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Abstract. We classify semi-Riemannian submersions with connected totally geodesic
fibres from a real pseudo-hyperbolic space onto a semi-Riemannian manifold under the as-
sumption that the dimension of the fibres is less than or equal to three. Also, we obtain the
classification of semi-Riemannian submersions with connected complex totally geodesic fi-
bres from a complex pseudo-hyperbolic space onto a semi-Riemannian manifold under the
assumption that the dimension of the fibres is less than or equal to two. We prove that there
are no semi-Riemannian submersions with connected quaternionic fibres from a quaternionic
pseudo-hyperbolic space onto a Riemannian manifold.

1. Introduction and main results. Riemannian submersions, introduced by O’Neill
[One1] and Gray [Gra], have been used by many authors to construct specific Riemannian
metrics. A systematic exposition can be found in Besse’s book [Bes]. In this paper, we obtain
classification results for semi-Riemannian submersions with totally geodesic fibres.

We first recall briefly some related work on the classification problem of semi-Rieman-
nian submersions. Escobales [Esc1, Esc2] and Ranjan [Ran1] classified Riemannian submer-
sions with connected totally geodesic fibres from ann-sphereSn, and with connected com-
plex totally geodesic fibres from a complex projectiven-spaceCPn, respectively. Ucci [Ucc]
showed that there are no Riemannian submersions with fibresCP 3 from the complex projec-
tive spaceCP 7 ontoS8(4), and with fibresHP 1 from the quaternionic projective spaceHP 3

ontoS8(4). In [Ran2], Ranjan obtained a classification theorem for Riemannian submersions
with connected totally geodesic fibres from a compact simple Lie group. Gromoll and Grove
obtained in [G-G1] that, up to equivalence, the only Riemannian submersions of spheres (with
connected fibres) are the Hopf fibrations, except possibly for fibrations of the 15-sphere by
homotopy 7-spheres. This classification was invoked in the proof of the Diameter Rigidity
Theorem (see [G-G2]) and of the Radius Rigidity Theorem (see [Wil]). Using an approach
different from Gromoll and Grove [G-G1], Wilking [Wilk] proved that a Riemannian sub-
mersionπ : Sm → Bb is metrically equivalent to the Hopf fibration for(m, b) = (15, 8)

and obtained an improved version of the Diameter Rigidity Theorem as a consequence of his
classification theorem.
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In comparison, there are few classification results for semi-Riemannian submersions, and
the consequences seem to be at least as important as those for Riemannian submersions. In
[Mag], Magid proved that the only semi-Riemannian submersions with totally geodesic fibres
from an anti-de Sitter space onto a Riemannian manifold are the canonical semi-Riemannian
submersionsH 2m+1

1 → CHm. In [Ba-Ia], the present author and Stere Ianu¸s classified semi-
Riemannian submersions with connected totally geodesic fibres from a pseudo-hyperbolic
space onto a Riemannian manifold, and with connected complex totally geodesic fibres from
a complex pseudo-hyperbolic space onto a Riemannian manifold.

The aim of this work is to prove new classification results in the theory of semi-Rieman-
nian submersions analogous to those in Riemannian geometry. It is my pleasure to thank
Professor Stere Ianu¸s for useful discussions on this subject.

Now, we list the main results proved in this paper.

THEOREM 1.1. Let π : Hn+r
s+r ′ → Bn

s be a semi-Riemannian submersion with con-
nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-
fold. If the dimension of the fibres is less than or equal to 3, then π is equivalent to one of the
following canonical semi-Riemannian submersions:

(a) H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m.

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

THEOREM 1.2. Let π : Hn+r
s+r ′ → Bn

s be a semi-Riemannian submersion with con-
nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-
fold. Assume that one of the following conditions is satisfied :

(A) B is an isotropic semi-Riemannian manifold, which means that for any x ∈ Bn
s

and any real number t, the group of isometries I(Bn
s , g ′) preserving x acts transitively on the

set of all nonzero tangent vectors X at x for which g ′(X,X) = t, or
(B) index(B) ∈ {0, dimB}.

Then π is equivalent to one of the following canonical semi-Riemannian submersions :
(a) H 2m+1

2t+1 → CHm
t , 0 ≤ t ≤ m.

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

(c) H 15
7+8t → H 8

8t (−4), t ∈ {0, 1}.
THEOREM 1.3. Let π : CHn

s → B be a semi-Riemannian submersion from a com-
plex pseudo-hyperbolic space onto a semi-Riemannian manifold. Assume that the fibres are
connected complex totally geodesic submanifolds, and one of the following conditions is sat-
isfied :

(A) The real dimension of the fibres is r ≤ 2, or
(B) B is an isotropic semi-Riemannian manifold, or
(C) index(B) ∈ {0, dimB}.

Then π is equivalent to the canonical semi-Riemannian submersion
CH 2m+1

2t+1 → HHm
t , 0 ≤ t ≤ m.
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THEOREM 1.4. There exist no semi-Riemannian submersions π : HHn
s → B with

connected quaternionic fibres from a quaternionic pseudo-hyperbolic space onto an isotropic
semi-Riemannian manifold or onto a semi-Riemannian manifold of index(B) ∈ {0, dim(B)}.

2. Preliminaries and examples. In this section we recall several notions and results
which will be needed throughout the paper. We also exhibit the construction of canonical
semi-Riemannian submersions.

DEFINITION 2.1. Let(M, g) be an(n + r)-dimensional connected semi-Riemannian
manifold of indexs + r ′, and(B, g ′) ann-dimensional connected semi-Riemannian manifold
of indexs, where 0≤ s ≤ n, 0 ≤ r ′ ≤ r. A semi-Riemannian submersion (see [One2]) is a
smooth mapπ : M → B which is surjective and satisfies the following axioms:

(a) π∗|p is surjective for allp ∈ M;
(b) the fibresπ−1(b) , b ∈ B, are semi-Riemannian submanifolds ofM;
(c) π∗ preserves scalar products of vectors normal to fibres.

We shall always assume that the fibres are connected, the dimension of the fibres dimM−
dimB > 0 and dimB > 0. The vectors tangent to fibres are called vertical and those normal
to fibres are called horizontal. We denote byV the vertical distribution and byH the horizontal
distribution.

The geometry of semi-Riemannian submersions is characterized by O’Neill’s tensorsT ,

A (see [One1], [One2]) defined for vector fieldsE, F onM by

AEF = h∇hEvF + v∇hEhF ,

TEF = h∇vEvF + v∇vEhF ,

where∇ is the Levi-Civita connection ofg, andv andh denote the orthogonal projections on
V andH, respectively. For basic properties of O’Neill’s tensors see [One1], [One2], [Bes] or
[Ian].

DEFINITION 2.2. (i) A vector fieldX onM is said to bebasic if X is horizontal and
π-related to a vector fieldX′ onB.

(ii) A vector field X along the fibreπ−1(x), x ∈ M, is said to bebasic along π−1(x)

if X is horizontal andπ∗pX(p) = π∗qX(q) for everyp, q ∈ π−1(x).

We notice that each vector fieldX′ on B has a unique horizontal liftX to M which
is basic. For a vertical vector fieldV and a basic vector fieldX we haveh∇V X = AXV

(see [One1]). We denote byR, R′ and R̂ the Riemann curvature tensors ofM, B and of
the fibreπ−1(x), x ∈ M, respectively. We choose the convention for the curvature tensor
R(E,F) = ∇E∇F − ∇F ∇E − ∇[E,F ]. The Riemann curvature tensor is defined by

R(E,F,G,H) = g(R(G,H)F,E) .

For O’Neill’s equations of a semi-Riemannian submersion we refer to [One1] or [Bes].
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DEFINITION 2.3. Two semi-Riemannian submersionsπ, π ′ : (M, g) → (B, g ′) are
said to beequivalent if there exists an isometryf of M which induces an isometrỹf of B so
thatπ ′ ◦ f = f̃ ◦ π . The pair(f, f̃ ) is called abundle isometry.

We shall need the following theorem, which is the semi-Riemannian version of Theorem
2.2 in [Esc1].

THEOREM 2.4. Let π1, π2 : M → B be semi-Riemannian submersions from a com-
plete connected semi-Riemannian manifold M onto a semi-Riemannian manifold B. Assume
that the fibres of these submersions are connected and totally geodesic. Let f be an isometry
of M satisfying the following properties at a given point p ∈ M :

(1) f∗p : TpM → Tf (p)M maps H1p onto H2f (p), where Hi denote the horizontal
distributions of πi for i ∈ {1, 2}.

(2) f∗A1EF = A2f∗Ef∗F for every E, F ∈ TpM, where Ai are the integrability
tensors associated with πi .
Then f induces an isometry f̃ of B so that the pair (f, f̃ ) is a bundle isometry between π1

and π2. In particular, π1 and π2 are equivalent.

Escobales’s proof of Theorem 2.2 in [Esc1], also works in this semi-Riemannian case.
He proves that for anyb ∈ B which can be joined withπ1(p) by a geodesic we have:

(i) for everyx ∈ π−1
1 (b), f∗x : TxM → Tf (x)M mapsH1x ontoH2f (x), and

(ii) f maps the fibreπ−1
1 (b) into the fibreπ−1

2 (π2(f (x))) with x ∈ π−1
1 (b).

We notice that for anyx ∈ π−1
1 (b) with b ∈ B, which can be joined withπ1(p) by a geodesic,

the conditions (1) and (2) are also satisfied for the pointx. SinceM is connected,B is also
connected. Therefore, any pointb ∈ B can be joined withπ1(p) by a broken geodesic.
Repeating the argument above, for any corner point of this broken geodesic, we see that for
anyb ∈ B, f maps the fibreπ−1

1 (b) into a fibre.

DEFINITION 2.5. Let〈·, ·〉 be the symmetric bilinear form onRm+1 given by

〈x, y〉 = −
s∑

i=0

xiyi +
m∑

i=s+1

xiyi

for x = (x0, . . . , xm), y = (y0, . . . , ym) ∈ Rm+1. For anyc < 0 and any positive integers,
let Hm

s (c) = {x ∈ Rm+1 | 〈x, x〉 = 1/c} be the semi-Riemannian submanifold of

Rm+1
s+1 = (Rm+1, ds2 = −dx0⊗dx0−·· ·−dxs ⊗dxs +dxs+1⊗dxs+1+·· ·+dxm⊗dxm) .

Hm
s (c) is called them-dimensional (real ) pseudo-hyperbolic space of indexs.

