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Abstract. We classify semi-Riemannian submersions with connected totally geodesic
fibres from a real pseudo-hyperbolic space onto a semi-Riemannian manifold under the as-
sumption that the dimension of the fibres is less than or equal to three. Also, we obtain the
classification of semi-Riemannian submers with connected complex totally geodesic fi-
bres from a complex pseudo-hyperbolic space onto a semi-Riemannian manifold under the
assumption that the dimension of the fibres is less than or equal to two. We prove that there
are no semi-Riemannian submersions with @mted quaternionic fibres from a quaternionic
pseudo-hyperbolic space onto a Riemannian manifold.

1. Introduction and main results. Riemannian submersions, introduced by O’Neill
[Onel] and Gray [Gra], have been used by many authors to construct specific Riemannian
metrics. A systematic exposition can be found in Besse’s book [Bes]. In this paper, we obtain
classification results for semi-Riemannian submersions with totally geodesic fibres.

We first recall briefly some related work oretlelassification problem of semi-Rieman-
nian submersions. Escobales [Escl, Esc2] and Ranjan [Ranl] classified Riemannian submer-
sions with connected totally geodesic fibres fromnasphereS”, and with connected com-
plex totally geodesic fibres from a complex projectivepaceCP”, respectively. Ucci [Ucc]
showed that there are no Riemannian submersions with fPésrom the complex projec-
tive spaceCP’ onto S8(4), and with fibresH P from the quaternionic projective spakeP®
onto $8(4). In [Ran2], Ranjan obtained a classification theorem for Riemannian submersions
with connected totally geodesic fibres from argaact simple Lie group. Gromoll and Grove
obtained in [G-G1] that, up to equivalence, the only Riemannian submersions of spheres (with
connected fibres) are the Hopf fibrations, except possibly for fibrations of the 15-sphere by
homotopy 7-spheres. This classification was invoked in the proof of the Diameter Rigidity
Theorem (see [G-G2]) and of the Radius Rigidity Theorem (see [Wil]). Using an approach
different from Gromoll and Grove [G-G1], Wilking [Wilk] proved that a Riemannian sub-
mersionz : S” — B’ is metrically equivalent to the Hopf fibration fém, b) = (15, 8)
and obtained an improved version of the Diameter Rigidity Theorem as a consequence of his
classification theorem.
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In comparison, there are few classificatiornulésfor semi-Riemannian submersions, and
the consequences seem to be at least as important as those for Riemannian submersions. In
[Mag], Magid proved that the only semi-Riemannian submersions with totally geodesic fibres
from an anti-de Sitter space onto a Riemannian manifold are the canonical semi-Riemannian
submersionslem+l — CH™. In [Ba-la], the present author and Stere laciassified semi-
Riemannian submersions with connected totally geodesic fibres from a pseudo-hyperbolic
space onto a Riemannian manifold, and with connected complex totally geodesic fibres from
a complex pseudo-hyperbolic space onto a Riemannian manifold.

The aim of this work is to prove new classification results in the theory of semi-Rieman-
nian submersions analogous to those in Riemannian geometry. It is my pleasure to thank
Professor Stere lasudor useful discussions on this subject.

Now, we list the main results proved in this paper.

THEOREM 1.1. Let 7 : H!'[), — B! be a semi-Riemannian submersion with con-
nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-
fold. If the dimension of the fibresis less than or equal to 3, then r is equivalent to one of the
following canonical semi-Riemannian submersions:

(@ Hyi'—CHM 0<t<m.

(b) Hy"i3 > HH" 0<t<m.

THEOREM 1.2. Letx : Hs”++r’, — B!' be a semi-Riemannian submersion with con-
nected totally geodesic fibres from a pseudo-hyperbolic space onto a semi-Riemannian mani-
fold. Assume that one of the following conditionsis satisfied :

(A) B isan isotropic semi-Riemannian manifold, which means that for any x € B/
and any real number ¢, the group of isometries | (BY, ¢’) preserving x actstransitively on the
set of all nonzero tangent vectors X at x for which ¢/(X, X) =1, or

(B) indexB) € {0, dimB}.

Then 7 is equivalent to one of the following canonical semi-Riemannian submersions:

(@ Hy'i'—CHM 0<t<m.
(b) Hy"83 > HH" 0<t<m.

(©) HP>s, — HE(—4). 1 {0, 1}.

THEOREM 1.3. Let 7 : CH!' — B be a semi-Riemannian submersion from a com-
plex pseudo-hyperbolic space onto a semi-Riemannian manifold. Assume that the fibres are
connected complex totally geodesic submanifolds, and one of the following conditions is sat-
isfied:

(A) Thereal dimension of the fibresisr < 2, or

(B) B isanisotropic semi-Riemannian manifold, or

(C) indexB) € {0, dim B}.

Then 7 is equivalent to the canonical semi-Riemannian submersion

CHZ"i' — HH]", 0<1<m.
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THEOREM 1.4. There exist no semi-Riemannian submersions 7 : HH;' — B with
connected quaternionic fibres froma quaternionic pseudo-hyperbolic space onto an isotropic
semi-Riemannian manifold or onto a semi-Riemannian manifold of index B) € {0, dim(B)}.

2. Preliminariesand examples. In this section we recall seval notions and results
which will be needed throughout the paper. We also exhibit the construction of canonical
semi-Riemannian submersions.

DEFINITION 2.1. Let(M, g) be an(n + r)-dimensional connected semi-Riemannian
manifold of indexs +r’, and(B, ¢’) ann-dimensional connected semi-Riemannian manifold
of indexs, where 0< s < n, 0 < r’ < r. A semi-Riemannian submersion (see [OneZ2)) is a
smooth mapr : M — B which is surjective and satisfies the following axioms:

(@) 4|, is surjective for allp € M;

(b) the fibrest=1(b) , b € B, are semi-Riemannian submanifoldsiat

(c) =, preserves scalar products of vectors normal to fibres.

We shall always assume that the fibres are connected, the dimension of the fibiés-dim
dimB > 0 and dimB > 0. The vectors tangent to fibres are called vertical and those normal
to fibres are called horizontal. We denotelbthe vertical distribution and byt the horizontal
distribution.

The geometry of semi-Riemannian submersions is characterized by O’Neill's tédhsors
A (see [Onel], [One2)) defined for vector fiel#s F on M by

AgF = hVgvF + vVyLphF |
T F = hVygvF + vVyghF

whereV is the Levi-Civita connection of, andv andi denote the orthogonal projections on
V and’H, respectively. For basic properties of O’Neill's tensors see [Onel], [One2], [Bes] or
[lan].

DEFINITION 2.2. (i) A vector fieldX on M is said to bébasicif X is horizontal and
w-related to a vector field’ on B.

(i) A vector field X along the fibrer~1(x), x € M, is said to bebasic along 7 ~(x)
if X is horizontal andr.., X (p) = 7., X (¢) for everyp, g € 7= 1(x).

We notice that each vector field’ on B has a unique horizontal lifX to M which
is basic. For a vertical vector field and a basic vector field we haverVy X = AxV
(see [Onel]). We denote b§, R’ and R the Riemann curvature tensors &f, B and of
the fibrex ~1(x), x € M, respectively. We choose the convention for the curvature tensor
R(E,F) =VgVr — VrVE — Vg, . The Riemann curvature tensor is defined by

R(E,F,G,H) =g(R(G,H)F,E).

For O’Neill’s equations of a semi-Riemannian submersion we refer to [Onel] or [Bes].
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DEFINITION 2.3. Two semi-Riemannian submersionst’ : (M, g) — (B, ¢') are
said to beequivalent if there exists an isometry of M which induces an isometr§ of B so
thatn’ o f = f om. The pair(f, f) is called abundleisometry.

We shall need the following theorem, which is the semi-Riemannian version of Theorem
2.2in [Escl].

THEOREM 2.4. Let w1, 72 : M — B be semi-Riemannian submersions from a com-
plete connected semi-Riemannian manifold M onto a semi-Riemannian manifold B. Assume
that the fibres of these submersions are connected and totally geodesic. Let f be an isometry
of M satisfying the following properties at a given point p € M:

1) fip : ToM — TppyM maps Hy, onto Hoy(py, Where H; denote the horizontal
distributions of r; for i € {1, 2}.

(2) fyA1pF = ApppfuF for every E, F € T,M, where A; are the integrability
tensors associated with ;.

Then f induces an isometry f of B so that the pair (f, f) is a bundle isometry between 71
and ir2. In particular, 1 and 2 are equivalent.

Escobales’s proof of Theorem 2.2 in [Escl], also works in this semi-Riemannian case.
He proves that for any € B which can be joined withr1(p) by a geodesic we have:

(i) foreveryx e nfl(b) fox 1 TeM — Tf(x)M mapsHi. ontngf(x), and

(i)  f maps the fibrer; L) into the flbreyr2 (m2(f (x))) with x € ).
We notice that forany € m; L(b) with b € B, which can be joined Wlth'l(p) by a geodesic,
the conditions (1) and (2) are also satisfied for the peinBinceM is connectedpB is also
connected. Therefore, any poihte B can be joined withr1(p) by a broken geodesic.
Repeating the argument above, for any corner point of this broken geodesic, we see that for
anyb € B, f maps the fibrer; *(b) into a fibre.

