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Abstract. We study smooth foliations of compact manifolds where the set of noncom-
pact leaves has zero Lebesgue measure (and is nonempty). We review a simple example due
to Reeb and provide two new examples that show more complicated behavior that may occur.

1. Introduction. Typically, if a foliation has one noncompact leaf, it has many non-
compact leaves. In [1], Hurder inquired about how small the set of noncompact leaves in a
foliation could be, and asked what features a foliation with few compact leaves would have.
A foliation is calledcompact if all leaves are compact, andessentially compact if the set of
noncompact leaves has zero Lebesgue measure. Here we consider the qualitative behaviour
of essentially compact foliations that are not compact.

An example of an essentially compact foliation is in Reeb’s thesis [4]. Reeb included the
example to show that the global Reeb stability theorem for codimension one foliations could
not be extended to higher codimensions. In Reeb’s example, every leaf is proper and the
closure of the set of noncompact leaves forms a compact submanifold. Vogt has generalized
Reeb’s construction in [3].

We offer some new examples, showing the following

THEOREM 1.1. There exists a C∞ essentially compact foliation of a compact mani-
fold so that the closure of the set of noncompact leaves is not a submanifold. Also, there
exists a C∞ essentially compact foliation of a compact manifold so that there are nonproper
noncompact leaves.

We give the first example in Section 3 and the second example in Section 4.
In all of these examples, the set of noncompact leaves is uncountable. Vogt has shown

that this must be the case for codimension two foliations with at least one noncompact leaf,
and for oriented foliations of arbitrary codimension satisfying an additional cohomological
condition [3].

It would be interesting to find a single general construction that yielded many examples
of essentially compact foliations as well as that gave one or more of the known examples as
special cases.
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2. Reeb’s example. Let Mn be the productSn × S1 × S1. We will view Sn as the
submanifold

∑n+1
i=1 x2

i = 1 of Rn+1. For a pointp in Mn, let x1(p) denote the projection to
thex1 coordinate inRn+1. Let φ(p) andθ(p) denote the projections ofp to the first and the
secondS1 factors, respectively.

Define the differential forms

ω1 = dθ ,

ω2 = [(1 − sinθ)2 + x2
1 ] dφ + sinθ dx1 .

It may be checked that theω1 andω2 are nondegenerate and everywhere independent. Now
define a distribution onMn by ω1 = 0 andω2 = 0. This system is integrable and hence
yields a foliationFn of Mn.

Note that the submanifoldsNc defined byθ = c, wherec is some constant, are saturated
by leaves ofFn. As long as sinθ is not equal to one, all leaves ofFn in Nc are compact. They
are given by the equations

φ − φ0 = − sinθ

1 − sinθ
arctan

(
x1

1 − sinθ

)
when sinθ �= 0 ,

φ = φ0 when sinθ = 0 .

When sinθ is equal to one, all leaves ofFn in Nπ/2 except two are noncompact. The leaves
in Nπ/2 are given by

φ − φ0 = 1

x1
when x1 �= 0 ,

x1 = 0 .

The noncompact leaves inNπ/2 are all proper and have the submanifoldNπ/2 as their closure.
We can view this foliation as arising from the one-parameter family of foliations of the

submanifoldsNc, where the family is indexed byθ = c in S1. Every foliation in the family
is a compact foliation, except the special foliation of the leafNπ/2.

3. Second example. In this section, we describe an example of a dimension one
foliation of a compact three-dimensional manifold so that the set of noncompact leaves is
nonempty with Lebesgue measure zero. In this example, the closure of the set of noncompact
leaves does not form a submanifold. The foliation is not a one-parameter family of foliations
as is Reeb’s example, although it is obtained from a one-parameter family of foliations of
[−1, 1] × R by identifying the boundary with itself and adding a foliated[−1, 1] × S1 as a
limit leaf to make the resulting manifold compact.

3.1. The basic idea. LetM be the manifold with boundary given by[−1, 1] × S1 ×
[−1, 1]. We will construct a one-dimensional foliation ofM and then identify the bound-
ary of M with itself to get a foliationF of a compact three-dimensional manifold without
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boundary. Let(r, θ, z) denote the coordinates onM. We regardM as a thickening of the
two-dimensional cylinder

R0 = {(0, θ, z)| θ ∈ S1, z ∈ [−1, 1]} .