We notice thatHm
s (c) has constant sectional curvaturec, whose curvature tensor is given

byR(X, Y,X, Y ) = c(g(X,X)g(Y, Y )−g(X, Y )2). We shall denote simplyHm
s = Hm

s (−1).
It should be remarked thatHm

s can be written as a homogeneous space, namelyHm
s =

SO(s + 1,m − s)/SO(s,m − s), H 2m+1
2s+1 = SU(s + 1,m − s)/SU(s,m − s), andH 4m+3

4s+3 =
Sp(s + 1,m − s)/Sp(s,m − s) (see [Wol]).
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DEFINITION 2.6. Let(·, ·) be the Hermitian form onCm+1 given by

(z,w) = −
s∑

i=0

ziw̄i +
m∑

i=s+1

ziw̄i

for z = (z0, . . . , zm),w = (w0, . . . , wm) ∈ Cm+1. For c < 0, let M(c) be the real hyper-
surface ofCm+1 given byM(c) = {z ∈ Cm+1 | (z, z) = 4/c}, which is endowed with the
induced metric of

(Cm+1, ds2 = −dz0 ⊗ dz̄0 − · · · − dzs ⊗ dz̄s + dzs+1 ⊗ dz̄s+1 + · · · + dzm ⊗ dz̄m) .

The natural action ofS1 = {eiθ | θ ∈ R} onCm+1 induces an action onM(c). Let CHm
s (c) =

M(c)/S1 endowed with the unique indefinite Kähler metric of index 2s such that the projec-
tion M(c) → M(c)/S1 becomes a semi-Riemannian submersion (see [Ba-Ro]).CHm

s (c) is
called thecomplex pseudo-hyperbolic space.

Notice thatCHm
s (c) has constant holomorphic sectional curvaturec, whose curvature

tensor is given byR(X, Y,X, Y ) = (c/4)(g(X,X)g(Y, Y )−g(X, Y )2+3g(I0X,Y )2), where
I0 is the natural complex structure onCHm

s (c). We shall denote simplyCHm
s = CHm

s (−4).
It is well-known thatCHm

s is a homogeneous space, namelyCHm
s = SU(s + 1,m − s)/

S(U(1)U(s,m − s)) andCH 2m+1
2s+1 = Sp(s + 1,m − s)/U(1)Sp(s,m − s) (see [Wol]).

We shall denote byHHn
s the quaternionic pseudo-hyperbolic space of real dimension 4n,

and of quaternionic indexs with quaternionic sectional curvature−4, and bySn andSn(4)

the spheres with sectional curvature 1 and 4, respectively.
By a standard construction (see Theorem 9.80 in [Bes]), one can obtain many examples

of semi-Riemannian submersions with totally geodesic fibres of typeπ : G/K → G/H,

whereG is a Lie group andK, H are closed Lie subgroups ofG with K ⊂ H . In this way the
following canonical semi-Riemannian submersions, also calledgeneralized Hopf fibrations,
are obtained:

EXAMPLE 1. LetG = SU(t+1,m−t), H = S(U(1)U(t,m−t)), K = SU(t,m−t).
For every 0≤ t ≤ m, we have the semi-Riemannian submersion

H 2m+1
2t+1 = SU(t +1,m− t)/SU(t,m− t) → CHm

t = SU(t +1,m− t)/S(U(1)U(t,m− t)) .

EXAMPLE 2. LetG = Sp(t + 1,m − t), H = Sp(1)Sp(t,m − t), K = Sp(t,m − t).
For every 0≤ t ≤ m, we get the semi-Riemannian submersion

H 4m+3
4t+3 = Sp(t + 1,m − t)/Sp(t,m − t) → HHm

t = Sp(t + 1,m − t)/Sp(1)Sp(t,m − t) .

EXAMPLE 3. a) LetG = Spin(1, 8), H = Spin(8), K = Spin(7). Then we have
the semi-Riemannian submersion (see [Ba-Ia])

H 15
7 = Spin(1, 8)/Spin(7) → H 8(−4) = Spin(1, 8)/Spin(8) .

b) LetG = Spin(9), H = Spin(8), K = Spin(7). Then we have the semi-Riemannian
submersion (see [Bes])

S15 = Spin(9)/Spin(7) → S8(4) = Spin(9)/Spin(8) .
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EXAMPLE 4. LetG = Sp(t +1,m− t), H = Sp(1)Sp(t,m− t), K = U(1)Sp(t,m−
t). For every 0≤ t ≤ m, we obtain the semi-Riemannian submersion

CH 2m+1
2t+1 = Sp(t+1,m−t)/U(1)Sp(t,m−t)→HHm

t = Sp(t+1,m−t)/Sp(1)Sp(t,m−t) .

In order to prove Theorem 1.2, we need the following nonexistence proposition, which
is the semi-Riemannian version of Proposition 5.1 in [Ran1].

PROPOSITION 2.7. There exist no semi-Riemannian submersions π : H 23
7+8t → CaH 2

t ,

t ∈ {0, 1, 2}, with totally geodesic fibres from the 23-dimensional pseudo-hyperbolic space of
index 7 + 8t onto the Cayley pseudo-hyperbolic plane of Cayley index t .

We notice that the caset = 2 is Proposition 5.1 in [Ran1]. For the caset = 0, see
[Ba-Ia]. Here we only recall some details of Ranjan’s proof and suggest its modification to
the semi-Riemannian case. Ranjan’s argumentin [Ran1], which leads to a contradiction to
the assumption of the existence of such a submersion, is based on finding for everyX ∈ Hp,

g(X,X) �= 0, an irreducibleCl(Vp)-submoduleS of Hp passing throughX. HereCl(Vp)

denotes the Clifford algebra of(Vp, g̃p), whereg̃(U, V ) = −g(U, V ) for everyU, V ∈ Vp.
Hp becomes aCl(Vp)-module by considering the extension of the mapU : Vp → End(Hp)

defined byU(V )(X) = AXV to the Clifford algebraCl(Vp). Sinceg̃p is positive definite, we
haveCl(Vp) 
 R(8) ⊕ R(8). Hence,Hp splits into two 8-dimensional irreducibleCl(Vp)-
modules. Since the induced metrics on fibres are negative definite, we obtain in a manner
similar to Ranjan’s proof that

(i) for g(X,X) > 0, π−1(CaH 1) is totally geodesic inH 23
7+8t and is isometric toH 15

7 ,

whereCaH 1 denotes the Cayley hyperbolic line throughπ∗X, and
(ii) for g(X,X) < 0, π−1(CaH 1

1 ) is totally geodesic inH 23
7+8t and is isometric toH 15

15,

whereCaH 1
1 denotes the negative definite Cayley hyperbolic line throughπ∗X.

We chooseS to be the horizontal space of the restricted submersionπ̃ : H 15
7 → CaH 1 if

g(X,X) > 0 or π̃ : H 15
15 → CaH 1

1 if g(X,X) < 0.

3. Proof of the main results. The next lemma gives useful properties of O’Neill’s
integrability tensor.

LEMMA 3.1. Let π : M → B be a semi-Riemannian submersion with connected
totally geodesic fibres from a semi-Riemannian manifold M with constant curvature c �= 0.
Then the following assertions are true:

(a) If X is a horizontal vector such that g(X,X) �= 0, then the map AX : V → H
given by AX(V ) = AXV is injective and the map A∗

X : H → V given by A∗
X(Y ) = AXY is

surjective.
(b) If X, Y are the horizontal liftings along the fibre π−1(π(p)), p ∈ M, of two vectors

X′, Y ′ ∈ Tπ(p)B respectively, g ′(X′,X′) �= 0 and (AXY )(p) = 0, then AXY = 0 along the
fibre π−1(π(p)).

PROOF. (a) By O’Neill’s equations, we get

g(AXV,AXW) = cg(X,X)g(V ,W)
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for a horizontal vector fieldX and for vertical vector fieldsV andW . ThusA∗
XAXV =

−cg(X,X)V for every vertical vector fieldV . ThereforeAX : V → H is injective and
A∗

X : H → V is surjective.
(b) By O’Neill’s equations, we have

−3g(AXY,AXZ) = c[g(X,X)g(Y,Z) − g(X, Y )g(X,Z)] − R′(π∗X,π∗Y, π∗X,π∗Z)

for horizontal vector fieldsX, Y andZ.
If X, Y, Z are basic vector fields, theng(AXY,AXZ) is constant along the fibre

π−1(π(p)). Therefore,g(AXAXY,Z) = 0 along the fibreπ−1(π(p)) for every basic vector
field Z. HenceAXAXY = 0 alongπ−1(π(p)). SinceAX : V → H is injective, it follows
thatAXY = 0 along the fibreπ−1(π(p)). �

LEMMA 3.2. If π : M → B is a semi-Riemannian submersion with connected totally
geodesic fibres from a semi-Riemannian manifold M with constant curvature c �= 0 onto a
semi-Riemannian manifold B, then the tangent bundle of any fibre is trivial.

PROOF. Let x ∈ B andp ∈ π−1(x). Let {v1p, . . . , vrp} be an orthonormal basis inVp.
Let Y1, Y2, . . . , Yr be the horizontal liftings along the fibreπ−1(π(p)) of (1/c)π∗AXv1p,

(1/c)π∗AXv2p, . . . , (1/c)π∗AXvrp, respectively. Letvi = AXYi for eachi ∈ {1, . . . , r}.
Since

g(vj , vl) = g(AXYj ,AXYl)

= (1/3)(R′(π∗X,π∗Yj , π∗X,π∗Yl) − cg(X,X)g(Yj , Yl) + cg(X, Yj )g(X, Yl))

is constant along the fibreπ−1(π(p)) and

g(AXYj ,AXYl)(p) = 1

c2
g(AXAXvjp,AXAXvlp) = g(X,X)2g(vjp, vlp) = εjδjl ,

we see that{v1, v2, . . . , vr } is a global orthonormal basis of the tangent bundle of the fibre
π−1(x), which makes the tangent bundle trivial. �

We suppose that the curvature of the total space is negative. The case of positive curva-
ture can be reduced to the negative one by changing simultaneously the signs of the metrics
on the base and on the total space. We establish relations between the dimensions and the
indices of fibres and of base spaces, and see how the geometry of base spaces looks like.

THEOREM 3.3. Let π : M → B be a semi-Riemannian submersion with connected
totally geodesic fibres from an (n + r)-dimensional semi-Riemannian manifold M of index
s + r ′ with constant negative curvature c onto an n-dimensional semi-Riemannian manifold
B of index s. Then the following hold :

(1) n = k(r + 1) for some positive integer k and s = q1(r
′ + 1) + q2(r − r ′) for some

nonnegative integers q1, q2 with q1 + q2 = k.
(2) If, moreover, M is a simply connected complete semi-Riemannian manifold and the

dimension of fibres is less than or equal to 3, then B is an isotropic semi-Riemannian manifold
and r ∈ {1, 3}.
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PROOF. Normalizing the metric onM, we can supposec = −1. Let p ∈ M. Since
the tangent bundle of the fibreπ−1(π(p)) is trivial, we can choose a global orthonormal
frame {v1, v2, . . . , vr } for the tangent bundle ofπ−1(π(p)). We haveg(vi , vj ) = εiδij ,

εi ∈ {−1, 1}, and card{i|εi < 0} = r ′.
(1) LetX be the horizontal lifting along the fibreπ−1(π(p)) of a vectorX′ ∈ Tπ(p)B,

so thatg(X′,X′) ∈ {−1, 1}. By O’Neill’s equations, we have

g(AY V,AY V ) = −g(Y, Y )g(V , V )

for a horizontal vector fieldY and for a vertical vector fieldV . Along the fibreπ−1(π(p)) we
obtain for everyi, j ∈ {1, . . . , r}

g(AXvi,AXvj ) = −g(X,X)g(vi , vj ) = −g(X,X)εiδij ,

g(X,AXvi) = −g(AXX, vi) = 0 .