DEFINITION 2.5. Let(, -) be the symmetric bilinear form dR”+1 given by

(x,y) = sz)’z+ Z Xi Vi

i=s+1
forx = (xo, ..., xm),y = (yo, ... , ym) € R"*L. For anyc < 0 and any positive integet
let H"(c) = {x € R""1| (x, x) = 1/c} be the semi-Riemannian submanifold of
R = (R ds? = —dx®@dx®— - —dx’ @dx* +dx* T @dx* T4+ dx" @dx™) .

H!"(c) is called then-dimensional (eal ) pseudo-hyperbolic space of indexs.

We notice thaf{;" (¢) has constant sectional curvatatavhose curvature tensor is given
by R(X,Y, X,Y) =c(g(X, X)g(Y,Y)—g(X, Y)?). We shall denote simpli;" = H"(—1).
It should be remarked thai]* can be written as a homogeneous space, nafgly =
SOG+1,m—s5)/SO(s,m —s), szyn_ﬁl =SU(Gs+1,m—s)/SU(s,m —s), andHi"i? =
Sp(s +1,m —s)/Sp(s,m — s) (see [Wol]).
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DEFINITION 2.6. Let(-, -) be the Hermitian form o€”*! given by

S m
(z,w) = — Zziuii + Z Zi Wi
i=0 i=s+1
forz = (zo,...,zm), w = (wo, ..., wy) € C"L. Forc < 0, let M(c) be the real hyper-
surface ofC"*1 given by M (c) = {z € C"*1 | (z,z) = 4/c}, which is endowed with the
induced metric of

(C" 1 ds? = —d?@d°— - —dz* ®dT +d’ T @dTT + -+ d" ®d7T).

The natural action o' = {¢’? | # € R} onC™*! induces an action oM (c). LetCH" (c) =
M(c)/S* endowed with the unique indefinite Kahler metric of indexsRch that the projec-
tion M(c) — M (c)/S* becomes a semi-Riemannian submersion (see [Ba-Rd])" (c) is
called thecomplex pseudo-hyperbolic space.

Notice thatCH]"(c) has constant holomorphic sectional curvaturevhose curvature
tensoris given byR (X, ¥, X, Y) = (¢/4)(g(X, X)g(Y, Y)—g(X, Y)2+3¢(IoX, Y)?), where
Iy is the natural complex structure @H." (¢). We shall denote simpl¢H;" = CH"(—4).
It is well-known thatCH" is a homogeneous space, namélif* = SU(s + 1, m — )/
S(UMU(s,m —s)) andCszy"ﬁl =Sps+1,m—s)/UQ)Sp(s,m — s) (see [Wol]).

We shall denote bl H}! the quaternionic pseudo-hyperbolic space of real dimension 4
and of quaternionic index with quaternionic sectional curvatured, and byS” and S" (4)
the spheres with sectional curvature 1 andespectively.

By a standard construction (see Theorem 9.80 in [Bes]), one can obtain many examples
of semi-Riemannian submersions with totally geodesic fibres of typeG/K — G/H,
whereG is a Lie group and, H are closed Lie subgroups 6fwith K C H. In this way the
following canonical semi-Riemannian submersions, also calledgeneralized Hopf fibrations,
are obtained:

EXAMPLE 1. LetG =SU(t+1,m—t), H=SWUQU(t, m—t)), K =SU(t,m—t).
For every O< t < m, we have the semi-Riemannian submersion

HZ" M= SU(t+1.m—1)/SU(t,m—1) — CH" = SU(t+1,m—1)/S(UDU (t,m—1)).

EXAMPLE 2. LetG =Sp(t+1,m—1t), H= Sp(1)Sp(t,m —1t), K = Sp(t,m —1t).
For every O0< t < m, we get the semi-Riemannian submersion

Hy"t3 = Sp(t +1,m —1)/Sp(t.m —t) — HH" = Sp(t + 1,m —1)/Sp(1)Sp(t,m — 1) .

ExXAMPLE 3. a) LetG = Spin(1,8), H = Spin(8), K = Spin(7). Then we have
the semi-Riemannian submersion (see [Ba-1a])

H = Spin(1, 8)/Spin(7) — H®(—4) = Spin(1, 8)/Spin(8) .

b) LetG = Spin(9), H = Spin(8), K = Spin(7). Then we have the semi-Riemannian
submersion (see [Bes])

S5 = Spin(9)/Spin(7) — S8(4) = Spin(9)/Spin(8).
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EXAMPLE 4. LetG = Sp(t+1,m—t), H=Sp(L)Spt,m—t), K =UQ)Spt,m—
t). For every O< r < m, we obtain the semi-Riemannian submersion

CHZZI'T{l =Sp+1, m—1)/UQ)Sp(t,m—t)—>HH" = Sp(t+1, m—1)/Sp(L)Sp(t, m—t).

In order to prove Theorem 1.2, we need the following nonexistence proposition, which
is the semi-Riemannian version of Proposition 5.1 in [Ran1].

PROPOSITION 2.7. Thereexist no semi-Riemannian submersionsz : H%fs, — CaH,Z,
t € {0, 1, 2}, with totally geodesic fibres from the 23-dimensional pseudo-hyperbolic space of

index 7 4 8¢ onto the Cayley pseudo-hyperboalic plane of Cayley index 7.

We notice that the case = 2 is Proposition 5.1 in [Ranl]. For the case= 0O, see
[Ba-la]. Here we only recall some details of ijan’s proof and suggest its modification to
the semi-Riemannian case. Ranjan’s argunieiiRanl], which leads to a contradiction to
the assumption of the existence of such a submersion, is based on finding foKegeky,,
g(X, X) # 0, an irreducibleCI(V,)-submoduleS of , passing througtX. HereCI(V))
denotes the Clifford algebra 6¥,, g,), whereg(U, V) = —g(U, V) for everyU, V € V).
'H, becomes &(V,)-module by considering the extension of the mapV, — End’H,)
defined byl/(V)(X) = AxV to the Clifford algebraCi(V,). Sinceg, is positive definite, we
haveCIl(V,) ~ R(8) ® R(8). Hence}, splits into two 8-dimensional irreducibl€l(V,)-
modules. Since the induced metrics on fibres are negative definite, we obtain in a manner
similar to Ranjan’s proof that
(i) forg(X.X) >0, m~1(CaH?)is totally geodesic it 23,
whereCa H' denotes the Cayley hyperbolic line throughX, and
(i) for g(X,X) <0, 7 ~1(CaH})is totally geodesic iH23;, and is isometric td7 ]2,
whereCaHl1 denotes the negative definite Cayley hyperbolic line thraugh.
We chooseS to be the horizontal space of the restricted submergianH3° — CaH?! if
9(X,X) > 0or7 : Hi2 — CaH}if g(X, X) <O.

and is isometric ta/;>,

3. Proof of the main results. The next lemma gives useful properties of O'Neill’s
integrability tensor.

LEmMmMA 3.1. Let 7 : M — B be a semi-Riemannian submersion with connected
totally geodesic fibres from a semi-Riemannian manifold M with constant curvature ¢ # O.
Then the following assertions are true:

(@) If X isa horizontal vector such that ¢(X, X) # 0, thenthemap Ax : V — H
givenby Ax (V) = AxV isinjectiveandthemap A% : H — V givenby A% (Y) = AxY is
surjective.

(b) If X, Y arethehorizontal liftingsalong thefibrer =1 (zz(p)), p € M, of two vectors
X', Y" € Ty, B respectively, ¢'(X’, X') # 0and (AxY)(p) = 0, then AxY = 0 along the
fibore w1 (p)).

PrROOF (a) By O’Neill's equations, we get

9g(AxV, AxW) =cg(X, X)g(V, W)
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for a horizontal vector fieldl and for vertical vector fieldy and W. ThusA}AxV =
—cg(X, X)V for every vertical vector field/. ThereforeAxy : V — H is injective and
A% :'H — Vs surjective.

(b) By O’'Neill's equations, we have

for horizontal vector fieldX, Y andZ.

If X, Y, Z are basic vector fields, them(AxY, AxZ) is constant along the fibre
717 (p)). Thereforeg(AxAxY, Z) = 0 along the fibrer (7 (p)) for every basic vector
field Z. HenceAxAxY = 0 alongm (7 (p)). SinceAx : V — H is injective, it follows
thatAxY = 0 along the fibrer ~1(z (p)). |

LEmMmMA 3.2. If 7 : M — B isasemi-Riemannian submersion with connected totally
geodesic fibres from a semi-Riemannian manifold M with constant curvature ¢ # 0 onto a
semi-Riemannian manifold B, then the tangent bundle of any fibreistrivial.

PROOF. Letx € Bandp € 7~ 1(x). Let{vip,..., v} be an orthonormal basis in,.
Let Y1, Yo, ..., Y, be the horizontal liftings along the fibre~1((p)) of (1/c)mAxvip,
(1/c)mAxvap, ..., (1/c)mAxvrp, respectively. Let; = AxY; for eachi € {1,...,r}.
Since

gj,v) = g(AxY;, AxY))
= (1/3)(R' (s X, Y j, e X, 1Y) — cg(X, X)g(Yj, Y1) + cg(X, Y})g(X, ¥}))

is constant along the fibve =1 (7 (p)) and

1
g(AxY;, AxY))(p) = C—zg(AxAxvjp, AxAxvp) = g(X, X)Zg(vjp, vp) = €81,

we see thafv1, v2, ..., v} is a global orthonormal basis of the tangent bundle of the fibre
7~ 1(x), which makes the tangent bundle trivial. O

We suppose that the curvature of the total space is negative. The case of positive curva-
ture can be reduced to the negative one by changing simultaneously the signs of the metrics
on the base and on the total space. We estaléikations between the dimensions and the
indices of fibres and of base spaces, and see how the geometry of base spaces looks like.

