asserted inclusion
of u € D will follow once we check that botl («,,) and|ju,|2 are bounded functions af
Now, becausgy is 1 on the support op; for j > k, we havew,; ) = 0 for j > k. Thus,

definingxo := 0 andx; := C; 1+ --- 4+ C L for k > 1, the key formula (2.10) yields that
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n
g =Y [ 10/ Gus+ G PC 2 g @)
k=1"E
n 1
=Y G / [¢/ (k-1 + C 29)1°C 2ds
k=1 70

n 1
=> / [¢ (xi—1 + CLo)12C s
k=170

-1
Ci

= Z/ [(p/(xk,1+t)]2dt
k=170

- / "l @Rz < / o' (2)1%d=
0 0

=/ ¢ (9~ L(0))dr
0

= /oo[ff’ + f(H)]dt < o0.
0

Becauseu,, vanishes outside the exit sgit > 0}, we have (by [22, Theorem 3.1] or [10,
(1.19)] applied taX killed at the exit time from{v > 0})

o0
lunll3 < c1€un) < c1 / e + f(t)di < o0,
0

wherecy := sup.cx P*[T(5=0;] < oo. Thus,u € D, hencek o u € D. Computing as above,
we find, because ligy, o x, = 00,

00> E(Kou) = /OO[K/(t)]Z[e*' + f(O))dt = /OO[K’(t)]zf(t)dt,
0 0

as desired. O
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