We will eventually identify the top

T = {(r, θ, 1)| r ∈ [−1, 1], θ ∈ S1}
with the bottom

B = {(r, θ,−1)| r ∈ [−1, 1], θ ∈ S1} .

Also, the inner side

R−1 = {(−1, θ, z)| θ ∈ S1, z ∈ [−1, 1]}
will be identified with the outer side

R1 = {(1, θ, z)| θ ∈ S1, z ∈ [−1, 1]} .

Let ρ : R → S1 be the map takingx in R to x mod 2π in S1. We first take

L0
1 = {(0, ρ(φ), tanh(φ + π))| φ ∈ R}

as a single proper noncompact leaf forF . Its closure contains the union of the circles

Z1 = {(0, t, 1)| t ∈ R} = T ∩ R0

and

Z−1 = {(0, t,−1)| t ∈ R} = B ∩ R0 ,

so we add these as leaves as well.
For eachε in (−1, 1], define a submanifoldSε by

Sε = {(r, ρ(φ), tanh(φ + επ))| r ∈ [−1, 1], φ ∈ R} .

EachSε is a long spiraling strip homeomorphic in the submanifold topology toR × [−1, 1].
The manifoldM coincides with the union of the topT , the bottomB and all of the submani-
foldsSε.

The noncompact leafL0
1 is contained in the submanifoldS1. This submanifold will be

saturated by leaves of the foliation. For allε in (−1, 1), the submanifoldSε is saturated
by leaves of the foliation. As|ε| gets close to one, the angle at which the leaves pierce the
cylinderR0 should approach zero. Both the topT and bottomB will also be saturated sets
for the foliation.

Lastly, we identify the boundary ofM with itself in such a way that the foliation be-
comes a foliation of the resulting space. The resulting manifold will be a compact, nonori-
entable three-dimensional manifold that is doubly covered by the three torus.

3.2. Explicit description. In this section we elaborate and formalize the description
just given.

Let

M′ = M \ (B ∪ T ∪ S1)
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be the complement ofM and the union of the top, the bottom, and the two-dimensional
spiraling submanifold which contains the proper leafL0

1.

After removingB∪T ∪S1 fromM, a topological cube remains. We parametrize it with
the coordinates(r, φ, ε) as

M′ = {(r, φ, tanh(φ + επ))| r ∈ [−1, 1], ε ∈ (−1, 1), φ ∈ R} .

The use ofr, φ andε is consistent with the previous use. Note that

∂

∂φ
= ∂

∂θ
+ (1 − z2)

∂

∂z
,

so that the vector field∂/∂φ may be extended smoothly to all ofM. Note also that

∂

∂ε
= π(1 − z2)

∂

∂z
.

First we define a vector fieldF0 on M. Let f be aC∞ function defined on the real
numbersR such that (i)f is even, (ii)f (0) = 0, (iii) f increases fromr = 0 to r = 1/2, (iv)
f (1/2) = 1, (v) f decreases fromr = 1/2 to r = 1, and (vi)f ≡ 0 for all r with |r| ≥ 1.

We defineF0 onM by

F0(r, θ, z) = f (r)
∂

∂r
+ ∂

∂φ
.

The vector fieldF0 is tangential to the topT , the bottomB, the cylinderR0 and each
submanifoldSε. Let F0 denote the foliation ofM integral to the vector fieldF0.

The foliationF0 is tangential to the sidesR−1 andR1, and we may turbulize it within
distance 1/4 from the sides to obtain a foliationF1 which is perpendicular to the boundary
∂M along the sides and tangential to∂M at the top and bottom. Letp be aC∞ bump
function such that (i)p is even, (ii)p is identically zero for|r| ≤ 3/4, (iii) p increases for
3/4 < r < 1, and (iv)p is identically one for|r| ≥ 1. Define a new vector fieldF1 by

F1(r, φ, ε) = (1 − p(r))F0 + p(r)

[
cos

(
p(r)π

2

)
∂

∂φ
+ sin

(
p(r)π

2

)
∂

∂r

]
.

Note thatF1 equalsF0 when|r| ≤ 3/4 and isC∞ tangent to∂/∂r at the sidesR−1 andR1

of M. The vectors∂/∂φ and∂/∂r are tangential to the submanifoldsSε, so that the foliation
F1 integral toF1 is also tangential toSε for all ε.