THEOREM 3.3. Let 7 : M — B be a semi-Riemannian submersion with connected
totally geodesic fibres from an (n + r)-dimensional semi-Riemannian manifold M of index
s + r’ with constant negative curvature ¢ onto an n-dimensional semi-Riemannian manifold
B of index s. Then the following hold :

(1) n =k(r + 1) for some positiveinteger k ands = g1(r' + 1) + g2(r — r’) for some
nonnegative integers g1, g2 with g1 + g2 = k.

(2) If, moreover, M isa simply connected compl ete semi-Riemannian manifold and the
dimension of fibresislessthan or equal to 3, then B isan isotropic semi-Riemannian manifold
andr € {1, 3}.
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PrROOF. Normalizing the metric o, we can suppose = —1. Letp € M. Since
the tangent bundle of the fibre~1(x(p)) is trivial, we can choose a global orthonormal
frame {v1, v, ..., v} for the tangent bundle ot ~1(z(p)). We haveg(v;, vj) = &6},

g € {—1,1}, and cardi|s; < O} =+'.

(1) LetX be the horizontal lifting along the fibve=1(r(p)) of a vectorX’ € T(,) B,

so thatg(X’, X’) € {—1, 1}. By O'Neill's equations, we have

gAYV, AyV) = —g(¥,Y)g(V,V)

for a horizontal vector field and for a vertical vector fieléf . Along the fibrer ~1((p)) we
obtain for evenyi, j € {1,...,r}

g(Axvi, Axvj) = —g(X, X)g(vi, vj) = —g(X, X)&;dij ,
g(X, Axvi) = —g(Ax X, v;)) =0.

Thus{X, Axv1, ..., Axv,} is an orthonormal system. Henee> r + 1.

Let Lo = X. For every integetr such that 1< « < n/(r + 1), let L, be a hori-
zontal vector field along the fibre=1(x(p)) such thatL,, is the horizontal lifting of some
unit vector (i.e.,g(Ly, Ly) € {—1, 1}), thatL, is orthogonal tolLg, L1, ..., Ly—1 and that

Ly(p) € kerA% N kerA% n---N kerAza_l(p). Then, by Lemma 3.1L,(g) belongs

Lo(p) Li(p)
-1
to kerA*iO(q) N kerA*il(q) N---N kerA*ia_l(q) for everyg € 7~ (w(p)). Therefore, for

jell,...,r}anda, B > 0, we get
g(Ar,vj, Lg) = —g(vj, Ar,Lg) =0
along the fibrer (7 (p)).
By O’Neill's equations, we obtain
R(X,U,Y,V)=g((VuA)xY,V)+ g(AxU, AyV)

= g(VuAxY, V) — g(AvyxY, V) — g(AxVu Y, V) + g(AxU, Ay V)
=g(VuAxY, V) + g(AyAxU, V) — g(AxAyU, V) — g(Ay Ax U, V)
=g(VuAxY,V)+ g(AyU, AxV)

(3.1)

for basic vector field¥, Y and for vertical vector field&, V. Thus, along the fibre ~1(z (p))
we get foreveryy, 8 > 0andj,/ € {1,...,r}

g(AL,vj, ALﬁvl) = R(Ly, v, Lg,vj) — g(Vy AL, Lg, vj)
=—g(Lg, Lg)g(v,vj) —v(g(AL,Lg,vj)) + g(AL,Lg, Vyvj) .

SinceAy, Lg = 0 along the fibrer ~1(zr(p)), it follows that
g(AL,vj, ALgvr) = —g(La, Lg)g(vi, vj) = —g(La, L)&idij -
We proved that for some positive inteder

L={Lo, ALgv1, ..., ALgVUr, ..., Li—1, A, V1, ..., AL, V)
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is an orthonormal basis 6{ along the fibrer ~1(r(p)). Thus dimB = (1 + dimfibre)k for
some positive integer. Counting the timelike vectors ifi, we getindexB) = q1(r' + 1) +
q2(r — r’) for some nonnegative integeys, g2 with g1 + g2 = k.

(2) Letx € BandX', Y’ € T,B such thaty’ (X', X') = ¢/(Y',Y") # 0. We shall
construct an isometry : B — B such thatf(x) = x and /X’ = Y’. Note that we may
assume thay' (X', X') = ¢/(Y', Y') = £1. LetX, Y be the horizontal liftings along the fibre
7~1(x) of X" andY’, respectively. Take € 7 ~1(x). Let

= {L07 ALovls crr ALovrs crr Lk*ls ALk,lvlv cee AL]{,]_UI‘} ’
’r_ / / / / / l
L = {Lo, AL6U1, veey ALBU’., veey Lk—l’ AL;(_lvl’ ey AL;(_l'Ur

be two orthonormal bases constructed as above sucliLthat X, Ly = Y, g(Ly, Lo) =
g(L,, L, fora € {1,...,k — 1}, and that{vy = AxY1,...,v, = AxY,} and{v; =

AyY{,...,v. = AyY/} are orthonormal bases of the tangent bundle of the fitrx (p)),
whereYs, ..., Y, andYy, ..., Y/ are the horizontal liftings along ~1(w(p)) of the vectors
TAxV1p, ..., TAXVUrp andn*Ayv/lp, .. TL’*Ayvrp, respectively (as in Lemma 3.1), for
which g(vi, vj) = g(v], v;.) fori,j e{l,...,r}. Let¢ : T,M — T,M be the linear map
given by¢(Ly) = L, ¢(vj) = v;., P(AL,v)) = AL&v; for everya € {0, ...,k — 1} and
j€{1,...,r}. Since bothZ, £’ are orthonormal bases, we see thds a linear isometry.

We shall apply Theorem 2.4. Thus we need to prove ¢@z F) = Ag)¢ (F) for
everyE, F € T,M. Indeed, we obtain fax, 8 € {0, ...,k —1}andj,l e {1,...,r},

(AL, Lp) =¢(0) =0= Ay, Ly = A, 9(Lp)
g(j, AL, Argvr) = —g(AL,vj, ALgv) = —g(Lg, Lg)g(vj, vr)
= —g(Ly, L) g, v) = g}, AL&AL};UZ,) :
Hencep (AL, ALy v) = ApLy)P(ALgur). 0

LEMMA 3.4. A;,v; isabasic vector field along the fibre 7 (p)) for every 1 <
j<randa >0.

PROOF OFLEMMA 3.4. We haV@(Axvj, Z) = g(AxAij, Z) = —g(Aij, AxZ).
For every basic vector field along the fibrexr (7 (p)) we know thatg(Ax Y;, AxZ) is
constant along the fibre (7 (p)). HenceAxv; is a basic vector field along the fibre
7w (p)).

Now we assume > 1. Since dintkerA% U kerAj )= dimkerA%y + dim kerA* —
dim(kerA} NkerA; J)=m=r+@m—r)—(n=2r)=n, “it follows that kerA* +kerA* =
H.Henced,v;isa baS|c vector field along the fibre 1 (7 (p)) if and only if the followmg
conditions are satisfiedi(Az,v;, Z1) is constant along ~1(z(p)) for everyZ; € kerA%,
which is a basic vector field along1(z (p)), andg(Ar,vj, Z») is constant along the fibre
7L (p)) for everyZ, kerA*a, which is a basic vector field along=1(z(p)). If Z> €
kerAj ,thenA} Z=0 alongr ~1(z(p)). S0g(AL,v), Z2) = —g(vj, AL, Z2) = 0 along
Y (p)). If Z1 € kerA%, thenA% Z1 = 0 alongz ~(z(p)). By O'Neill's equations, we
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get along the fibrer ~1(7r (p))
R (7. X, s Yj, welo, T Z1) = R(X, Y}, Lo, Z1) + ZQ(AXYjs AL,Z1)
- g(AY/ LO{v AXZ]_) - g(ALaxv AY,Z]_)
=—g(X, La)g(Y;, Z1) + g(X, Z1)g(Y;, L)
+29(;j, AL, Z1),
sinceA;,X = —AxL, = 0 andAxZ; = 0. Henceg(vj, Ar,Z1) = —g(AL,vj, Z1)
is constant alongr —1(w(p)) for every Z; € kerA*, which is a basic vector field along

7w (p)).
We proved thatd;v; is a basic vector field along (7 (p)) for everya > 0 and
jel{l,...,r} O

We denote bW the induced Levi-Civita connection on the fibrel(z (p)).
LEMMA 3.5. Au,,uALsv; = g(La, Lp)Vyv;.
PROOF OFLEMMA 3.5. By the relation (3.1) together with Lemma 3.4, we obtain for
i,j,lef{l,...,r}anda, 8 > 0that
9(AAL v ALgVj V1) = —g(AaL, vV, ALgVj)
= —R(Lg, v, AL, Vi, vj) + g(Vy AL, AL, vi, V)
=g(Lg, AL, vi)g(ui, vj) +vig(ALy AL, vi, vj)
— g(ALg AL, Vi, Vyvj)
= —vg(AL,vi, ALgvj) + g(AL,vi, ALgve) g(Vyvj, vr)e;
= —g(La, L) g(Vy v, vi)
= 9(La, Lg)g(Vyvj,v1) .
In the last equality we used the fact that= AxY; is a Killing vector field along the fibre
7Y (p)) (see [Bis] or [Bes]). Thus

AALaviAL,sUj = g(LDls Lﬁ)@vivj .