Thus{X,AXv1, . . . , AXvr } is an orthonormal system. Hencen ≥ r + 1.
Let L0 = X. For every integerα such that 1≤ α < n/(r + 1), let Lα be a hori-

zontal vector field along the fibreπ−1(π(p)) such thatLα is the horizontal lifting of some
unit vector (i.e.,g(Lα,Lα) ∈ {−1, 1}), thatLα is orthogonal toL0, L1, . . . , Lα−1 and that
Lα(p) ∈ kerA∗

L0(p) ∩ kerA∗
L1(p) ∩ · · · ∩ kerA∗

Lα−1(p). Then, by Lemma 3.1,Lα(q) belongs

to kerA∗
L0(q) ∩ kerA∗

L1(q) ∩ · · · ∩ kerA∗
Lα−1(q) for everyq ∈ π−1(π(p)). Therefore, for

j ∈ {1, . . . , r} andα, β ≥ 0, we get

g(ALαvj , Lβ) = −g(vj , ALαLβ) = 0

along the fibreπ−1(π(p)).
By O’Neill’s equations, we obtain

R(X,U, Y, V ) = g((∇UA)XY, V ) + g(AXU,AY V )

= g(∇U AXY, V ) − g(A∇U XY, V ) − g(AX∇U Y, V ) + g(AXU,AY V )

= g(∇UAXY, V ) + g(AY AXU,V ) − g(AXAY U,V ) − g(AY AXU,V )

= g(∇UAXY, V ) + g(AY U,AXV )

(3.1)

for basic vector fieldsX, Y and for vertical vector fieldsU, V . Thus, along the fibreπ−1(π(p))

we get for everyα, β ≥ 0 andj, l ∈ {1, . . . , r}
g(ALαvj ,ALβvl) = R(Lα, vl, Lβ, vj ) − g(∇vl ALαLβ, vj )

= −g(Lα,Lβ)g(vl , vj ) − vl(g(ALαLβ, vj )) + g(ALαLβ,∇vl vj ) .

SinceALαLβ = 0 along the fibreπ−1(π(p)), it follows that

g(ALαvj ,ALβ vl) = −g(Lα,Lβ)g(vl , vj ) = −g(Lα,Lβ)εlδlj .

We proved that for some positive integerk,

L = {L0, AL0v1, . . . , AL0vr , . . . , Lk−1, ALk−1v1, . . . , ALk−1vr }
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is an orthonormal basis ofH along the fibreπ−1(π(p)). Thus dimB = (1 + dim fibre)k for
some positive integerk. Counting the timelike vectors inL, we get index(B) = q1(r

′ + 1) +
q2(r − r ′) for some nonnegative integersq1, q2 with q1 + q2 = k.

(2) Let x ∈ B andX′, Y ′ ∈ TxB such thatg ′(X′,X′) = g ′(Y ′, Y ′) �= 0. We shall
construct an isometrỹf : B → B such thatf̃ (x) = x andf̃∗X′ = Y ′. Note that we may
assume thatg ′(X′,X′) = g ′(Y ′, Y ′) = ±1. LetX, Y be the horizontal liftings along the fibre
π−1(x) of X′ andY ′, respectively. Takep ∈ π−1(x). Let

L = {L0, AL0v1, . . . , AL0vr , . . . , Lk−1, ALk−1v1, . . . , ALk−1vr } ,

L′ = {L′
0, AL′

0
v′

1, . . . , AL′
0
v′
r , . . . , L

′
k−1, AL′

k−1
v′

1, . . . , AL′
k−1

v′
r }

be two orthonormal bases constructed as above such thatL0 = X, L′
0 = Y, g(Lα,Lα) =

g(L′
α, L′

α) for α ∈ {1, . . . , k − 1}, and that{v1 = AXY1, . . . , vr = AXYr } and {v′
1 =

AY Y ′
1, . . . , v

′
r = AY Y ′

r } are orthonormal bases of the tangent bundle of the fibreπ−1(π(p)),

whereY1, . . . , Yr andY ′
1, . . . , Y

′
r are the horizontal liftings alongπ−1(π(p)) of the vectors

π∗AXv1p, . . . , π∗AXvrp andπ∗AY v′
1p, . . . , π∗AYv′

rp, respectively (as in Lemma 3.1), for
which g(vi , vj ) = g(v′

i , v
′
j ) for i, j ∈ {1, . . . , r}. Let φ : TpM → TpM be the linear map

given byφ(Lα) = L′
α, φ(vj ) = v′

j , φ(ALαvj ) = AL′
α
v′
j for everyα ∈ {0, . . . , k − 1} and

j ∈ {1, . . . , r}. Since bothL, L′ are orthonormal bases, we see thatφ is a linear isometry.
We shall apply Theorem 2.4. Thus we need to prove thatφ(AEF) = Aφ(E)φ(F ) for

everyE, F ∈ TpM. Indeed, we obtain forα, β ∈ {0, . . . , k − 1} andj, l ∈ {1, . . . , r},
φ(ALαLβ) = φ(0) = 0 = AL′

α
L′

β = Aφ(Lα)φ(Lβ) ,

g(vj , ALαALβvl) = −g(ALαvj ,ALβvl) = −g(Lα,Lβ)g(vj , vl)

= −g(L′
α, L′

β)g(v′
j , v′

l ) = g(v′
j , AL′

α
AL′

β
v′
l ) .

Henceφ(ALαALβvl) = Aφ(Lα)φ(ALβvl). �

LEMMA 3.4. ALαvj is a basic vector field along the fibre π−1(π(p)) for every 1 ≤
j ≤ r and α ≥ 0.

PROOF OFLEMMA 3.4. We haveg(AXvj , Z) = g(AXAXYj ,Z) = −g(AXYj ,AXZ).
For every basic vector fieldZ along the fibreπ−1(π(p)) we know thatg(AXYj ,AXZ) is
constant along the fibreπ−1(π(p)). HenceAXvj is a basic vector field along the fibre
π−1(π(p)).

Now we assumeα ≥ 1. Since dim(kerA∗
X ∪ kerA∗

Lα
) = dim kerA∗

X + dim kerA∗
Lα

−
dim(kerA∗

X ∩ kerA∗
Lα

) = (n−r)+(n−r)−(n−2r) = n, it follows that kerA∗
X+kerA∗

Lα
=

H. HenceALαvj is a basic vector field along the fibreπ−1(π(p)) if and only if the following
conditions are satisfied:g(ALαvj , Z1) is constant alongπ−1(π(p)) for everyZ1 ∈ kerA∗

X,

which is a basic vector field alongπ−1(π(p)), andg(ALαvj , Z2) is constant along the fibre
π−1(π(p)) for everyZ2 ∈ kerA∗

Lα
, which is a basic vector field alongπ−1(π(p)). If Z2 ∈

kerA∗
Lα

, thenA∗
Lα

Z2 = 0 alongπ−1(π(p)). Sog(ALαvj , Z2) = −g(vj , ALαZ2) = 0 along

π−1(π(p)). If Z1 ∈ kerA∗
X, thenA∗

XZ1 = 0 alongπ−1(π(p)). By O’Neill’s equations, we



188 G. BĂDIŢOIU

get along the fibreπ−1(π(p))

R′(π∗X,π∗Yj , π∗Lα, π∗Z1) = R(X, Yj , Lα,Z1) + 2g(AXYj ,ALαZ1)

− g(AYj Lα,AXZ1) − g(ALαX,AYj Z1)

= −g(X,Lα)g(Yj , Z1) + g(X,Z1)g(Yj , Lα)

+ 2g(vj , ALαZ1) ,

sinceALαX = −AXLα = 0 andAXZ1 = 0. Henceg(vj , ALαZ1) = −g(ALαvj , Z1)

is constant alongπ−1(π(p)) for every Z1 ∈ kerA∗
X, which is a basic vector field along

π−1(π(p)).
We proved thatALαvj is a basic vector field alongπ−1(π(p)) for everyα ≥ 0 and

j ∈ {1, . . . , r}. �

We denote bŷ∇ the induced Levi-Civita connection on the fibreπ−1(π(p)).

LEMMA 3.5. AALα viALβvj = g(Lα,Lβ)∇̂vi vj .

PROOF OFLEMMA 3.5. By the relation (3.1) together with Lemma 3.4, we obtain for
i, j, l ∈ {1, . . . , r} andα, β ≥ 0 that

g(AALα viALβvj , vl) = −g(AALα vi vl , ALβvj )

= −R(Lβ, vl, ALαvi, vj ) + g(∇vl ALβALαvi , vj )

= g(Lβ,ALαvi)g(vl , vj ) + vlg(ALβALαvi , vj )

− g(ALβALαvi ,∇vl vj )

= −vlg(ALαvi, ALβ vj ) + g(ALαvi , ALβvt )g(∇vl vj , vt )εt

= −g(Lα,Lβ)g(∇̂vl vj , vi)

= g(Lα,Lβ)g(∇̂vi vj , vl) .

In the last equality we used the fact thatvj = AXYj is a Killing vector field along the fibre
π−1(π(p)) (see [Bis] or [Bes]). Thus

AALα viALβvj = g(Lα,Lβ)∇̂vi vj .

�

LEMMA 3.6. The following assertions are true:
(a) r �= 2.
(b) If r = 1, then AALα v1ALβv1 = 0.