We now define aC∞ bump functionh to use in defining a perturbationF of F1. First we
must define some otherC∞ bump functions. Lets be aC∞ bump function defined onR such
that (i) s is even, (ii)s is identically zero forx with |x| ≥ 1, (iii) s is increasing fromx = −1
to x = 0, and (iv)s(0) = 1/2. Let

G = {(r, ε)| |r| ≤ s(ε)} .

Define aC∞ functiong with domain[−1, 1] × [−1, 1] whose support isG such that (i)g is
even with respect tor andε, (ii) g(0, 0) = 1, and (iii)g decreases on radial paths from(0, 0)
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to the boundary ofG. We defineh by

h(r, φ, ε) =


e−φ2

g(rφ2 , ε) on M′ ,
0 on M \ M′ .

In the next section, we will show thath is smooth onM. The supportH of h is the closure in
M of the set

{(r, φ, ε) | |r| ≤ s(ε)/φ2} .

The interior of this set is an open neighborhood ofR0 \ L0
1 in M \ M′. As |z| goes to one,

ther coordinates of points inH approach zero. The intersection ofH with M \ M′ is equal
to the union ofL1

0, Z1 andZ−1.

We define a new vector fieldF as a perturbation ofF1 by

F (r, φ, ε) = F1 + h(r, φ, ε)
∂

∂r
.

LetF be the foliation integral toF . The vector fieldF is tangential toSε for all ε, so thatSε

is saturated by leaves ofF for all ε.
Identify the boundary ofM with itself according to the equivalence relation

(r, θ, z) ∼ (−r,−θ,−z) .

Note that the boundary of the submanifoldSε is identified with the boundary ofS−ε, since

(1, φ, tanh(φ + επ)) ∼ (−1,−φ, tanh(−φ − επ)) ,

and the topT and bottomB are identified according to the relation

(r, θ, 1) ∼ (−r,−θ,−1) .

The vector fieldF has appropriate symmetry so that the distribution it spans is mapped to
itself by the identifications.

3.3. Properties of the example. In this section, we demonstrate that the foliationF is
an example of the first type in Theorem 1.1. First we show the symmetry of the foliation.

LEMMA 3.1. Suppose that the identifications of the boundary have not yet been made.
Suppose the leaf Lε of F is contained in Sε. Then it has boundary points

(−1, a, tanh(a + επ)) and (1, b, tanh(b + επ)) ,

for some real numbers a and b. In addition, there is another leaf L−−ε of F contained in S−ε

which has boundary points

(−1,−b, tanh(−b − επ)) and (1,−a, tanh(−a − επ)) .

PROOF. The vector fieldF has the property that

F (r, φ, ε) = F (−r,−φ,−ε) .



322 T. PAYNE

Consider the restriction ofF to Sε. The coefficient of∂/∂φ in F is always positive when
|r| < 1, and hence any leafLε in Sε may be written as a graph

Lε = {(r(φ), φ, tanh(φ + επ))| φ ∈ [a, b]} .(3.1)

The graph is over a compact interval because the coefficient of∂/∂r in F is positive for all
points inM′.

By the symmetry ofF , there is another leafL−−ε contained inS−ε which may be written
as

L−−ε = {(−r(φ),−φ, tanh(−φ − επ))| φ ∈ [a, b]} .

The boundary points ofLε are

(−1, a, tanh(a + επ)) and (1, b, tanh(b + επ)) ,

and the boundary points ofL−−ε are

(−1,−b, tanh(−b − επ)) and (1,−a, tanh(−a − επ)) ,

proving the lemma. �

Next we show that the foliation is essentially compact.

LEMMA 3.2. The union of noncompact leaves of F forms a set of Lebesgue measure
zero.

PROOF. The saturated open setM′ has full measure. We will show that all of the leaves
of F contained inM′ are compact. For any submanifoldSε, whereε ∈ (−1, 1), by Lemma
3.1, every leaf ofF in Sε is homeomorphic to a closed interval, with one boundary component
with r = −1 and one boundary component withr = 1.

After boundary points are identified, the boundary points of the leafLε of Sε are iden-
tified with those of the leafL−−ε of S−ε so that the union of the two leaves forms a compact
leaf of the final foliation.