LEMMA 3.6. Thefollowing assertionsaretrue:

@ r#2

(b) Ifr=1thenAy, v AL,v1=0.

(c) Ifr =3andif weset vz, = g(X, X)"1(V,,v2)(p), then vz = V,, vp and

0 if twoofi, j, k areequal ,

Vi Vj, Uk) = o
9(Vuvj ve) 8(}?,?)9(1}3,1}3) if {i,j,k}=1{12,3},

where(; 2 ) isthe signature of the permutation (; 2 ).

i ij
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PROOF OFLEMMA 3.6. Sincen, ..., v, are Killing vector fields along ~1 (7 (p)) and

g(vi, v;) € {—1, 1} for everyi, we get
9(Vy v, v7) = g(Vy 01, v;) = g(@ujvi, v;)) =0
foreveryi, j e {1,...,r}.

(a) The case = 2 is not possible. Indeed, if = 2, then the relatiory(V,, vz, v1) =
g(Vy,v2, v2) = 0 impliesV,, v2 = 0. On the other hand,
9(Vyv2, Vi 02) = —g(Vy, Viv2, 01) + R(v1, v, v1, v2) = —g(v1, v1)g(v2, v12) € {—1, 1},
since@vzvz = g(X, X)—lAAXUZAsz = 0 and each fibre has constant curvatute So we
get a contradiction.

(b) Ifr =1, thenAALaleLﬂvl = 0 for everye and g, because G= Ay, Axvi =
9(X, X)V,,v1 impliesV,, vy = 0.

(¢) Inthecase = 3we shall proveg(vvlvz, v3) is constant along the flbve—l(n(p))
Since O’Neill’'s integrability tensor is skew-symmetric, it follows thaVU vj = —Vu Vi
ThenV w Vi = (1/2)[v;, vj]is aKilling vector field alongr ~ L (p)). We then obtain

V19(Viy 02, v3) = g(Vy, Vi 02, 13) + 9(V, v2, Vi v3)

= _g(€v3€v1v27 Ul) + g(@l);lUZa @U1v3)

= —v39(Vyy 2, v1) + g(Vyv2, Vi v3 + Vyv1) = 0
Analogously, we getzg(Vy,v2, v3) = —v29(Vy,v1, v3) = 0. We also obtain

v39(Vyv2, 13) = g(Vis Vi 02, 13) + g(Vi,v2, Vigvz) = 0,
sinceV,,vu3 = 0 andV,, vy is a Killing vector field alongr ~1(z(p)). Itis easy to see that
9(Vy,v2, v3) = —g(Vipv1, 13) = g(Vy,v3, v1)

= —g(Viav2, 11) = g(Vigv1, v2) = —g(Vy, v3, 02) .

ThUSg(@U, vj, vy) is constant along the fibove~1(7 (p)) for eachi, j, I € {1, 2, 3}. Therefore
9(AxAnyy Axvj, Axv) = —g(X, X)g(Aaxw, Axvj, v) = —g(X, X)?g(Vy,v;, v)
is constant along ~1(r(p)). Also, we compute fow > 1
g(AX Ay Axvj, AL v) = —g(Aayy Axvj, AxAr,v) =0,
g(Ax Ay Axvj, Ly) = —g(Aayy; Axvj, AxLy) =0.

HenceAx A, Axv; = g(X, X)Ax@vl. v; is a basic vector field for eachj € {1,...,r}.
We choosevs, = (9(X, X)~1V,,v2)(p). SinceAxV,, v is a basic vector field along
7~ (p)), we get the horizontal lifting along (7t (p)) of 7. (g(X, X)"TAxV,,v2(p)) =
T Axvsp is g(X, X)*lAX@Ulvg. On the other handjz is, by definition, the horizontal lifting
alongr (7 (p)) of m.Axvs,. Itfollows thatYs = g(X, X)L AxV,, vz alongr ~1(z(p)).
Thusvz = AxY3 = g(X, X) LAx AxV,,v2 = V,, v2 along the fibrer ~(z (p)). O
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Forr = 3, we choosa/3p = g(Y, Y)*l(@v/lv’z)(p). If we repeat the argument above
for the basigv], v5, v5}, by Lemma 3.6, we get; = @U/lv’z along the fibrer ~1(z(p)). It
follows thatg(Vy,vj, v) = g(Vvlgvfj, vy foreachi, j, 1 € {1, 2, 3}.

Returning to the computation f A, v, AL,v;, vi), in both cases = 1 andr = 3, we
getforeveryw, 8 > 0andi, j, ke {1,...,r}

g(AaL, v ALgvj, v1) = g(La, Lﬂ)g(% vj, v)
= (L Lp) g(Vyyv. o) = g(An , y Ap v v))

Hencep(Aa,, v ALsvj) = Ap(aL, v (ALyvj) andg(Aa, v vj) = AgcaL, v (V)).

By Corollary 2.3.14 in [Wol] we see that : T,M — T, M extends to an isometry on
M, denoted byf : M — M, such thatf(p) = p and f,, = ¢. Hencef,,X = Y and
f«(Hp) = H,p. SincefyApF = Ay, f«F foreveryE, F € T,M, we see, by Theorem 2.4,
that there is an isometry : B — B suchthatf or = 7w o f. Thusf X' = fim. X =
mfiX =mY =Y andf(x) = f(x(p)) = n(f(p) =7 (p) = x.

ThereforeB is an isotropic semi-Riemannian manifold. This completes the proof of
Theorem 3.3. m]

If the metric on the base space is negative definite, the following lemma follows from
Theorem 3.3.

LEMMA 3.7. If 7 : M — B isa semi-Riemannian submersion with connected totally
geodesic fibresfroman (n + r)-dimensional semi-Riemannian manifold M of indexr’ +n and
of constant negative curvature onto an n-dimensional semi-Riemannian manifold B of index
n, thenr’ =r.

PROOF. By Theorem 3.3, we have= q1(+r' + 1) + q2(r — r') = (q1 + g2)(r + 1) for
some nonnegative integeys andgz. Hence O= g1(r — r’) +g2(r’ + 1). Since the right hand
side is the sum of two non-negative numbers, it follows thét —r') = 0 andg2(r'+1) = 0.
Thereforegy = 0. This implies’ = r. a

REMARK. Changing simultaneously the signs of metrics on the total space and on the
base space, any semi-Riemannian submersion, under the assumptions of Lemma 3.7, becomes
a Riemannian submersion with totally geodesic fibres from a sphere onto a Riemannian man-
ifold. This case was completely classified by Escobales (see [Escl]) and Ranjan (see [Ran1]).

PROPOSITION 3.8. Letw : M — B bea semi-Riemannian submersion with connected
totally geodesic fibres from a complete simply connected semi-Riemannian manifold M onto
a semi-Riemannian manifold B. Then B is simply connected and complete.

PrROOF. If M is geodesically complete, then soBs(see [Bes] or [Ba-la]). Sinca/
is a complete semi-Riemannian manifold and the fibres are totally geodesic, any fibre is also
geodesically complete. By a theorem in [Rec], it follows that the horizontal distrib®fien
an Ehresmann connection. Therefore, by [Ehr], we seerthat fibre bundle. So we obtain
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an exact homotopy sequence:
coo = mo(M) = m2(B) — mi(fibre) — m1(M) — 71(B) — 0.

Thusm1(B) = 0. O

By Theorem 12.3.2 in [Wol], we know that any connected, simply connected isotropic
semi-Riemannian manifold is isometric to one of the following semi-Riemannian manifolds:

(i) R or the universal semi-Riemannian covering of the pseudo-hyperbolic space
H["(c) with constant sectional curvature< 0, or of the pseudo-sphe®’ (c) with constant
sectional curvature > 0.

(i) The complex pseudo-hyperbolic spaCéi;”(c) with constant holomorphic sec-
tional curvaturec < O, or the complex pseudo-projective sp&B’™ (c) with constant holo-
morphic sectional curvatuke> 0.

(iii) The quaternionic pseudo-hyperbolic spade?”(c) with constant quaternionic
sectional curvature < 0, or the quaternionic pseudo-projective sp&tB” (c) with con-
stant quaternionic sectional curvature- 0.

(iv) The Cayley pseudo-hyperbolic plaltisz,z(c) with Cayley sectional curvature
¢ < 0, orthe Cayley pseudo-projective pIaﬁeP,z(c) with Cayley sectional curvature> 0.

LEMMA 3.9. (a) If B isa semi-Riemannian manifold isometric to one of the semi-
Riemannian manifolds CP/" (c), HP/" (¢), CaP,Z(c) (c > 0), then the curvature tensor satis-
fiesthe inequality
(32) R/(X/, Y/, X/, Y/) > 2(9/()(/7 X/)g/(Y/, Y/) _ g/(X/, Y/)Z)

for each tangent vectors X’, Y’ of B.

(b) If B isasemi-Riemannian manifold isometric to one of the semi-Riemannian man-
ifoldsCH!" (¢), HH]"(c), CaH?(c) (¢ < 0), then the curvature tensor satisfies the inequality
(3.3) ROCY X YD) 2 200 (XL X)g (V. Y) = (X Y)P)
for each tangent vectors X', Y’ of B.