(c) If r = 3 and if we set v3p = g(X,X)−1(∇̂v1v2)(p), then v3 = ∇̂v1v2 and

g(∇̂vi vj , vk) =
{

0 if two of i, j, k are equal ,

ε
(1 2 3
i j k

)
g(v3, v3) if {i, j, k} = {1, 2, 3} ,

where ε
(1 2 3
i j k

)
is the signature of the permutation

(1 2 3
i j k

)
.
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PROOF OFLEMMA 3.6. Sincev1, . . . , vr are Killing vector fields alongπ−1(π(p)) and
g(vi , vi) ∈ {−1, 1} for everyi, we get

g(∇̂vi vj , vi) = g(∇̂vi vi, vj ) = g(∇̂vj vi , vi) = 0

for everyi, j ∈ {1, . . . , r}.
(a) The caser = 2 is not possible. Indeed, ifr = 2, then the relationg(∇v1v2, v1) =

g(∇v1v2, v2) = 0 implies∇v1v2 = 0. On the other hand,

g(∇v1v2,∇v1v2) = −g(∇̂v1∇̂v2v2, v1) + R̂(v1, v2, v1, v2) = −g(v1, v1)g(v2, v2) ∈ {−1, 1} ,

since∇̂v2v2 = g(X,X)−1AAXv2AXv2 = 0 and each fibre has constant curvature−1. So we
get a contradiction.

(b) If r = 1, thenAALα v1ALβv1 = 0 for everyα andβ, because 0= AAXv1AXv1 =
g(X,X)∇v1v1 implies∇v1v1 = 0.

(c) In the caser = 3 we shall proveg(∇̂v1v2, v3) is constant along the fibreπ−1(π(p)).
Since O’Neill’s integrability tensorA is skew-symmetric, it follows that̂∇vi vj = −∇̂vj vi .

Then∇̂vi vj = (1/2)[vi, vj ] is a Killing vector field alongπ−1(π(p)). We then obtain

v1g(∇̂v1v2, v3) = g(∇̂v1∇̂v1v2, v3) + g(∇̂v1v2, ∇̂v1v3)

= −g(∇̂v3∇̂v1v2, v1) + g(∇̂v1v2, ∇̂v1v3)

= −v3g(∇̂v1v2, v1) + g(∇̂v1v2, ∇̂v1v3 + ∇̂v3v1) = 0 .

Analogously, we getv2g(∇̂v1v2, v3) = −v2g(∇̂v2v1, v3) = 0. We also obtain

v3g(∇̂v1v2, v3) = g(∇̂v3∇̂v1v2, v3) + g(∇̂v1v2, ∇̂v3v3) = 0 ,

since∇̂v3v3 = 0 and∇̂v1v2 is a Killing vector field alongπ−1(π(p)). It is easy to see that

g(∇̂v1v2, v3) = −g(∇̂v2v1, v3) = g(∇̂v2v3, v1)

= −g(∇̂v3v2, v1) = g(∇̂v3v1, v2) = −g(∇̂v1v3, v2) .

Thusg(∇̂vi vj , vl) is constant along the fibreπ−1(π(p)) for eachi, j, l ∈ {1, 2, 3}. Therefore

g(AXAAXvi AXvj ,AXvl) = −g(X,X)g(AAXvi AXvj , vl) = −g(X,X)2g(∇̂vi vj , vl)

is constant alongπ−1(π(p)). Also, we compute forα ≥ 1

g(AXAAXvi AXvj ,ALαvl) = −g(AAXviAXvj ,AXALαvl) = 0 ,

g(AXAAXviAXvj , Lα) = −g(AAXviAXvj ,AXLα) = 0 .

HenceAXAAXvi AXvj = g(X,X)AX∇̂vi vj is a basic vector field for eachi, j ∈ {1, . . . , r}.
We choosev3p = (g(X,X)−1∇̂v1v2)(p). SinceAX∇̂v1v2 is a basic vector field along

π−1(π(p)), we get the horizontal lifting alongπ−1(π(p)) of π∗(g(X,X)−1AX∇̂v1v2(p)) =
π∗AXv3p is g(X,X)−1AX∇̂v1v2. On the other hand,Y3 is, by definition, the horizontal lifting
alongπ−1(π(p)) of π∗AXv3p. It follows thatY3 = g(X,X)−1AX∇̂v1v2 alongπ−1(π(p)).
Thusv3 = AXY3 = g(X,X)−1AXAX∇̂v1v2 = ∇̂v1v2 along the fibreπ−1(π(p)). �
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For r = 3, we choosev′
3p = g(Y, Y )−1(∇̂v′

1
v′

2)(p). If we repeat the argument above

for the basis{v′
1, v

′
2, v

′
3}, by Lemma 3.6, we getv′

3 = ∇̂v′
1
v′

2 along the fibreπ−1(π(p)). It

follows thatg(∇̂vi vj , vl) = g(∇̂v′
i
v′
j , v

′
l ) for eachi, j, l ∈ {1, 2, 3}.

Returning to the computation ofg(AALα vi ALβvj , vl), in both casesr = 1 andr = 3, we
get for everyα, β ≥ 0 andi, j, k ∈ {1, . . . , r}

g(AALα viALβvj , vl) = g(Lα,Lβ)g(∇̂vi vj , vl)

= g(L′
α, L′

β)g(∇̂v′
i
v′
j , v

′
l ) = g(AAL′

α
v′
i
AL′

β
v′
j , v

′
l ) .

Henceφ(AALα viALβvj ) = Aφ(ALα vi)φ(ALβvj ) andφ(AALα vi vj ) = Aφ(ALα vi)φ(vj ).

By Corollary 2.3.14 in [Wol] we see thatφ : TpM → TpM extends to an isometry on
M, denoted byf : M → M, such thatf (p) = p andf∗p = φ. Hencef∗pX = Y and
f∗(Hp) = Hp. Sincef∗AEF = Af∗Ef∗F for everyE,F ∈ TpM, we see, by Theorem 2.4,
that there is an isometrỹf : B → B such thatf̃ ◦ π = π ◦ f . Thusf̃∗X′ = f̃∗π∗X =
π∗f∗X = π∗Y = Y ′ andf̃ (x) = f̃ (π(p)) = π(f (p)) = π(p) = x.

ThereforeB is an isotropic semi-Riemannian manifold. This completes the proof of
Theorem 3.3. �

If the metric on the base space is negative definite, the following lemma follows from
Theorem 3.3.

LEMMA 3.7. If π : M → B is a semi-Riemannian submersion with connected totally
geodesic fibres from an (n+ r)-dimensional semi-Riemannian manifold M of index r ′ +n and
of constant negative curvature onto an n-dimensional semi-Riemannian manifold B of index
n, then r ′ = r .

PROOF. By Theorem 3.3, we haven = q1(r
′ + 1) + q2(r − r ′) = (q1 + q2)(r + 1) for

some nonnegative integersq1 andq2. Hence 0= q1(r − r ′)+q2(r
′ +1). Since the right hand

side is the sum of two non-negative numbers, it follows thatq1(r−r ′) = 0 andq2(r
′+1) = 0.

Thereforeq2 = 0. This impliesr ′ = r. �

REMARK. Changing simultaneously the signs of metrics on the total space and on the
base space, any semi-Riemannian submersion, under the assumptions of Lemma 3.7, becomes
a Riemannian submersion with totally geodesic fibres from a sphere onto a Riemannian man-
ifold. This case was completely classified by Escobales (see [Esc1]) and Ranjan (see [Ran1]).

PROPOSITION 3.8. Let π : M → B be a semi-Riemannian submersion with connected
totally geodesic fibres from a complete simply connected semi-Riemannian manifold M onto
a semi-Riemannian manifold B. Then B is simply connected and complete.

PROOF. If M is geodesically complete, then so isB (see [Bes] or [Ba-Ia]). SinceM
is a complete semi-Riemannian manifold and the fibres are totally geodesic, any fibre is also
geodesically complete. By a theorem in [Rec], it follows that the horizontal distributionH is
an Ehresmann connection. Therefore, by [Ehr], we see thatπ is a fibre bundle. So we obtain
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an exact homotopy sequence:

· · · → π2(M) → π2(B) → π1(fibre) → π1(M) → π1(B) → 0 .

Thusπ1(B) = 0. �

By Theorem 12.3.2 in [Wol], we know that any connected, simply connected isotropic
semi-Riemannian manifold is isometric to one of the following semi-Riemannian manifolds:

(i) Rm
t or the universal semi-Riemannian covering of the pseudo-hyperbolic space

Hm
t (c) with constant sectional curvaturec < 0, or of the pseudo-sphereSm

t (c) with constant
sectional curvaturec > 0.

(ii) The complex pseudo-hyperbolic spaceCHm
t (c) with constant holomorphic sec-

tional curvaturec < 0, or the complex pseudo-projective spaceCPm
t (c) with constant holo-

morphic sectional curvaturec > 0.
(iii) The quaternionic pseudo-hyperbolic spaceHHm

t (c) with constant quaternionic
sectional curvaturec < 0, or the quaternionic pseudo-projective spaceHPm

t (c) with con-
stant quaternionic sectional curvaturec > 0.

(iv) The Cayley pseudo-hyperbolic planeCaH 2
t (c) with Cayley sectional curvature

c < 0, or the Cayley pseudo-projective planeCaP 2
t (c) with Cayley sectional curvaturec > 0.

LEMMA 3.9. (a) If B is a semi-Riemannian manifold isometric to one of the semi-
Riemannian manifolds CPm

t (c), HPm
t (c), CaP 2

t (c) (c > 0), then the curvature tensor satis-
fies the inequality

R′(X′, Y ′,X′, Y ′) ≥ c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g ′(X′, Y ′)2)(3.2)

for each tangent vectors X′, Y ′ of B.
(b) If B is a semi-Riemannian manifold isometric to one of the semi-Riemannian man-

ifolds CHm
t (c), HHm

t (c), CaH 2
t (c) (c < 0), then the curvature tensor satisfies the inequality

R′(X′, Y ′,X′, Y ′) ≤ c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g ′(X′, Y ′)2)(3.3)

for each tangent vectors X′, Y ′ of B.

PROOF. For each tangent vectorsX′, Y ′ of B, we have the following formulas for the
curvature tensors:

(i) If B ∈ {CPm
t (c), CHm

t (c)} andI0 is the natural complex structure onB, then

R′(X′, Y ′,X′, Y ′) = c

4
(g ′(X′,X′)g ′(Y ′, Y ′) − g ′(X′, Y ′)2 + 3g ′(X′, I0Y

′)2) .(3.4)

(ii) If B ∈ {HPm
t (c), HHm

t (c)} and I0, J0,K0 are local almost complex structures
which give rise to the quaternionic structure onB, then

R′(X′, Y ′,X′, Y ′) = (c/4)(g ′(X′,X′)g ′(Y ′, Y ′) − g ′(X′, Y ′)2(3.5)

+ 3g ′(X′, I0Y
′)2 + 3g ′(X′, J0Y

′)2 + 3g ′(X′,K0Y
′)2) .
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(iii) If B ∈ {CaP 2
t (c), CaH 2

t (c)} and I0, J0,K0,M0,M0I0,M0J0,M0K0 are local
almost complex structures which give rise to the Cayley structure onB, then

R′(X′, Y ′,X′, Y ′) = (c/4)(g ′(X′,X′)g ′(Y ′, Y ′) − g ′(X′, Y ′)2

+ 3g ′(X′, I0Y
′)2 + 3g ′(X′, J0Y

′)2 + 3g ′(X′,K0Y
′)2

+ 3g ′(X′,M0Y
′)2 + 3g ′(X′,M0I0Y

′)2 + 3g ′(X′,M0J0Y
′)2

+ 3g ′(X′,M0K0Y
′)2) .