Suppose the leavesLε andL−−ε are as in Lemma 3.1. Consider the leafLε after identifi-
cations of the boundary are made. The boundary point(1, b, tanh(b + επ)) is identified with
the point

(−1,−b,− tanh(b + επ)) = (−1,−b, tanh(−b − επ)) ,

a boundary point of the leafL−−ε contained inS−ε. The other boundary point(1,−a,

tanh(−a − επ)) of L−−ε is identified with

(−1, a,− tanh(−a − επ)) = (−1, a, tanh(a + επ)) ,

which is the second boundary component of the original leafLε.

In the case that the leafL goes through the point(0, 0, 0), the two boundary points ofL
are identified, and henceL alone becomes a compact leaf. �

The next lemma describes the set of noncompact leaves.
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LEMMA 3.3. The closure of the set of noncompact leaves is nonempty, has Lebesgue
measure zero and is not a submanifold. There is an uncountable number of noncompact
leaves.

PROOF. The closure of the set of noncompact leaves isM \ M′, which is clearly not
an embedded submanifold. The foliationF agrees with the foliationF1 on the setM \ M′,
which is a saturated closed set for both foliations. All leaves of the foliationF1 contained in
M\M′ are noncompact except forL0

1, the circlesZ1 andZ−1, and the four circular boundary
components ofT andB. �

Before demonstrating that the foliation is smooth, we compute partial derivatives of the
functionh.

LEMMA 3.4. Suppose that m,n and p are nonnegative integers. For a point (r, φ, ε)

in M′, the quantity
∂m+n+ph

∂zmrnφp
(r, φ, ε)

is the sum of terms of the form

C
zg

(1 − z2)h
e−φ2

φirj ∂k+lg
∂εk∂rl

(φ2r, ε) ,(3.2)

where C is a constant and g, h, i, j, k and l are nonnegative integers.

PROOF. First we assume thatm = 0. From the definition ofh, the result clearly holds
if n = p = 0. A short calculation shows that

∂h

∂r
(r, φ, ε) = φ2e−φ2 ∂g

∂r
(φ2r, ε) , and

∂h

∂φ
(r, φ, ε) = 2φe−φ2

(
− g(φ2r, ε) + r

∂g
∂r

(φ2r, ε)

)
,

demonstrating the claim ifm = 0 andn + p = 1.

If we differentiateh with respect toφ or r again, we will only introduce polynomialφ
terms,r terms and higher order partial derivatives ofg. Thus, the higher order derivatives of
h with respect tor andφ are given by the sum of terms of the form

Ce−φ2
φirj ∂k+lg

∂εk∂rl
(φ2r, ε) ,(3.3)

whereC is a constant andi, j, k andl are nonnegative integers. Thus the lemma holds when
m = 0.

Now we assume thatm > 0. We obtain the derivative by first differentiating with respect
to r andφ to get a sum of terms of the form of expression (3.3). Using the fact that∂/∂ε =
π(1 − z2)∂/∂z, it is easily seen that the partial derivative of such a term with respect toz is
given by

∂

∂z

[
Ce−φ2

φirj ∂k+lg
∂εk∂rl

(φ2r, ε)

]
= 1

π(1 − z2)
Ce−φ2

φirj ∂k+l+1g
∂εk+1∂rn

(φ2r, ε) .
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Thus the lemma holds whenm = 1.

If we differentiate with respect toz again, using the product rule we get a sum of terms
of the appropriate form. Consequently, the lemma holds for arbitrarym. �

We will use the following lemma from Calculus to show that the functionh is smooth.
The proof is elementary, and so we omit it.

LEMMA 3.5. Let h and i be nonnegative integers, and let z = tanh(φ + επ). Then

lim|z|→1

e−φ2
φi

(1 − z2)h
= 0 .

The vector fieldF1 is clearlyC∞. To show thatF is C∞, it suffices to show that the
functionh is C∞.

LEMMA 3.6. The function h is C∞.

PROOF. Let γ be a path in the supportH of h such that the pointsγ (t) are inM′ for t

in [0, t0), and the pointγ (t0) is in M \ M′. We will show that for all nonnegativem,n and
p,

lim
t→t0

∂m+n+ph

∂zm∂rn∂φp

∣∣∣∣
γ (t)

= 0 .

The functionh is defined to be equal to zero onM\M′, and hence this will prove the lemma.
Because the intersection ofH andM \ M′ equalsL0

1 ∪ Z1 ∪ Z−1, we are concerned
with two cases: the case thatγ (t0) is in L0

1, and the case thatγ (t0) is in Z1 ∪ Z−1.

Case 1. The limiting pointγ (t0) is in L0
1.