PROOF. For each tangent vectos, Y’ of B, we have the following formulas for the
curvature tensors:

(i) If B e{CP/"(c),CH/"(c)} andlp is the natural complex structure @ then
B4 RX.Y.X.Y)= %(g’(X/, Xg' (YY) = g (X', Y+ 3¢/ (X', IbY"?).

(i) If B € {HP"(c),HH/"(c)} and Io, Jo, Ko are local almost complex structures
which give rise to the quaternionic structure Bnthen

(35) R&X,Y.X,Y)=(c/H X, X)g ¥, Y) - g X, Y)?
+ 3¢/ (X', IoY")? + 3¢/ (X, JoY")? + 3¢/ (X', KoY')?).
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@iy 1f B e {CaP?(c),CaH?(c)} and Io, Jo, Ko, Mo, Molo, MoJo, MoK are local
almost complex structures which give rise to the Cayley structu®,ahen
RX\Y, X, Y)= (/DX . Xg ¥ Y)- g (X Y
+ 3¢ (X', IoY")? + 3¢/ (X', JoY")? + 3¢ (X', KoY')?
+3¢/(X", MoY")? + 3¢/ (X', MoloY')? + 3¢ (X', MoJoY')?
+ 3¢ (X', MoKoY")?).

(3.6)

By these explicit formulas for curvature tensors, in all cases we obtain the inequalities (3.2)
and (3.3). ]

First, we shall discuss the case of a base space with nonconstant curvature.

LEMMA 3.10. If 7 : Hs’fr’, — B! is a semi-Riemannian submersion with connected
totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space Hs’fr’, of index
s +r’ > 1 onto an n-dimensional isotropic semi-Riemannian manifold B} of index s with
nonconstant curvature, then the induced metrics on the fibres are negative definite and B is
isometric to one of the following semi-Riemannian manifolds:

(i) CH" m>1,

(i) HH" m>1,

(iiy CaH?.

PrROOF. Since dinf{ = k(dimV + 1) for some positive integet, we get dintH >
dimV + 1. LetX be a horizontal vector field along a fibre 1( (p)) such thaiy(X, X) # 0
andX is the horizontal lifting of some tangent vector Bf

First, we shall prove that

dimH > dimy + 1.
Suppose that dit = dimV+1. Thendy : V — X+ = {Y € H | g(X, Y) = 0} is bijective.
For everyY € X we getY = Ay V for some vertical vectoV . It follows that
g(AxY, AxY) = g(AxAxV, AxAxV) = g(X, X)?g(V, V),
g(¥,Y) =g(AxV,AxV) = —g(X, X)g(V, V).
Thusg(AxY, AxY) = —g(X, X)g(Y,Y) for everyY € X+. By O'Neill's equations, we
have
R'(mi X, .Y, m X, . Y) = —g(X, X)g(Y, Y) + g(X, Y)? + 39(AxY, AxY)
= —4(g(X. X)g(¥.Y) — g(X, Y)?)
for every horizontal vector field alongz~1(x(p)). HenceB has constant curvature, a
contradiction.

We established that diff > dim) + 1. So we can find a horizontal vector fieftlalong
the fibrexr ~1((p)) such thatZz € kerA*, ¢(X, Z) = 0, ¢(Z, Z) # 0 andZ is the horizontal
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lifting of someZ’ € Ty, B. We then have

R (meX, meZ, me X, 1 Z) = —g(X, X)g(Z, Z) + g(X, Z)2 +39(AxZ,AxZ)
=—9(X,X)9(Z,Z).

SinceB is a simply connected isotropic semi-Riemannian manifold with nonconstant curva-
ture, we see thak is isometric to one of the following semi-Riemannian manifolds:

(@ CP(c), HP"(c), CaP?(c), of

(b) CH(c), HH(c), CaH?(c).
We shall prove that only the case (b) is possible.

First, we suppose th# is isometric to one of the following semi-Riemannian manifolds:

CP™(c), HP"™(c), CaP?c) (c>0).
By the inequality (3.2), we get

R/(T[*Xv T AxV, m X, e Ax V) = —49(X, X)g(AxV, AxV)
=49(X, X)2g(V, V) = —(c/Hg(X, X)%2g(V, V).

Therefore
(3.7) g(V,v)>0

for every vertical vecto’. SinceX and Z are basic vector fields along=1(z(p)) with
g(X,Z) =0andAxZ = 0 alongm ~1(x(p)), it follows from the relation (3.1) that ; V <
kerA%.. On the other hand, by the inequality (3.2), we get

R (X, 1 Z, m X, 1 Z) = —g(X, X)g(Z, Z) > (c¢/Dg(X, X)9(Z, Z),
> (c/Hg(X, X)g(AzV,AzV).

Henceg(X, X)g(Z, Z) < 0andg(X, X)g(AzV,AzV) <0. Thus
0<g(Z, 2)9(AzV, AzV) = —g(Z, Z)*9(V, V).

So for any vertical vectoV we get

(3.8) g(V,Vv) =0.

Since the induced metrics on fibres are nondegenerate, it is not possible to have both (3.7)
and (3.8). So we obtain the required contradiction. It follows th# isometric to one of the
following semi-Riemannian manifolds:

CH(c), HH"(c), CaH?c) (c<0).



194 G. BADITOIU

We shall now prove that = —4. Supposéc/4) + 1 # 0. By the inequality (3.3), we
get

R (me X, 1 Z, m X, 1 Z) = —g(X, X)g9(Z, Z) < (c/Dg(X, X)g9(Z, Z),
(3.9 R (X, mAzV, m X, 1. AzV) = —g(X, X)g(AzV, Az V)
<(c/Bg(X,X)g(AzV,AzV).

Hence
(3.10) ((c/® + D?g(X, X)?9(Z. Z)g9(AzV, AzV) = 0,
from which follows that 0< ¢(Z, Z2)g(AzV,AzV) = —q¢(Z, Z)%g(V, V). Therefore

g(V, V) < 0 for every vertical vector field’. In particular, we havg(AxY, AxY) < O,
which implies

(3.11) R (X, m.Y, 1 X, 1Y) < g(X, X)g(Y, Y) — g(X, Y)?

for every horizontal vectorX andY. We have the following cases:

Case (a) 0 < indexB < dimB. We can choose vector field§, Y’ on B such that
g (X', X")g (Y',Y") < 0 and that one of the following conditions is satisfied:

() Y e{X X} if B= CH]"(c), wherely is the natural complex structure on
CH"(c),

(i) Y e {X, IbX', JoX', KoX'}tif B = HH"(c), where{ly, Jo, Ko} are local al-
most complex structures which give rise to the quaternionic structukeffi(c), or

(i) Y e (X', X', JoX',KoX', MoX', MolpX’', MoJoX’, M()K()X/}J‘ if B =
CaH,Z(c), where{lp, Jo, Ko, Mo, Molo, MoJo, MoK} are local almost complex structures
which give rise to the Cayley structure @a H2(c).
Let X, Y be the horizontal liftings ok’, Y’. The inequality (3.11) then implies

%g(x, X)g(Y.Y) < —g(X, X)g(Y. Y).

Hence((c/4) + Dg(X, X)g(Y,Y) < 0. Therefore(c/4) + 1 > 0. On the other hand,
we can choose horizontal vector fields Z such thatg(X,Z) = 0, Z < kerA%} and
9(X,X)g(Z,Z) < 0, because O< indexB < dimB. Then the inequality (3.9) becomes
(c¢/4) 4+ 1 < 0. So we get a contradiction.

Case (b) indexB < {0,dimB}. Similarly, we can choose vector field&, Y’ on B
such thaty’ (X', Y") = 0 andR' (X', Y, X", Y") = (¢c/d ¢’ (X', X")¢'(Y’', Y’'). The inequality
(3.11) then implieg(c/4) + 1) g’ (X', X))¢'(Y’', Y’) < 0. By the hypothesis of Case (b), we
get(c/4) + 1 < 0. On the other hand, the inequality (3.9) becorfigd) + 1 > 0. So we get
a contradiction.

We have proved = —4. The inequality (3.3) then becomes
(3.12) RX,Y X, Y)<—¢d X', XY, Y)+ ¢ (X, Y’)2
for tangent vector fieldX’, Y’ on B. Then we have
R (m: X, meAxV, 1 X, m:Ax V) = —4g(X, X)g(AxV, AxV) < —g(X, X)g(AxV, AxV)
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for a vertical vector field/ and for a horizontal vector field. Hence
0 < g(X, X)g(AxV, AxV) = —g(X, X)%g(V, V).

Therefore the induced metrics on fibres are negative definite. i
By Lemma 3.10, we deduce the following proposition.

PropPoOsSITION 3.11. If 7 : Hs’fr’, — B! isasemi-Riemannian submersion with con-
nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space HS"J:’/ of
index s + r’ onto an n-dimensional isotropic semi-Riemannian manifold B} of index s with
nonconstant curvature, then one of the following holds:

(1) n=2m > 2,5 =2, r =r = 1for some non-negative integersm, ¢, and B! is
isometric to CH,".

(2) n=4m > 4,5 =4, r =r = 3for some non-negative integersm, ¢, and B! is
isometricto HH,".

(3) n=16,5¢{0,8,16}, r =+ =7, and B" isisometric to caaf/s.

PrROOF. First, we shall discuss the casg- ' > 1. By Lemma 3.105B is isometric to
one of the semi-Riemannian manifol@/,", HH", Ca H? for somem > 1.