(3.6)

By these explicit formulas for curvature tensors, in all cases we obtain the inequalities (3.2)
and (3.3). �

First, we shall discuss the case of a base space with nonconstant curvature.

LEMMA 3.10. If π : Hn+r
s+r ′ → Bn

s is a semi-Riemannian submersion with connected

totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space Hn+r
s+r ′ of index

s + r ′ > 1 onto an n-dimensional isotropic semi-Riemannian manifold Bn
s of index s with

nonconstant curvature, then the induced metrics on the fibres are negative definite and B is
isometric to one of the following semi-Riemannian manifolds:

(i) CHm
t , m > 1,

(ii) HHm
t , m > 1,

(iii) CaH 2
t .

PROOF. Since dimH = k(dimV + 1) for some positive integerk, we get dimH ≥
dimV + 1. LetX be a horizontal vector field along a fibreπ−1(π(p)) such thatg(X,X) �= 0
andX is the horizontal lifting of some tangent vector ofB.

First, we shall prove that

dimH > dimV + 1 .

Suppose that dimH = dimV+1. ThenAX : V → X⊥ = {Y ∈ H | g(X, Y ) = 0} is bijective.
For everyY ∈ X⊥ we getY = AXV for some vertical vectorV . It follows that

g(AXY,AXY ) = g(AXAXV,AXAXV ) = g(X,X)2g(V , V ) ,

g(Y, Y ) = g(AXV,AXV ) = −g(X,X)g(V , V ) .

Thusg(AXY,AXY ) = −g(X,X)g(Y, Y ) for everyY ∈ X⊥. By O’Neill’s equations, we
have

R′(π∗X,π∗Y, π∗X,π∗Y ) = −g(X,X)g(Y, Y ) + g(X, Y )2 + 3g(AXY,AXY )

= −4(g(X,X)g(Y, Y ) − g(X, Y )2)

for every horizontal vector fieldY alongπ−1(π(p)). HenceB has constant curvature, a
contradiction.

We established that dimH > dimV+1. So we can find a horizontal vector fieldZ along
the fibreπ−1(π(p)) such thatZ ∈ kerA∗

X, g(X,Z) = 0, g(Z,Z) �= 0 andZ is the horizontal
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lifting of someZ′ ∈ Tπ(p)B. We then have

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) + g(X,Z)2 + 3g(AXZ,AXZ)

= −g(X,X)g(Z,Z) .

SinceB is a simply connected isotropic semi-Riemannian manifold with nonconstant curva-
ture, we see thatB is isometric to one of the following semi-Riemannian manifolds:

(a) CPm
t (c), HPm

t (c), CaP 2
t (c), or

(b) CHm
t (c), HHm

t (c), CaH 2
t (c).

We shall prove that only the case (b) is possible.
First, we suppose thatB is isometric to one of the following semi-Riemannian manifolds:

CPm
t (c) , HPm

t (c) , CaP 2
t (c) (c > 0) .

By the inequality (3.2), we get

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV )

= 4g(X,X)2g(V , V ) ≥ −(c/4)g(X,X)2g(V , V ) .

Therefore

g(V , V ) ≥ 0(3.7)

for every vertical vectorV . SinceX andZ are basic vector fields alongπ−1(π(p)) with
g(X,Z) = 0 andAXZ = 0 alongπ−1(π(p)), it follows from the relation (3.1) thatAZV ∈
kerA∗

X. On the other hand, by the inequality (3.2), we get

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) ≥ (c/4)g(X,X)g(Z,Z) ,

R′(π∗X,π∗AZV, π∗X,π∗AZV ) = −g(X,X)g(AZV,AZV )

≥ (c/4)g(X,X)g(AZV,AZV ) .

Henceg(X,X)g(Z,Z) ≤ 0 andg(X,X)g(AZV,AZV ) ≤ 0. Thus

0 ≤ g(Z,Z)g(AZV,AZV ) = −g(Z,Z)2g(V , V ) .

So for any vertical vectorV we get

g(V , V ) ≤ 0 .(3.8)

Since the induced metrics on fibres are nondegenerate, it is not possible to have both (3.7)
and (3.8). So we obtain the required contradiction. It follows thatB is isometric to one of the
following semi-Riemannian manifolds:

CHm
t (c) , HHm

t (c) , CaH 2
t (c) (c < 0) .
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We shall now prove thatc = −4. Suppose(c/4) + 1 �= 0. By the inequality (3.3), we
get

R′(π∗X,π∗Z,π∗X,π∗Z) = −g(X,X)g(Z,Z) ≤ (c/4)g(X,X)g(Z,Z) ,

R′(π∗X,π∗AZV, π∗X,π∗AZV ) = −g(X,X)g(AZV,AZV )

≤ (c/4)g(X,X)g(AZV,AZV ) .

(3.9)

Hence

((c/4) + 1)2g(X,X)2g(Z,Z)g(AZV,AZV ) ≥ 0 ,(3.10)

from which follows that 0 ≤ g(Z,Z)g(AZV,AZV ) = −g(Z,Z)2g(V , V ). Therefore
g(V , V ) ≤ 0 for every vertical vector fieldV . In particular, we haveg(AXY,AXY ) ≤ 0,

which implies

R′(π∗X,π∗Y, π∗X,π∗Y ) ≤ g(X,X)g(Y, Y ) − g(X, Y )2(3.11)

for every horizontal vectorsX andY . We have the following cases:
Case (a) 0 < indexB < dimB. We can choose vector fieldsX′, Y ′ on B such that

g ′(X′,X′)g ′(Y ′, Y ′) < 0 and that one of the following conditions is satisfied:
(i) Y ′ ∈ {X′, I0X

′}⊥ if B = CHm
s (c), whereI0 is the natural complex structure on

CHm
s (c),

(ii) Y ′ ∈ {X′, I0X
′, J0X

′,K0X
′}⊥ if B = HHm

s (c), where{I0, J0,K0} are local al-
most complex structures which give rise to the quaternionic structure onHHm

s (c), or
(iii) Y ′ ∈ {X′, I0X

′, J0X
′,K0X

′,M0X
′,M0I0X

′,M0J0X
′,M0K0X

′}⊥ if B =
CaH 2

t (c), where{I0, J0,K0,M0,M0I0,M0J0,M0K0} are local almost complex structures
which give rise to the Cayley structure onCaH 2

t (c).
Let X, Y be the horizontal liftings ofX′, Y ′. The inequality (3.11) then implies

c

4
g(X,X)g(Y, Y ) ≤ −g(X,X)g(Y, Y ) .

Hence((c/4) + 1)g(X,X)g(Y, Y ) ≤ 0. Therefore(c/4) + 1 > 0. On the other hand,
we can choose horizontal vector fieldsX, Z such thatg(X,Z) = 0, Z ∈ kerA∗

X and
g(X,X)g(Z,Z) < 0, because 0< indexB < dimB. Then the inequality (3.9) becomes
(c/4) + 1 < 0. So we get a contradiction.

Case (b) indexB ∈ {0, dimB}. Similarly, we can choose vector fieldsX′, Y ′ on B

such thatg ′(X′, Y ′) = 0 andR′(X′, Y ′,X′, Y ′) = (c/4)g ′(X′,X′)g ′(Y ′, Y ′). The inequality
(3.11) then implies((c/4) + 1)g ′(X′,X′)g ′(Y ′, Y ′) ≤ 0. By the hypothesis of Case (b), we
get(c/4) + 1 ≤ 0. On the other hand, the inequality (3.9) becomes(c/4) + 1 > 0. So we get
a contradiction.

We have provedc = −4. The inequality (3.3) then becomes

R′(X′, Y ′,X′, Y ′) ≤ −g ′(X′,X′)g ′(Y ′, Y ′) + g ′(X′, Y ′)2(3.12)

for tangent vector fieldsX′, Y ′ onB. Then we have

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV ) ≤ −g(X,X)g(AXV,AXV )
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for a vertical vector fieldV and for a horizontal vector fieldX. Hence

0 ≤ g(X,X)g(AXV,AXV ) = −g(X,X)2g(V , V ) .

Therefore the induced metrics on fibres are negative definite. �

By Lemma 3.10, we deduce the following proposition.

PROPOSITION 3.11. If π : Hn+r
s+r ′ → Bn

s is a semi-Riemannian submersion with con-

nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space Hn+r
s+r ′ of

index s + r ′ onto an n-dimensional isotropic semi-Riemannian manifold Bn
s of index s with

nonconstant curvature, then one of the following holds:
(1) n = 2m > 2, s = 2t, r = r ′ = 1 for some non-negative integers m, t, and Bn

s is
isometric to CHm

t .
(2) n = 4m > 4, s = 4t, r = r ′ = 3 for some non-negative integers m, t, and Bn

s is
isometric to HHm

t .
(3) n = 16, s ∈ {0, 8, 16}, r = r ′ = 7, and Bn

s is isometric to CaH 2
s/8.

PROOF. First, we shall discuss the cases + r ′ > 1. By Lemma 3.10,B is isometric to
one of the semi-Riemannian manifoldsCHm

t , HHm
t , CaH 2

t for somem > 1.
Let x ∈ B and letX′ ∈ TxB such thatg ′(X′,X′) �= 0, and letFX′ be the subspace in

TxB given by

FX′ = {Y ′ ∈ TxB | R′(X′, Y ′)X′ = −g ′(X′, Y ′)X′ + g ′(X′,X′)Y ′} .

Let p ∈ π−1(x) and letX be the horizontal lifting vector atp of X′. By O’Neill’s equa-
tions, we haveR′(π∗X,π∗Y, π∗X,π∗Z) = R(X, Y,X,Z) + 3g(A∗

XY,A∗
XZ) for horizontal

vectorsY, Z. SinceA∗
X : Hp → Vp is surjective and since the induced metrics on fibres are

nondegenerate, we getY ∈ kerA∗
X if and only if π∗Y ∈ FX′ . Thus

dim kerA∗
X = dimH − dimV = dimFX′ .

We have the following possibilities:
(1) Bn

s is isometric toCHm
t . Son = 2m, s = 2t . From the geometry of the complex

pseudo-hyperbolic space (see relation (3.4)), we get dimFX′ = dimH − 1. It follows that
r = r ′ = dimV = 1.

(2) Bn
s is isometric toHHm

t . Son = 4m, s = 4t . From the geometry of the quater-
nionic pseudo-hyperbolic space (see relation (3.5)), we get dimFX′ = dimH − 3. It follows
thatr = r ′ = dimV = 3.