Thez coordinate ofγ (t0) is between−1 and 1, so that there is some numberc in [0, t0)

such that for all pointsγ (t) with t in [c, t0), the quantity

C
zg

(1 − z2)h
e−φ2

φirj

is bounded. Form,n ≥ 0, the quantity

∂k+lg
∂εk∂rl

(rφ2, ε)|γ (t)

approaches zero ast goes tot0 and(rφ2, ε) approaches the boundary ofG. Thus, a term of
the form (3.2) goes to zero, and hence all partial derivatives ofh go to zero ast goes tot0.

Case 2. The limiting pointγ (t0) is in Z1 ∪ Z−1.

The quantity

Czgrj ∂k+lg
∂εk∂rl

is bounded overM.

As t approachest0, the absolute value of thez-coordinate ofγ (t) approaches 1. Applying
Lemma 3.5, we see that forγ (t), a term of the form shown in expression (3.2) goes to zero as
t approachest0. Hence all partial derivatives ofh go to zero ast approachest0. �
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We have shown thatF is a C∞ foliation such that the set of noncompact leaves is
nonempty, not a submanifold, and of Lebesgue measure zero.

We may unite this example with Reeb’s by viewing them in the following way. The
manifoldMn in Reeb’s example is foliated by the manifoldsNθ . This is a proper foliation,
and each leafNθ is saturated by leaves of the original foliation. For all leavesNθ except one,
the restriction of the original foliation ofNθ is a compact foliation. In the second example,
we get a two-dimensional foliationFε of M from the submanifoldsSε andB after boundary
identifications. The foliationFε of M is a proper foliation, with each leaf forFε saturated by
leaves of the original foliationF . For all leavesLε of Fε except those coming fromB andS1,

the restriction of the foliationF toLε is a compact foliation. So, to generalize the construction
of the second example, we would want to find a proper foliation that is saturated by leaves of
a foliation of higher codimension so that the restricted foliations are almost always compact
foliations.

4. A variation of an example of Sullivan. In the two examples described so far, all
leaves of the foliations are proper. By making a small alteration to Sullivan’s counterexample
to the periodic orbit conjecture [2], we construct an example of a foliation with nonproper
leaves such that the set of noncompact leaves has measure zero, demonstrating the second
part of Theorem 1.1.

Let G be the group of matrices of the form
1 x y

0 1 z

0 0 1


 ,

wherex, y and z are real numbers. LetΓ be the subgroup ofG consisting of elements
with integer entries. The left-invariant forms onG are spanned by the elementsdx, dy and
η = dz − xdy.

LetM equal the productG/Γ × S1 × S1. Let α andβ be the coordinates in the first and
the secondS1 factors, respectively. Define the vector fieldY onG/Γ by

dx(Y ) = (sin(2β)) cosα ,

dy(Y ) = −(sin(2β)) sinα + 2 cos2 β cosα ,

η(Y ) = cos2 β , dα(Y ) = 2 sin2 β , dβ(Y ) = 0 .

Note that integral curves saturate the submanifoldsβ = c, wherec is constant, so as in Reeb’s
example, we will get a one-parameter family of foliations indexed byβ.

Then, whenβ �= 0 andβ �= π, integral curves ofY satisfy

α = λt + α0 ,

x = (cotβ)[sin(λt + α0) − sinα0] + x0 ,

y = (cotβ)[cos(λt + α0) − cosα0] + cot2 β sin(λt + α0) + y0 ,∫ 2π/λ

0
dz(Y ) =

∫ 2π/λ

0
η(Y ) +

∫ 2π/λ

0
xdy(Y ) = 0 ,
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whereλ = 2 sin2 β. So, whenβ is not equal to 0 orπ, all leaves are compact.
Whenβ equals 0 orπ, we obtain

dx(Y ) = 0 , dy(Y ) = 2 cosα , η(Y ) = 1 , dα(Y ) = 0 , dβ(Y ) = 0 .

Solutions are given by

x = x0 , y = (2 cosα0)t + y0 , z = (1 + 2x0 cosα0)t + z0 ,

α = α0 , β = β0 .

When the ratio of 2 cosα0 to 1+ 2x0 cosα0 is irrational, the leaf is noncompact and dense in
the submanifold given by

x = x0 , α = α0 , β = β0 ,

and hence is nonproper. When the ratio is rational, all leaves are compact.
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