Letx € B and letX’ € T, B such thaty’(X’, X") # 0, and letFy: be the subspace in
T, B given by

Fx ={Y'e kB | R'(X" Y)X = —g' (X", Y)X + ¢'(X", X)Y'}.

Let p € 7~1(x) and letX be the horizontal lifting vector gt of X’. By O’'Neill's equa-
tions, we haveR'(n. X, m.Y, m. X, m.Z) = R(X,Y, X, Z) + 3¢(A%Y, A% Z) for horizontal
vectorsY, Z. SinceA%, : 'H, — V), is surjective and since the induced metrics on fibres are
nondegenerate, we gete kerA%, if and only if 7,.Y € Fx.. Thus

dimkerA% = dimH — dimV = dim Fy .

We have the following possibilities:

(1) B! isisometric toCH/". Son = 2m, s = 2t. From the geometry of the complex
pseudo-hyperbolic space (see relation (3.4)), we getAdim= dim+ — 1. It follows that
r=r'=dmy=1.

(2) B! isisometric toHH,". Son = 4m, s = 4¢. From the geometry of the quater-
nionic pseudo-hyperbolic space (see relation (3.5)), we gefdim= dim’H — 3. It follows
thatr = ' =dimy = 3.

(3) B! is isometric to the Cayley pseudo-hyperbolic pIa(D@H,Z. Son = 16,

s € {0, 8, 16}. From the geometry of the Cayley pseudo-hyperbolic plane (see relation (3.6)),
we obtain dimFy, = dimH — 7. Hencer = ' = dimV = 7.

Now, we discuss the remaining case r’ = 1. Froms + ' = 1, we have either

() s=0,r=1o0r

(i) s=1,r=0.
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If s =0, 7 =1, thenr : H{’*’ — B" is a semi-Riemannian submersion with totally
geodesic fibres from an anti-de Sitter space onto a Riemannian manifold. In this case, investi-
gated by Magid in [Mag], it follows thaB is isometric to the complex hyperbolic spaee ™
andr =r' =1.

Fors = 1, v’ = 0, we get, by Theorem 3.3, % g1 + q2r > q1 + g2 With g1 + g2 =
k =n/(r +1). Thusqs + g» = 1. ltfollows thatn = r + 1. HenceAdy : V — X<t is
bijective. SinceR’ (X, mxAxV, m X, m Ax V) = —4g(X, X)g(AxV, AxV), we see that
B has constant curvatured, which contradicts our assumption of nonconstant curvature of
the base space. m]

We shall now discuss the case where the base space is of constant curvature. We give the
following obstruction to the existence of semi-Riemannian submersions in terms of the index
of base space.

LEMMA 3.12. Thereareno semi-Riemannian submersionsz : H.', — B! with con-
nected totally geodesic fibres from an (n 4 r)-dimensional pseudo-hyperbolic space of index
s + r’ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,
where0 < s < n.

PROOF. LetX be a horizontal vector and a vertical vector such that X, X) # 0 and
g(V, V) # 0. By O'Neill's equations, we have
R (m: X, meAx V, 1 X, e Ax V) = —g(X, X)g(Ax V, Ax V) + g(X, Ax V)?
+39(AxAxV, AxAxV)
= —g(X, X)g(AxV, AxV) + 3g(X, X)?g(V, V)
=—-49(X,X)g(AxV,AxV).

If B has constant curvature, then the curvatur® athould be—4. Therefore, by O’Neill’s
equations (see (9.29c¢) in [Bes]), for a horizontal vedtave get

(3.13) g(AxY, AxY) = —g(X, X)g(¥,Y) + g(X,Y)?.
By polarization of (3.13), we get

for horizontal vectord” andZ . ThereforeAy ALY = g(X, X)Y — g(X, V)X.

Let A}L : Xt — V be the restriction ofA} to the orthogonal complement of
in H. ThenAxA%'Y = g(X, X)Y for everyY e X', from which follows thatA% " is
injective. Hence dini{ — 1 < dimV. By Lemma 3.1, we getly : V — X is injective. So
dmH —1>dimV.

We proved that difit — 1 = dimV, which meansthat = r + 1. If0 < 5 < n,
then we can choose horizontal vectéfsY such thaty(X, X) = 1 andg(Y,Y) = —1. Let
{v1, vo, ..., v} be an orthonormal basis of the tangent bundle of the fibrkz (p)), p € M.
Since{X, Axv1, ..., Axv.}and{Y, Ayv1, ..., Ayv,} are orthonormal bases, by the proof of
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Theorem 3.3, foreverye {1, ..., r} we have

g(Axvi, Axv;) = —g(X, X)g(v;i, v;) = —¢;,
g(Ayv;, Ayv;)) = —g(¥, Y)g(vi, v;) = &; .

It follows thats = r — " ands = r’ + 1. Therefore- = 2+’ + 1 andn = 2’ + 2.

We shall prove that there are no semi-Riemannian submersion&!;‘r’/;‘fi3 — Brz,ﬁz
with totally geodesic fibres. Since the fibfe= 7 ~1(z(p)) is a(2r’ + 1)-dimensional semi-
Riemannian manifold of index’ and sinceB is a (2r’ + 2)-dimensional semi-Riemannian
manifold of indexr” 4+ 1, we can choose orthonormal spacelike vectis, o, ..., Y3742
inT,F (i.e., g(Y;,Y;) = & fori,j e {2 +2,...,3 + 2}) and orthonormal spacelike
vectorsYérurg, . ler,+3 in Tz B (i.e., ¢'(Y,, Y/;) =dupfora, B e {3r'+3,...,4" +

3}). LetYgy i3, ..., Y43 be the horizontal liftings o3, 5, ..., Y, 5, respectively. Let
Y1...., Yo, 1 be orthonormal timelike vectors m,,H;‘;fjf (i.e., g1, Y,) = =8, forl,t e

{1,...,2r" 4+ 1}) such that they are orthogonal Y, 2, . .., Y4 43. Then{Y1, ..., Y413}

is an orthonormal basis ifi, Hy', 7. By definition,

443 4r' +4 2 .2 2 2 2

Hzrr/:l = {(xo, X1y enns )C4r/+3) eRY + I —Xg—X1— ‘_er/+l+er/+2+' . '+X4r/+3 = _1} .
~ . . . . . ! .

Let H be the semi-Riemannian submanifol r/jf defined by

~ A4 +4 2,.2 2
H={(x0,0,0,...,0,xp742,...,x4743) €R" %] —Xg+x5, ot x4, 3=—1,x0>0}.

It is easy to see thafi is a complete totally geodesic submanifoldA’, > and that is
isometric to a hyperbolic space. LgX 2, ..., X413} be an orthonormal basis mﬁﬁ,

p e H, andlet(X1, ..., Xp41) C T; Hy' 2 be an orthonormal basis of the normal bundle

of the submanifold . SinceHé‘f,’jf is a frame-homogeneous space (see [OneZ2], or a strong
isotropic manifold, cf. [Wol]), we have an isometpy: Hg‘:,'jf — Hﬁ‘r’,/jf suchthatp(p) = p
and¢(X;) = Y; foreachi € {1, ...,4r" + 3}. HenceH = ¢(H) is a complete, totally geo-
desic submanifold qufj:f andT,H = spar{Y 2, ..., Y4-13}. ThereforeH has constant
curvature—1. By Lemma 14 on page 105 in [One2], one sees thas a unique complete,
totally geodesic semi-Riemannian submanifold suchTh& = spar{Ys 12, ..., Ya43}.

If »/ > 1, then the base spadgis simply connected by Proposition 3.8. Hengas
isometric to a pseudo-hyperbolic space. Bebe a unique semi-Riemannian submanifold of
the base spacﬁrzfﬁz such thatB’ is complete, totally geodesic iﬁrzfﬁz, and thatr(p) € B’
andTy(,) B’ = spar{Yérurg, e Yér,+3}, constructed as abovesif > 0, or chosen to be the
image of the spacelike geodesic Bhpassing through (p), with velocity in 7 (p) equal to
Y}, if ' = 0. ThenB’ is isometric toH” +1(—4).

First, we shall prove that (H) = B’. Letq’ € B’. There is a unique geodesit
in B’ joining 7 (p) with ¢’, and satisfyingt’(0) = n(p), /(1) = ¢’. SinceB’ is totally
geodesic inB, 1’ is a geodesic iB. Let r be the horizontal lifting oft’, with p = 7(0).