(3) Bn
s is isometric to the Cayley pseudo-hyperbolic planeCaH 2

t . So n = 16,
s ∈ {0, 8, 16}. From the geometry of the Cayley pseudo-hyperbolic plane (see relation (3.6)),
we obtain dimFX′ = dimH − 7. Hencer = r ′ = dimV = 7.

Now, we discuss the remaining cases + r ′ = 1. Froms + r ′ = 1, we have either
(i) s = 0, r ′ = 1, or
(ii) s = 1, r ′ = 0.
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If s = 0, r ′ = 1, thenπ : Hn+r
1 → Bn is a semi-Riemannian submersion with totally

geodesic fibres from an anti-de Sitter space onto a Riemannian manifold. In this case, investi-
gated by Magid in [Mag], it follows thatB is isometric to the complex hyperbolic spaceCHm

andr = r ′ = 1.
For s = 1, r ′ = 0, we get, by Theorem 3.3, 1= q1 + q2r ≥ q1 + q2 with q1 + q2 =

k = n/(r + 1). Thusq1 + q2 = 1. It follows thatn = r + 1. HenceAX : V → X⊥ is
bijective. SinceR′(π∗X,π∗AXV, π∗X,π∗AXV ) = −4g(X,X)g(AXV,AXV ), we see that
B has constant curvature−4, which contradicts our assumption of nonconstant curvature of
the base space. �

We shall now discuss the case where the base space is of constant curvature. We give the
following obstruction to the existence of semi-Riemannian submersions in terms of the index
of base space.

LEMMA 3.12. There are no semi-Riemannian submersions π : Hn+r
s+r ′ → Bn

s with con-
nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space of index
s + r ′ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,
where 0 < s < n.

PROOF. LetX be a horizontal vector andV a vertical vector such thatg(X,X) �= 0 and
g(V , V ) �= 0. By O’Neill’s equations, we have

R′(π∗X,π∗AXV, π∗X,π∗AXV ) = −g(X,X)g(AXV,AXV ) + g(X,AXV )2

+ 3g(AXAXV,AXAXV )

= −g(X,X)g(AXV,AXV ) + 3g(X,X)2g(V , V )

= −4g(X,X)g(AXV,AXV ) .

If B has constant curvature, then the curvature ofB should be−4. Therefore, by O’Neill’s
equations (see (9.29c) in [Bes]), for a horizontal vectorY we get

g(AXY,AXY ) = −g(X,X)g(Y, Y ) + g(X, Y )2 .(3.13)

By polarization of (3.13), we get

g(AXY,AXZ) = −g(X,X)g(Y,Z) + g(X, Y )g(X,Z)

for horizontal vectorsY andZ . ThereforeAXA∗
XY = g(X,X)Y − g(X, Y )X.

Let A
∗,⊥
X : X⊥ → V be the restriction ofA∗

X to the orthogonal complement ofX

in H. ThenAXA
∗,⊥
X Y = g(X,X)Y for everyY ∈ X⊥, from which follows thatA∗,⊥

X is
injective. Hence dimH − 1 ≤ dimV . By Lemma 3.1, we getAX : V → X⊥ is injective. So
dimH − 1 ≥ dimV .

We proved that dimH − 1 = dimV, which means thatn = r + 1. If 0 < s < n,

then we can choose horizontal vectorsX, Y such thatg(X,X) = 1 andg(Y, Y ) = −1. Let
{v1, v2, . . . , vr } be an orthonormal basis of the tangent bundle of the fibreπ−1(π(p)), p ∈ M.
Since{X,AXv1, . . . , AXvr } and{Y,AY v1, . . . , AY vr } are orthonormal bases, by the proof of



SEMI-RIEMANNIAN SUBMERSIONS 197

Theorem 3.3, for everyi ∈ {1, . . . , r} we have

g(AXvi,AXvi) = −g(X,X)g(vi , vi ) = −εi ,

g(AY vi, AY vi) = −g(Y, Y )g(vi , vi) = εi .

It follows thats = r − r ′ ands = r ′ + 1. Thereforer = 2r ′ + 1 andn = 2r ′ + 2.
We shall prove that there are no semi-Riemannian submersionsπ : H 4r ′+3

2r ′+1 → B2r ′+2
r ′+1

with totally geodesic fibres. Since the fibreF = π−1(π(p)) is a(2r ′ + 1)-dimensional semi-
Riemannian manifold of indexr ′ and sinceB is a (2r ′ + 2)-dimensional semi-Riemannian
manifold of indexr ′ + 1, we can choose orthonormal spacelike vectorsY2r ′+2, . . . , Y3r ′+2

in TpF (i.e., g(Yi , Yj ) = δij for i, j ∈ {2r ′ + 2, . . . , 3r ′ + 2}) and orthonormal spacelike
vectorsY ′

3r ′+3, . . . , Y
′
4r ′+3 in Tπ(p)B (i.e., g ′(Y ′

α, Y ′
β) = δαβ for α, β ∈ {3r ′ + 3, . . . , 4r ′ +

3}). Let Y3r ′+3, . . . , Y4r ′+3 be the horizontal liftings ofY ′
3r ′+3, . . . , Y

′
4r ′+3, respectively. Let

Y1, . . . , Y2r ′+1 be orthonormal timelike vectors inTpH 4r ′+3
2r ′+1 (i.e.,g(Yl , Yt ) = −δlt for l, t ∈

{1, . . . , 2r ′ + 1}) such that they are orthogonal toY2r ′+2, . . . , Y4r ′+3. Then{Y1, . . . , Y4r ′+3}
is an orthonormal basis inTpH 4r ′+3

2r ′+1 . By definition,

H 4r ′+3
2r ′+1 ={(x0, x1, . . . , x4r ′+3)∈R4r ′+4 | −x2

0−x2
1−· · ·−x2

2r ′+1+x2
2r ′+2+· · ·+x2

4r ′+3 = −1} .

Let H̃ be the semi-Riemannian submanifold inH 4r ′+3
2r ′+1 defined by

H̃ ={(x0, 0, 0, . . . , 0, x2r ′+2, . . . , x4r ′+3)∈R4r ′+4 | −x2
0+x2

2r ′+2+· · ·+x2
4r ′+3=−1, x0>0} .

It is easy to see that̃H is a complete totally geodesic submanifold inH 4r ′+3
2r ′+1 and thatH̃ is

isometric to a hyperbolic space. Let{X2r ′+2, . . . , X4r ′+3} be an orthonormal basis inTp̃H̃ ,

p̃ ∈ H̃ , and let{X1, . . . , X2r ′+1} ⊂ Tp̃H 4r ′+3
2r ′+1 be an orthonormal basis of the normal bundle

of the submanifoldH̃ . SinceH 4r ′+3
2r ′+1 is a frame-homogeneous space (see [One2], or a strong

isotropic manifold, cf. [Wol]), we have an isometryφ : H 4r ′+3
2r ′+1 → H 4r ′+3

2r ′+1 such thatφ(p̃) = p

andφ(Xi) = Yi for eachi ∈ {1, . . . , 4r ′ + 3}. HenceH = φ(H̃ ) is a complete, totally geo-
desic submanifold inH 4r ′+3

2r ′+1 andTpH = span{Y2r ′+2, . . . , Y4r ′+3}. ThereforeH has constant
curvature−1. By Lemma 14 on page 105 in [One2], one sees thatH is a unique complete,
totally geodesic semi-Riemannian submanifold such thatTpH = span{Y2r ′+2, . . . , Y4r ′+3}.

If r ′ ≥ 1, then the base spaceB is simply connected by Proposition 3.8. HenceB is
isometric to a pseudo-hyperbolic space. LetB ′ be a unique semi-Riemannian submanifold of
the base spaceB2r ′+2

r ′+1 such thatB ′ is complete, totally geodesic inB2r ′+2
r ′+1 , and thatπ(p) ∈ B ′

andTπ(p)B
′ = span{Y ′

3r ′+3, . . . , Y
′
4r ′+3}, constructed as above ifr ′ > 0, or chosen to be the

image of the spacelike geodesic inB passing throughπ(p), with velocity in π(p) equal to
Y ′

3, if r ′ = 0. ThenB ′ is isometric toHr ′+1(−4).
First, we shall prove thatπ(H) = B ′. Let q ′ ∈ B ′. There is a unique geodesicτ ′

in B ′ joining π(p) with q ′, and satisfyingτ ′(0) = π(p), τ ′(1) = q ′. SinceB ′ is totally
geodesic inB, τ ′ is a geodesic inB. Let τ be the horizontal lifting ofτ ′, with p = τ (0).
Sinceτ̇ (0) is the horizontal lifting inp of τ̇ ′(0) ∈ Tπ(p)B

′ = span{Y ′
3r ′+3, . . . , Y

′
4r ′+3}, we
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obtainτ̇ (0) ∈ TpH . SinceH was chosen to be totally geodesic inH 4r ′+3
2r ′+1 , it follows thatτ is

contained inH . Thusq ′ = π(τ(1)) ∈ π(H). ThereforeB ′ ⊂ π(H).
Let q ∈ H . SinceH is isometric to the real hyperbolic spaceH 2r ′+2, there is a unique

geodesicγ in H joining p with q. We denote byX = h(γ̇ (0)) and V = v(γ̇ (0)) the
horizontal and vertical components ofγ̇ (0), respectively. IfX = 0, then the geodesicγ is
contained in the fibreπ−1(π(p)), since the fibres are totally geodesic. Henceπ(q) = π(p) ∈
B ′. If V = 0, thenγ is a horizontal geodesic and henceπ ◦ γ is a geodesic inB. SinceB ′ is
totally geodesic inB, the geodesicπ ◦ γ is contained inB ′. Thereforeπ(q) ∈ B ′.

ForX �= 0, V �= 0, we denote byγ0 the geodesic given by the initial conditionsγ0(0) =
p andγ̇0(0) = h(γ̇ (0)) ∈ TpH . Let H2 be the unique complete totally geodesic submanifold
in H passing throughp with TpH2 = span{X,V }. SinceH2 is isometric to a real hyperbolic
plane, we can choose a pointq0 ∈ H2 on the geodesicγ0 such that there exists a unique
geodesic inH2, denoted byγ1, joining q0 with q, and having the velocity vector atq0 equal
to the parallel translation alongγ0 of the vectorwV for some constantw ∈ R. SinceH2 is
totally geodesic inH andH is totally geodesic inH 4r ′+3

2r ′+1 , it follows thatγ1 is a geodesic in

H 4r ′+3
2r ′+1 . Since the fibres are totally geodesic, we obtain thatγ1 is contained inπ−1(π(q)).