Sincet(0) is the horizontal lifting inp of t'(0) € T;(,)B' = spar{Y3’r,+3, ler,+3}, we
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r'+3

11 itfollows thatz is

obtainz(0) € T, H. SinceH was chosen to be totally geodesi
contained inH. Thusq’ = n(t(1)) € = (H). ThereforeB’ C = (H).
Letg € H. SinceH is isometric to the real hyperbolic spage ' +2, there is a unique
geodesicy in H joining p with ¢. We denote byX = h(y(0)) andV = v(y(0)) the
horizontal and vertical components pt0), respectively. IfX = 0, then the geodesig is
contained in the fibre ~1(x(p)), since the fibres are totally geodesic. Hence) = 7 (p) €
B’. If V =0, theny is a horizontal geodesic and hente y is a geodesic iB. SinceB’ is
totally geodesic inB, the geodesiar o y is contained inB’. Thereforer(q) € B’.
ForX # 0, V # 0, we denote by the geodesic given by the initial conditiopg(0) =
p andy(0) = h(y(0)) € T,H. Let H> be the unique complete totally geodesic submanifold
in H passing througlp with T, H> = spaniX, V}. SinceH; is isometric to a real hyperbolic
plane, we can choose a poipg € H2 on the geodesigg such that there exists a unique
geodesic inH», denoted byy1, joining go with ¢, and having the velocity vector ap equal
to the parallel translation along of the vectorwV for some constanb € R. SinceH is

totally geodesic int# and H is totally geodesic irH,", 12, it follows that yy is a geodesic in

Hg‘:jr“f Since the fibres are totally geodesic, we obtain {has contained int ~1(7 (¢)).
Thusr(go) = m(gq). Sinceyp is a horizontal geodesia; o yp is a geodesic joiningr (p)
with 7 (q0) = m(g), which has the initial velocityr,yo(0) € T (,)B’. The geodesia o yg is
contained inB’, becauseB’ is totally geodesic. Hence(q) € B’. We proved thatr (H) =
B

Let7 : H — B’ be the restriction ofr to H. It is easy to see that is a Riemannian
submersion. We need to prove that the fiirel( (p)) is totally geodesic irp. Lety be
a geodesic inH such thaty(0) = p andy(0) € T,,fr—l(n(p)) = kerw,,. Then 0=
+(y(0)) = m.(y(0)). Hencey (0) is vertical. Since the fibres af are totally geodesig; is
contained int ~1(r (p)). Thereforey (1) € #~1(n(p)) for everyr € R. Sincewr : H — B’ is
a Riemannian submersion with the firel (7 (p)) totally geodesic irp, we get, by O’Neill’'s
equations (see (9.29b) in [Bes]) appliedpatthat

0<g(AxV,AxV)=—g(X, X)g(V,V) <0

foreveryX € H,, V € V,. So we get a contradiction. m
From Lemma 3.12, we obtain the following proposition.

PROPOSITION 3.13. If 7 : H;’J:f‘, — B isasemi-Riemannian submersion with con-
nected totally geodesic fibres from an (n + r)-dimensional pseudo-hyperbolic space of index
s + r’ onto an n-dimensional semi-Riemannian manifold of index s with constant curvature,
then one of the following holds:

(1) n=s=2r=r'=n—1 Bisisometricto HZ (—4) andr € {1, 2, 3}.

(2 n=2,5s=0,r=r'=n—1, Bisisometricto H2 (—4)and¢ € {1, 2, 3}.

PROOF. If B has constant curvature, then the curvaturda —4 andn = r 4+ 1. By
Lemma 3.12, we then get ind@X) € {0, dim B}.
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If index(B) = dim B, then, by Lemma 3.7, we obtain= r’. Hence, by [Ran1], we
have (1).

Ifindex(B) = 0, then, by [Ba-la], we have (2).
The idea of the proof in [Ranl] and [Ba-1a] is to see that the tangent bundle of any fibre is
trivial and that fibres are diffeomorphic to spheres, and then to apply a well-known result of
Adams which claims that the spheres of dimensions 1, 3 and 7 are the only spheres with trivial
tangent bundle. O

The next theorems solve the equivalence problem of semi-Riemannian submersions from
real and complex pseudo-hyperbolic spaces.

THEOREM 3.14. If 7y, 72 : Hfjf, — B! are two semi-Riemannian submersions with
connected totally geodesic fibres from a pseudo-hyperbolic space of index s + ' > 1 and the

dimension of thefibresisr € {1, 3}, then 1 and 72 are equivalent.

PROOF. Letp,q € H"'. Let

s+r’
L ={Lo, A1rqv1, ..., A1LoVrs .., Lk—1, A1, V1, ..., A1, Ur ),
/ / ! ! ! / !
L = {LO’ A2L/0U1, ey AZLE)Ur’ ey Lk—l’ AZL;(,lvl’ P A2L271Ur}

be two orthonormal bases &f; a|0ngn'l_l(n'1(p)) and ofH>» alongnz_l(nz(q)) constructed
as in the proof of Theorem 3.3 such that(Ly, Lg) = g4(L),. L;S) = &484p fOr a, B €
{0,....k =1}, gp(vi,vj) = g4V}, v;) =g8jfori,j e {l,...,r}andforr = 3, v3, =
(Vi v2) (p) andvg, = (Vy; v5)(9)-

Leto : TpHs”j_fr’, — TqHS’fr’, be the linear map given by (Ly) = L), ¢ (A1, vi) =
AZL&U;, ¢(v;) = v; for everya andi. In a manner similar to the proof of Theorem 3.3, we
obtaing (A1 F) = Asgr)¢(F) for everyE, F € TpH”+’ By Corollary 2.3.14 in [Wol],

s+r'"
¢ extends to an isometry oH"’, denoted byf : H'!! — H'!!, satisfyingf(p) = ¢
and fy, = ¢. From Theorem 2.4 it follows that induces an isometry’ on B, such that
f om = m o f. Hencer; andmw; are equivalent. O

THEOREM 3.15. If w1, w2 : CHZ'/{ — HH! are two semi-Riemannian submersions
with connected complex totally geodesic fibres from a complex pseudo-hyperbolic space, then

1 and 7o are equivalent.

PROOF. Letd : H,"3 — CHZ'!! be the canonical semi-Riemannian submersion.
By Theorem 2.5 in [Esc2], we see thag = 7106 : Hy'/d — HH! andiz = w200 :
Hi"jg” — HH! are semi-Riemannian submersions with totally geodesic fibres. We denote
by A1, A», A1, A2, A O'Neill's integrability tensors of7y, 7o, 71, 72, 6, respectively.
In order to reduce the proof of the equivalence theorem of semi-Riemannian submersions
from a complex pseudo-hyperbolic space tattftom a pseudo-hyperbolic space, we need to
establish relations among the integrability tensbrs A1, A.

First, we prove that, A1xY = A1p,x0:Y for mi1-basic vector fieldsY andY. Let

p € Hy"3. Letw), w) be two orthonormatrs-vertical vectors infy(,) CHZ", 1 and letws,
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w2 be theg-horizontal liftings atp of wy, w5, respectively. Letws be a unit-vertical vector
in T, H,"+3. Then{w, w2, ws} gives an orthonormal basis Bf,. Since the induced metrics
on the fibres oft; are negative definite, we have

A1xY = —g(VxY, w)w1 — ¢(Vx Y, wp)wz — g(Vx Y, w3)ws.
Thus
O*Ale = —g/(V(;*XG*Y, O,w1)0,w1 — g/(V(;*XG*Y, Oxw2)0, w2 = A1, x0+Y

for 71-basic vector fields¥ andY, whereg’ denotes the metric o@szy”jll andV’ is the
Levi-Civita connection of;’.

Let X be themi-horizontal lifting along the fibre%l‘l(ﬁl(p)) of some unit vector in
Tz pHH]. Let Yy, Y2, Y3 be thems-horizontal liftings along the fibl’e?fl(ftl(p)) of
ﬁ'l*Alxwl, ﬁ'l*Alwa, ﬁl*A1Xw3, respectively. Let;, = Ale[ fori € {1,2,3}. Asin
Theorem 3.3, we chooses = g(X, X)~1 (V,,v2) (p), which implies thats = V,,v2 (see
Lemma 3.6).

We remark thats = A1y Y3 is ad-vertical vector field along the fibie 1(6(p)). Indeed,
we have

0.(A1xY3(p)) = (A19,x6+Y3)(0(P") = (A15,x60+Y3)(0(p)) = 0. (A1xY3(p))
= 0x(A1xA1xw3) = g(X, X)6,w3 =0

foranyp’ € 6-1(0(p)).

Sincevs, v» are orthogonal to the vertical vector field alongd—1(6(p)), we see that
v1, vz ared-horizontal. Sincd,(A1xY;(p) = (A19,x6:Y:)(O(p") for p' € 6710 (p))
and fori e {1,2}, we obtain that, v, aref-basic vector fields along§=1(0(p)). Thus
hVyv1 = Ay vz along 6~1((p)). Hereh andv denote thes-horizontal andv-vertical
projections, respectaly. We also obtain thatV,,v1 = —g(Vy,v1, v3)vs = 0. Therefore,
Ay vz = Vyv1 = v2 alongd 1@ (p)).