Thusπ(q0) = π(q). Sinceγ0 is a horizontal geodesic,π ◦ γ0 is a geodesic joiningπ(p)

with π(q0) = π(q), which has the initial velocityπ∗γ̇0(0) ∈ Tπ(p)B
′. The geodesicπ ◦ γ0 is

contained inB ′, becauseB ′ is totally geodesic. Henceπ(q) ∈ B ′. We proved thatπ(H) =
B ′.

Let π̃ : H → B ′ be the restriction ofπ to H . It is easy to see that̃π is a Riemannian
submersion. We need to prove that the fibreπ̃−1(π(p)) is totally geodesic inp. Let γ be
a geodesic inH such thatγ (0) = p and γ̇ (0) ∈ Tpπ̃−1(π(p)) = kerπ̃∗p. Then 0 =
π̃∗(γ̇ (0)) = π∗(γ̇ (0)). Henceγ̇ (0) is vertical. Since the fibres ofπ are totally geodesic,γ is
contained inπ−1(π(p)). Thereforeγ (t) ∈ π̃−1(π(p)) for everyt ∈ R. Sinceπ̃ : H → B ′ is
a Riemannian submersion with the fibreπ̃−1(π(p)) totally geodesic inp, we get, by O’Neill’s
equations (see (9.29b) in [Bes]) applied atp, that

0 ≤ g(AXV,AXV ) = −g(X,X)g(V , V ) ≤ 0

for everyX ∈ H̃p, V ∈ Ṽp. So we get a contradiction. �

From Lemma 3.12, we obtain the following proposition.

PROPOSITION 3.13. If π : Hn+r
s+r ′ → Bn

s is a semi-Riemannian submersion with con-
nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space of index
s + r ′ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,
then one of the following holds:

(1) n = s = 2t , r = r ′ = n − 1, B is isometric to H 2t

2t (−4) and t ∈ {1, 2, 3}.
(2) n = 2t , s = 0, r = r ′ = n − 1, B is isometric to H 2t

(−4) and t ∈ {1, 2, 3}.
PROOF. If B has constant curvature, then the curvature ofB is −4 andn = r + 1. By

Lemma 3.12, we then get index(B) ∈ {0, dimB}.
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If index(B) = dimB, then, by Lemma 3.7, we obtainr = r ′. Hence, by [Ran1], we
have (1).

If index(B) = 0, then, by [Ba-Ia], we have (2).
The idea of the proof in [Ran1] and [Ba-Ia] is to see that the tangent bundle of any fibre is
trivial and that fibres are diffeomorphic to spheres, and then to apply a well-known result of
Adams which claims that the spheres of dimensions 1, 3 and 7 are the only spheres with trivial
tangent bundle. �

The next theorems solve the equivalence problem of semi-Riemannian submersions from
real and complex pseudo-hyperbolic spaces.

THEOREM 3.14. If π1, π2 : Hn+r
s+r ′ → Bn

s are two semi-Riemannian submersions with
connected totally geodesic fibres from a pseudo-hyperbolic space of index s + r ′ > 1 and the
dimension of the fibres is r ∈ {1, 3}, then π1 and π2 are equivalent.

PROOF. Let p, q ∈ Hn+r
s+r ′. Let

L = {L0, A1L0v1, . . . , A1L0vr , . . . , Lk−1, A1Lk−1v1, . . . , A1Lk−1vr } ,

L′ = {L′
0, A2L′

0
v′

1, . . . , A2L′
0
v′
r , . . . , L

′
k−1, A2L′

k−1
v′

1, . . . , A2L′
k−1

v′
r }

be two orthonormal bases ofH1 alongπ−1
1 (π1(p)) and ofH2 alongπ−1

2 (π2(q)) constructed
as in the proof of Theorem 3.3 such thatgp(Lα,Lβ) = gq (L′

α, L′
β) = εαδαβ for α, β ∈

{0, . . . , k − 1}, gp(vi , vj ) = gq(v′
i , v

′
j ) = εiδij for i, j ∈ {1, . . . , r} and forr = 3, v3p =

(∇̂v1v2)(p) andv′
3q = (∇̂v′

1
v′

2)(q).

Let φ : TpHn+r
s+r ′ → TqHn+r

s+r ′ be the linear map given byφ(Lα) = L′
α, φ(A1Lαvi) =

A2L′
α
v′
i , φ(vi) = v′

i for everyα andi. In a manner similar to the proof of Theorem 3.3, we
obtainφ(A1EF) = A2φ(E)φ(F ) for everyE, F ∈ TpHn+r

s+r ′. By Corollary 2.3.14 in [Wol],

φ extends to an isometry onHn+r
s+r ′, denoted byf : Hn+r

s+r ′ → Hn+r
s+r ′, satisfyingf (p) = q

andf∗p = φ. From Theorem 2.4 it follows thatf induces an isometrỹf on B, such that
f̃ ◦ π = π ◦ f . Henceπ1 andπ2 are equivalent. �

THEOREM 3.15. If π1, π2 : CH 2n+1
2s+1 → HHn

s are two semi-Riemannian submersions
with connected complex totally geodesic fibres from a complex pseudo-hyperbolic space, then
π1 and π2 are equivalent.

PROOF. Let θ : H 4n+3
4s+3 → CH 2n+1

2s+1 be the canonical semi-Riemannian submersion.

By Theorem 2.5 in [Esc2], we see thatπ̃1 = π1 ◦ θ : H 4n+3
4s+3 → HHn

s and π̃2 = π2 ◦ θ :
H 4n+3

4s+3 → HHn
s are semi-Riemannian submersions with totally geodesic fibres. We denote

by Ã1, Ã2, A1, A2, A O’Neill’s integrability tensors ofπ̃1, π̃2, π1, π2, θ, respectively.
In order to reduce the proof of the equivalence theorem of semi-Riemannian submersions
from a complex pseudo-hyperbolic space to that from a pseudo-hyperbolic space, we need to
establish relations among the integrability tensorsÃ1, A1, A.

First, we prove thatθ∗Ã1XY = A1θ∗Xθ∗Y for π̃1-basic vector fieldsX and Y . Let
p ∈ H 4n+3

4s+3 . Let w′
1, w′

2 be two orthonormalπ1-vertical vectors inTθ(p)CH 2n+1
2s+1 and letw1,
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w2 be theθ -horizontal liftings atp of w′
1, w′

2, respectively. Letw3 be a unitθ -vertical vector
in TpH 4n+3

4s+3 . Then{w1, w2, w3} gives an orthonormal basis ofṼ1p. Since the induced metrics
on the fibres of̃π1 are negative definite, we have

Ã1XY = −g(∇XY,w1)w1 − g(∇XY,w2)w2 − g(∇XY,w3)w3 .

Thus

θ∗Ã1XY = −g ′(∇′
θ∗Xθ∗Y, θ∗w1)θ∗w1 − g ′(∇′

θ∗Xθ∗Y, θ∗w2)θ∗w2 = A1θ∗Xθ∗Y

for π̃1-basic vector fieldsX andY, whereg ′ denotes the metric onCH 2n+1
2s+1 and∇′ is the

Levi-Civita connection ofg ′.
Let X be theπ̃1-horizontal lifting along the fibrẽπ−1

1 (π̃1(p)) of some unit vector in
Tπ̃1(p)HHn

s . Let Y1, Y2, Y3 be theπ̃1-horizontal liftings along the fibrẽπ−1
1 (π̃1(p)) of

π̃1∗Ã1Xw1, π̃1∗Ã1Xw2, π̃1∗Ã1Xw3, respectively. Letvi = Ã1XYi for i ∈ {1, 2, 3}. As in
Theorem 3.3, we choosew3 = g(X,X)−1

(∇v1v2
)
(p), which implies thatv3 = ∇v1v2 (see

Lemma 3.6).
We remark thatv3 = Ã1XY3 is aθ -vertical vector field along the fibreθ−1(θ(p)). Indeed,

we have

θ∗(Ã1XY3(p
′)) = (A1θ∗Xθ∗Y3)(θ(p′)) = (A1θ∗Xθ∗Y3)(θ(p)) = θ∗(Ã1XY3(p))

= θ∗(A1XA1Xw3) = g(X,X)θ∗w3 = 0

for anyp′ ∈ θ−1(θ(p)).
Sincev1, v2 are orthogonal to the vertical vector fieldv3 alongθ−1(θ(p)), we see that

v1, v2 are θ -horizontal. Sinceθ∗(Ã1XYi(p
′)) = (A1θ∗Xθ∗Yi)(θ(p′)) for p′ ∈ θ−1(θ(p))

and for i ∈ {1, 2}, we obtain thatv1, v2 areθ -basic vector fields alongθ−1(θ(p)). Thus
h∇v3v1 = Av1v3 along θ−1(θ(p)). Hereh and v denote theθ -horizontal andθ -vertical
projections, respectively. We also obtain thatv∇v3v1 = −g(∇v3v1, v3)v3 = 0. Therefore,
Av1v3 = ∇v3v1 = v2 alongθ−1(θ(p)).

We shall prove that̃A1Xv3 = AXv3 alongθ−1(θ(p)) for everyπ̃1-basic vector fieldX
alongπ̃−1

1 (π̃1(p)). We first obtain alongθ−1(θ(p)) that

Ã1Xv3 = ∇Xv3 + g(∇Xv3, v1)v1 + g(∇Xv3, v2)v2 + g(∇Xv3, v3)v3 ,

g(∇Xv3, v1) = g(AXv3, v1) = −g(v3, AXv1) = g(v3, Av1X) = −g(Av1v3,X)

= −g(v2,X) = 0

for a π̃1-basic vector fieldX alongπ̃−1
1 (π̃1(p)). Analogously, we getg(∇Xv3, v2) = 0. Thus

Ã1Xv3 = ∇Xv3 + g(∇Xv3, v3)v3 = AXv3

alongθ−1(θ(p)) for everyπ̃1-basic vector fieldX alongπ̃−1
1 (π̃1(p)).

Let L̃ = {L0 = X, Ã1L0v1, Ã1L0v2, Ã1L0v3, . . . , Ln−1, Ã1Ln−1v1, Ã1Ln−1v2, Ã1Ln−1v3}
be an orthonormal basis of̃H1 along the fibreπ̃−1

1 (π̃1(p)) constructed as in Theorem 3.3, for
the semi-Riemannian submersionπ̃1. From the proof of Theorem 3.3, we have

g(Ã1Ã1Lj
v1

v3, Ã1Llv2) = 0
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for j �= l, and
g(Ã1Ã1Lj

v1
v3, Lt ) = 0

for 0 ≤ j, t ≤ n − 1. We then obtain along̃π−1
1 (π̃1(p)) that

g(Ã1Ã1Lj
v1

v3, Ã1Lj v2) = −g(v3, Ã1Ã1Lj
v1

Ã1Lj v2)

= −g(v3,∇v1v2)g(Lj , Lj )

= −g(v3, v3)g(Lj , Lj ) = −g(v2, v2)g(Lj , Lj )

= g(Ã1Lj v2, Ã1Lj v2) ,

from which followsÃ1Lj v2 = Ã1Ã1Lj
v1

v3. HenceÃ1Lj v2 = AÃ1Lj
v1

v3, becauseÃ1Lj v1 is

π̃1-basic. We also havẽA1Lj v3 = ALj v3.

LetL = L̃ ∪ {v1, v2}. Summarizing all the above, we obtain that

L = {L0, AL0v3, Ã1L0v1, AÃ1L0v1
v3, . . . , Ln−1, ALn−1v3, ÃLn−1v1, AÃ1Ln−1v1

v3, v1, Av1v3}
is an orthonormal basis of theθ -horizontal spaceH along the fibreθ−1(θ(p)) andL satisfies
all conditions imposed in the construction of the basisL in the proof of Theorem 3.3. We
notice thatv3 = AXY3 alongθ−1(θ(p)), and that alongθ−1(θ(p)), Y3 is equal to theθ -
horizontal lifting ofθ∗AXw3.

Let q ∈ H 4n+3
4s+3 . Let

L̃′ = {L′
0, Ã2L′

0
v′

1, Ã2L′
0
v′

2, Ã2L′
0
v′

3, . . . , L
′
n−1, Ã2L′

n−1
v′

1, Ã2L′
n−1

v′
2, Ã2L′

n−1
v′

3}
be an orthonormal basis of̃H2 along π̃−1

2 (π̃2(q)) constructed in the same way asL̃, but
for the semi-Riemannian submersionπ̃2 (see the proof of Theorem 3.3), in such a way that
gp(Lα,Lβ) = gq (L′

α, L′
β) for 0 ≤ α, β ≤ n−1, gp(vi , vj ) = gq (v′

i , v
′
j ) for 1 ≤ i, j ≤ 3, and

v′
3(q) = (∇v′

1
v′

2)(q). Let φ : TpH 4n+3
4s+3 → TqH 4n+3

4s+3 be the linear map given byφ(vi) = v′
i ,

φ(Ã1Lαvi) = Ã2L′
α
v′
i for 0 ≤ α ≤ n − 1 and for 1≤ i ≤ 3.

By Corollary 2.3.14 in [Wol],φ extends to an isometryf : H 4n+3
4s+3 → H 4n+3

4s+3 such that

f (p) = q andf∗p = φ. By the proof of Theorem 3.3, we havef∗Ã1EF = Ã2f∗Ef∗F for
everyE, F ∈ TpH 4n+3

4s+3 . By the proof of Theorem 3.14 and by Theorem 2.4,f induces an

isometry onCH 2n+1
2s+1 , denoted byf̃ : CH 2n+1

2s+1 → CH 2n+1
2s+1 , such thatθ ◦ f = f̃ ◦ θ . Since

theπ1-vertical space atθ(p) is spanned by{θ∗v1, θ∗v2}, since theπ2-vertical space atθ(q) is
spanned by{θ∗v′

1, θ∗v′
2}, and sincef̃∗(θ∗vi) = θ∗v′

i , for i ∈ {1, 2}, we see thatf̃∗ maps the
π1-vertical space atθ(p) into theπ2-vertical space atθ(q). For π̃1-horizontal vectorsX and
Y we obtain

f̃∗A1θ∗Xθ∗Y = f̃∗θ∗Ã1XY = θ∗f∗Ã1XY

= θ∗Ã2f∗Xf∗Y = A2θ∗f∗Xθ∗f∗Y
= A2f̃∗(θ∗X)f̃∗(θ∗Y ) .

Therefore, by Theorem 2.4, we see thatπ1 andπ2 are equivalent. �
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REMARK. We notice that our equivalence theorems can be applied, in particular, to
Riemannian submersions from a sphere with totally geodesic fibres of dimension less than or
equal to 3, and for Riemannian submersions with complex totally geodesic fibres from a com-
plex projective space. Unlike those in [Esc1], [Esc2], [Ran1], our proofs of the equivalence
theorems are intrinsic, we do not need to assumethe existence of any specific structure on the
base space, such as complex or quaternionic one. In Theorem 3.15, we need to assume only
that the fibres are 2-dimensional and that the induced metrics on fibres are negative definite.

Summarizing all results above, we now prove the main theorems.

PROOF OFTHEOREM 1.1. If s + r ′ > 1, thenHn+r
s+r ′ is simply connected and hence,

by Theorem 3.3,B is an isotropic semi-Riemannian manifold andr ∈ {1, 3}. By Propositions
3.11 and 3.13, we see that the base space of the semi-Riemannian submersion is isometric
to a complex pseudo-hyperbolic space if the dimension of fibres is one, or to a quaternionic
pseudo-hyperbolic space if the dimension of fibres is 3. In Theorem 3.14 we solved the
equivalence problem. The existence problem is solved by the explicit construction given in
the preliminaries (see Examples 1 and 2).

If s + r ′ = 1, then either (i)s = 1, r ′ = 0, or (ii) s = 0, r ′ = 1.
(i) If s = 1, r ′ = 0, then, by the proof of Proposition 3.11,B has constant curvature.

By Theorem 3.3, (1) we getn = k(r + 1) ≥ 2, sincer ≥ 1. Hence, by Lemma 3.12, there are
no such semi-Riemannian submersions.

(ii) If s = 0, r ′ = 1, thenπ is a semi-Riemannian submersion from an anti-de Sitter
space onto a Riemannian manifold. By [Mag],π is equivalent to the canonical submersion
π : H 2m+1

1 → CHm. This falls in the case (a). �

PROOF OFTHEOREM 1.2. If the dimension of the fibres is less than or equal to 3, then,
by Theorem 1.1,π is equivalent to the canonical semi-Riemannian submersions:

(a) H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m, or

(b) H 4m+3
4t+3 → HHm

t , 0 ≤ t ≤ m.

Now we assume that the dimension of the fibres is greater than or equal to 4.
(A) If we assume that the dimension of the fibres is greater than or equal to 4 andB

is an isotropic semi-Riemannian manifold with non-constant curvature, then, by Proposition
3.11,B is isometric toCaH 2

t , t ∈ {0, 1, 2}, and the dimension of the fibres isr = r ′ = 7.
By Proposition 2.7, there are no such semi-Riemannian submersions with base spaceCaH 2

t .
Therefore, the assumptions (A) andr ≥ 4 imply thatB has constant curvature, and hence, by
Lemma 3.12, we obtains = index(B) ∈ {0, dim(B)}.

(B) If index(B) = 0 andr ≥ 4, then, by [Ba-Ia], the semi-Riemannian submersionπ

is equivalent to the canonical semi-Riemannian submersionH 15
7 → H 8(−4). If index(B) =

dim(B), then, by Lemma 3.7, we getr ′ = r. By changing the signs of the metrics on the base
and on the total space,π becomes a Riemannian submersion with connected totally geodesic
fibres from a sphere onto a Riemannian manifold. So, by [Esc1] and [Ran1], one obtains the
conclusion. �
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PROOF OFTHEOREM 1.3. Letθ : H 2n+1
2s+1 → CHn

s be the canonical semi-Riemannian

submersion. By Theorem 2.5 in [Esc2], one obtains thatπ ◦ θ : H 2n+1
2s+1 → B is a semi-

Riemannian submersion with connected totally geodesic fibres.
(A) If the dimension of the fibres ofπ is r and 1≤ r ≤ 2, then the dimension of the

fibres of the semi-Riemannian submersionπ ◦ θ is less than or equal to 3 and greater than or
equal to 2. By Theorem 1.1,B is isometric toHHm

t and 2n + 1 = 4m + 3, 2s + 1 = 4t + 3.
Thenn = 2m + 1, s = 2t + 1. By Theorem 3.15, we see thatπ : CH 2m+1

2t+1 → HHm
t is

equivalent to the canonical semi-Riemannian submersion.
(B) and (C) IfB is an isotropic semi-Riemannian manifold or if index(B) ∈ {0, dimB},

then, by Theorem 1.2,π ◦ θ is equivalent to one of the following canonical semi-Riemannian
submersions:

H 2m+1
2t+1 → CHm

t , 0 ≤ t ≤ m ;
H 4m+3

4t+3 → HHm
t , 0 ≤ t ≤ m ;

H 15
7+8t → H 8

8t (−4) , t ∈ {0, 1} .

If the dimension of the fibres ofπ is greater than or equal to 3, then the dimension of the
fibres ofπ ◦θ is greater than or equal to 4. Hence, in this case,π ◦θ is equivalent toH 15

7+8t →
H 8

8t (−4), t ∈ {0, 1}. Fort = 1, the semi-Riemannian submersionπ is, after a change of signs
of the metrics on the total space and on the base space, of typeπ : CP 7 → S8(4). For t = 0,

π is of typeπ : CH 7
3 → H 8(−4). In [Ran1] (for caset = 1) and [Ba-Ia] (for caset = 0),

it is proved that there are no such semi-Riemannian submersions with totally geodesic fibres.
We proved that the dimension of fibres ofπ is less than or equal to 2. �

PROOF OFTHEOREM 1.4. We suppose that there are such semi-Riemannian submer-
sions. It is well-known that any quaternionic submanifold inHHn

s is totally geodesic. Let
η : H 4n+3

4s+3 → HHn
s , ξ : CH 2n+1

2s+1 → HHn
s , be the canonical semi-Riemannian submersions.

By Theorem 2.5 in [Esc2], we see thatπ ◦ η : H 4n+3
4s+3 → B is a semi-Riemannian submersion

with connected totally geodesic fibres. We remark that the dimension of the fibres ofπ ◦ η

is greater than or equal to 4. Thus, by Theorem 1.2, we see thatπ ◦ η is equivalent to the
canonical semi-Riemannian submersion

H 15
7 → H 8(−4) , or H 15

15 → H 8
8 (−4) .

It follows thatπ is one of the following types:
(i) π : HH 3

1 → H 8(−4), or
(ii) π : HH 3

3 → H 8
8 (−4).

In [Ucc], Ucci proved that there are no Riemannian submersions with fibresHP 1 from HP 3

ontoS8(4). Therefore, Case (ii) is not possible.
The fibres of semi-Riemannian submersionπ ◦ ξ : CH 7

3 → H 8(−4) are totally geo-
desic by Theorem 2.5 in [Esc2], and complex submanifolds, since the horizontal lifting of
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the tangent space of the quaternionic lineπ−1(π(p)) is invariant under the canonical com-
plex structure onCH 7

3 . By [Ba-Ia], there are no semi-Riemannian submersions with complex
totally geodesic fibres fromCH 7

3 ontoH 8(−4). Thus Case (i) is impossible. �
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