We shall prove thatl1xvs = Axvs alongd—1(6(p)) for everysi-basic vector fieldx
along#; 1 (71(p)). We first obtain along ~*(6(p)) that

A1xv3 = Vxv3+ g(Vxv3, v1)v1 + g(Vxva, v2)v2 + g(Vxv3, 13)03,
g(Vxvz, v1) = g(Axvs, v1) = —g(v3, Axv1) = g(v3, Ay, X) = —g(Ayv3, X)
=—g(v2,X) =0
for amr1-basic vector fieldy alongﬁl‘l(ﬁl(p)). Analogously, we get(Vxvs, v2) = 0. Thus
A1xvs = Vxvz + g(Vxvs, v3)vz = Axvs
alongd—1(0(p)) for everys-basic vector fieldk alongﬁil(ﬁl(p)).
Let L = {Lo = X, A114v1, A1LoV2, A1LqV3, . .., Ly—1, A11,_jv1, A1r,_,v2, A1r, 403}

be an orthonormal basis &f; along the fibre?l‘l(frl(p)) constructed as in Theorem 3.3, for
the semi-Riemannian submersign From the proof of Theorem 3.3, we have

g(Al/gle » V3 A1L,v2) =0
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forj #1, and

g(AlAujvlvg, L)=0
for0 < j, < n — 1. We then obtain along; *(771(p)) that
g(z&lguj 0, U3 A1r,v2) = —g(va, Alguj vlﬁlevz)
= —g(v3, Vyv2)g(Lj, Lj)
= —g(v3,v3)g9(Lj, Lj) = —g(v2,v2)g9(Lj, Lj)
= g(A11,;v2, A1 ;v2) .

from which foIIowsAlLJ.vz = AlAlevlvg. HenceA1, vz = AAlevlvg, becauseé\levl is

#1-basic. We also havé, vz = A ;vs.
Let £ = £ U {v1, va}. Summarizing all the above, we obtain that

L ={Lo, ALyv3, A1LqV1, AA~1L0U1U3’ coosLy—1, AL, _yv3, AL, v1, Agunilvlvs, v1, Ay, v3}

is an orthonormal basis of tifehorizontal spacé{ along the fibré@~1(6(p)) and L satisfies
all conditions imposed in the construction of the basig the proof of Theorem 3.3. We
notice thatvz = AxYs alongd—1(0(p)), and that alongd~1(0(p)), Y3 is equal to the-
horizontal lifting of 6, A x w3.

Letg € H,"!3. Let

A rx /X /X / / A /X /X /
L = {LO’ A2L6vl’ A2L6U2, A2L6U3, ey Ln—l’ A2L;71v1’ A2L;71v2’ A2L;71U3}

be an orthonormal basis 6f, along ﬁgl(ﬁz(q)) constructed in the same way &s but

for the semi-Riemannian submersigp (see the proof of Theorem 3.3), in such a way that
gp(La, Lg) = gq(L),. L;g)foro <a, B <n-1 gp(vi,v)) = gg (v}, v;.)forl <i,j <3,and
v3(q) = (Vi v)(q). Let : Ty Hy' '3 — T, H," 3 be the linear map given by(vi) = v/,
¢(A1L,vi) = Agpy v for0<e <n—1landfori<i <3.

By Corollary 2.3.14 in [Wol] ¢ extends to an isometry : H,"t2 — H "3 such that
f(p) = q and f, = ¢. By the proof of Theorem 3.3, we hay&A1g F = Aay, g f« F for
everyE, F € T,,Hj;’jg. By the proof of Theorem 3.14 and by Theorem 2f4induces an
isometry onCHZ" !, denoted byf : CHZ"/! — CHZ!! suchthab o f = f o 6. Since
themp-vertical space a(p) is spanned byo,v1, 6,v2}, since thero-vertical space al(q) is
spanned by6,v}, 6,v5}, and sincefi (B,v;) = 6,v), for i € (1, 2}, we see thaff, maps the
m1-vertical space &l (p) into themp-vertical space at(q). For1-horizontal vectors and
Y we obtain

feB1o,x0.Y = fib A1xY = 0, fA1xY
= 0. Azfx fuY = Agg, 1, x04 1Y
= Aof. 0.0 f+ (01
Therefore, by Theorem 2.4, we see thatandn, are equivalent. O
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REMARK. We notice that our equivalence theorems can be applied, in particular, to
Riemannian submersions from a sphere with totally geodesic fibres of dimension less than or
equal to 3 and for Riemannian submersions with cdexxotally geodesic fibres from a com-
plex projective space. Unlike those in [Escl], [Esc2], [Ranl], our proofs of the equivalence
theorems are intrinsic, we do not need to assthmexistence of any specific structure on the
base space, such as complex or quaternionic one. In Theorem 3.15, we need to assume only
that the fibres are 2-dimensional and that thduiced metrics on fibres are negative definite.

Summarizing all results above, we now prove the main theorems.

PROOF OFTHEOREM 1.1. Ifs +r' > 1, thenHS”J:;’/ is simply connected and hence,
by Theorem 3.3B is an isotropic semi-Riemannian manifold and {1, 3}. By Propositions
3.11 and 3.13, we see that the base space of the semi-Riemannian submersion is isometric
to a complex pseudo-hyperbolic space if the dimension of fibres is one, or to a quaternionic
pseudo-hyperbolic space if the dimension of fibres is 3. In Theorem 3.14 we solved the
equivalence problem. The existence problem is solved by the explicit construction given in
the preliminaries (see Examples 1 and 2).

If s+ =1, theneither (iy =1, =0,o0r(i)s =0, r = 1.

() If s =1, ' =0, then, by the proof of Proposition 3.1®, has constant curvature.
By Theorem 3.3, (1) we get= k(r + 1) > 2, sincer > 1. Hence, by Lemma 3.12, there are
no such semi-Riemannian submersions.

(i) If s =0, r =1, thenr is a semi-Riemannian submersion from an anti-de Sitter
space onto a Riemannian manifold. By [Mag],is equivalent to the canonical submersion
7« H2"*1 — CH™. This falls in the case (). i

PROOF OFTHEOREM 1.2. Ifthe dimension of the fibres is less than or equal thé&n,
by Theorem 1.1y is equivalent to the canonical semi-Riemannian submersions:

(@) Hy'i'— CH!" 0<t<m,or

(b) Hy"i®—HH" 0<t <m.

Now we assume that the dimension of the fibres is greater than or equal to 4.

(A) If we assume that the dimension of the fibres is greater than or equal to B and
is an isotropic semi-Riemannian manifoldtivnon-constant curvature, then, by Proposition
3.11, B is isometric toCaH,Z, t € {0, 1, 2}, and the dimension of the fibressis= r' = 7.

By Proposition 2.7, there are no such semi-Riemannian submersions with bas€apgice
Therefore, the assumptions (A) and- 4 imply thatB has constant curvature, and hence, by
Lemma 3.12, we obtain= index B) € {0, dim(B)}.

(B) Ifindex(B) = 0 andr > 4, then, by [Ba-la], the semi-Riemannian submersion
is equivalent to the canonical semi-Riemannian submeibh— H8(—4). If index(B) =
dim(B), then, by Lemma 3.7, we get = r. By changing the signs of the metrics on the base
and on the total space, becomes a Riemannian submersion with connected totally geodesic
fibres from a sphere onto a Riemannian manifold. So, by [Escl1] and [Ran1], one obtains the
conclusion. a
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PROOF OFTHEOREM 1.3. Leto : szsnjll — CH] be the canonical semi-Riemannian

submersion. By Theorem 2.5 in [Esc2], one obtains that6 : szsnjll — B is a semi-
Riemannian submersion with connected totally geodesic fibres.

(A) If the dimension of the fibres ot isr and 1< r < 2, then the dimension of the
fibres of the semi-Riemannian submersion 6 is less than or equal to 3 and greater than or
equalto 2. By Theorem 1.B isisometrictoHH;" and 21 + 1 =4m + 3, 2s + 1 = 4 + 3.
Thenn = 2m + 1, s = 2 + 1. By Theorem 3.15, we see that: CHZ"}' — HH/" is
equivalent to the canonical semi-Riemannian submersion.

(B)and (C) IfB isanisotropic semi-Riemannian manifold or if ind&y € {0, dim B},
then, by Theorem 1.2; o 6 is equivalent to one of the following canonical semi-Riemannian
submersions:

2m+1 m .
H21+1 — CH", 0<t=<m;
4m+3 m .
Hy 3 > HH", 0<t<m;

H2g — HE(—4, 1e€{0,1}.

If the dimension of the fibres of is greater than or equal ta gen the dimension of the
fibres ofr o6 is greater than or equal to 4. Hence, in this casef is equivalent taH;>g, —
H88,(—4), t € {0, 1}. Fort = 1, the semi-Riemannian submersimns, after a change of signs

of the metrics on the total space and on the base space, aftty@’ — $8(4). Fort = 0,

m is of typer : CH] — H8(—4). In [Ran1] (for case = 1) and [Ba-la] (for case = 0),

it is proved that there are no such semi-Riemannian submersions with totally geodesic fibres.
We proved that the dimension of fibressofis less than or equal to 2. O

PROOF OFTHEOREM 1.4. We suppose that there are such semi-Riemannian submer-
sions. It is well-known that any quaternionic submanifoldH®&;" is totally geodesic. Let
n: Hy'3 — HH!, & : CHZ — HH!, be the canonical semi-Riemannian submersions.
By Theorem 2.5 in [Esc2], we see thab : H,"'3 — B is a semi-Riemannian submersion
with connected totally geodesic fibres. We remark that the dimension of the fibres gf
is greater than or equal to 4. Thus, by Theorem 1.2, we seerthaj is equivalent to the

canonical semi-Riemannian submersion
H¥® — H8%—-4), or HE - HE(-4.

It follows thatr is one of the following types:
() = :HH}— HE-4),0r
(i) 7 :HH — HE(-4).
In [Ucc], Ucci proved that there are no Riemannian submersions with fibrgsfrom H p3
onto $8(4). Therefore, Case (ii) is not possible.
The fibres of semi-Riemannian submersion & : CH; — H®(—4) are totally geo-
desic by Theorem 2.5 in [Esc2], and complex submanifolds, since the horizontal lifting of
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the tangent space of the quaternionic linel(x(p)) is invariant under the canonical com-
plex structure orCH?Z. By [Ba-la], there are no semi-Riemannian submersions with complex
totally geodesic fibres frorﬁH37 onto H8(—4). Thus Case (i) is impossible. o
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