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Abstract. We classify all totally geodesic subnitoids of connected irreducible Rie-
mannian symmetric spaces of noncompact typ&khrise as a singular orbit of a cohomo-
geneity one action on the symmetric space.

1. Introduction. The motivation for this paper is the classification problem for all
isometric cohomogeneity one actions on coneédtreducible Riemannian symmetric spaces
of noncompact type. An isometric action of a connected Lie group on a Riemannian manifold
is of cohomogeneity one if the codimension of a generic orbit is one. Two isometric cohomo-
geneity one actions on a Riemannian manifoldai®t equivalent if there exists an isometry
of the manifold mapping the orbits of one of these actions onto the orbits of the other action.
The general problem of our study is to determine the cohomogeneity one actions on a given
Riemannian manifold.

Let M be a connected irreducible Riemannian symmetric space of noncompact type. Itis
known that any such action ovf either induces a foliation oM or has exactly one singular
orbit [1, Proposition 1]. This induces a disjoint union of the moduli space of cohomogeneity
one actions oM, 9 = Mp U Mg, whereMip is the set of all homogeneous codimension
one foliations onM modulo isometric congruence affls is the set of all cohomogeneity
one actions onV with a singular orbitF modulo orbit equivalence. In [2] we derived a
complete description of the moduli spa®@®r. In this case, cohomogeneity one actions are
orbit equivalent if and only if the induced foliations are isometric congruent.

Low-dimensional singular orbits of cohomogeneity one actions on Riemannian mani-
folds M are necessarily totally geodesic. More precisely, if the dimension of a singular orbit
is less thari1/2)(dim M —1), thenitis totally geodesic [1]. This motivates to begin the inves-
tigation of singular orbits by concentrating first on totally geodesic singular orbits. In this pa-
per, we determine the sub@ttsg C My of equivalent classes of cohomogeneity one actions
on M with totally geodesic singular orbits whe¥l is a connected irreducible Riemannian
symmetric space of noncompact type. It is enough to classify totally geodesic submanifolds
F in M which arise as the singular orbits of cohomogeneity one actions, sirtstermine
the cohomogeneity one actions up to orbit equivalence. In fact, given a singulaFarbén
isometric cohnomogeneity one action dfy the other orbits are then just the tubes of different
radii aroundF .
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A totally geodesic submanifold of M is reflective if the geodesic reflection i is a
globally well-defined isometry of/. Reflective submanifolds always arise in pdifs F1),
where F is also a reflective submanifold @ with the property that it is tangent to any
normal space of’ via some suitable isometry @f. The main result of this paper is stated as
follows.

THEOREM. Let M be a connected irreducible Riemannian symmetric space of non-
compact typeand F atotally geodesic submanifold of M. Then F arisesasthe singular orbit
of a cohomonegeity one action on M if and only if F is a reflective submanifold of M for
which the rank of F* is one, or if F is one of the following totally geodesic non-reflective
submanifolds:

(1) F=G5/SO@4) C M =G4R’) =50°3,4)/S0(3)S04),

(2) F=GS/GaCc M =50(7,C)/S0(7),

(3) F=CH2C M =G5/S0(4),

(4) F=SLB,R)/SOB)CM=G3/SO4),

(5) F=SL(3,C)/SU3) C M =GS/Gy.

It is quite remarkable that all non-reflective examples are related to the exceptional Lie
algebrag,. A complete list of the reflective submanifoldsof M for which F- has rank
one can be found in Section 3. A look at this list exhibits the following facts. Thmés%t
is empty for the exceptional symmetric spacesE&f and Eg and all their noncompact real
forms, and ofEeC and its split real form. For all otheaymmetric spaces, which include all
classical symmetric spacéﬁttsg is nonempty and finite. From the above theorem we deduce
that #MY = n > 3 only for the hyperbolic spacé®H"*1, CH"~1 andH H"~. For the
symmetric spaceRH*, CH?, HH?, 0H?, G4(R"), G3(R?) (n = 3) andG5(C?") (n > 3),
we have #mtsg = 3. For the symmetric spacéH 3, GiR"Y 1 <k <n—k,(k,n) #
3,7),(2,2m),m > 2), G;(Re), G{(CY (L <k <n—k, (k,n) # (2,2m),m > 2), G{(H")
l<k<n—k),SL3,H)/Sp@3),SL3,C)/SU3),SLH4,C)/SU4) =50(6,C)/SO(6),
SO(7,C)/SO(), G%/S0(4) andEg24/F4, we have #mgg = 2. In the remaining cases we
have #imtsg =1

We finally mention that, by a classical result of E. Cartan {3y = Smtsg for the real
hyperbolic spac&H". However, as was shown in [Jipttsg is strictly contained irtJts for
the other hyperbolic spac&H", HH" andOH?. The problem to determin®is \Smtsg is
still open for these hyperbolic spaces, as well as for the symmetric spaces of higher rank.

The paper is organized as follows. In Section 2 we explain a duality between totally
geodesic singular orbits of conomogeneity one actions on Riemannian symmetric spaces of
noncompact type and of those on Riemannian symmetric spaces of compact type, respec-
tively. We also relate reflective singular orbits to a certain type of action. In Section 3 we
classify the reflective submanifolds of ichecible Riemannian symmetric spaces of noncom-
pact type which arise as a singular orbit of a cohomogeneity one action on the symmetric
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space. In Section 4 we derive the analogous classification for totally geodesic non-reflective
submanifolds.

We are grateful for the financial support we received from the University of Hull Re-
search Support Fund. We thank the referee for reading carefully the original version of the
manuscript and for the suggestions for improvement.

2. Duality. Inthis section we describe a duality between the totally geodesic singular
orbits of cohomogeneity one actions on a noncompact Riemannian symmetric space and those
on its dual simply connected compact Riemannian symmetric spaceMLet G/K be
a connected Riemannian symmetric space of noncompact type, Whetel?(M) is the
connected component of the full isometry graua/) of M andK is the isotropy subgroup
of G at some poinb € M. Itis known thatG is a noncompact semisimple real Lie group and
K is a maximal compact subgroup Gf Moreover, since every Riemannian symmetric space
of noncompact type is simply connecteéd,is connected. Lef andt be the Lie algebra off
andK, respectively, ang = £ @ p the corresponding Cartan decompositiory.ofVe identify
p with the tangent spacE M of M ato in the usual way. Leg® be the complexification of
andg* = ¢@ip c g©. Theng* is a compact real form g. The connected, simply connected
Riemannian symmetric spadé* associated with the paig*, ¢) is called thecompact dual
space of M. Note thatM* can be represented a8* = G*/K, whereG* is the connected,
simply connected Lie group with Lie algebgé. We denote by* the corresponding origin
in M*.

Now, let F' be a totally geodesic singular orbit of a cohomogeneity one actioM on
We may assume thate F. LetT,F be the tangent space &f at o, which we consider as
a subspace af = T,M. SinceF is totally geodesic in/, the tangent spacg, F is a Lie
triple system imp, that is,[[7, F, T, F], T, F] C T,F. We denote bw (7, F) the normalizer
of T,F in . As T, F is a Lie triple system imp, it is easy to see thdt = N¢(T,F) & T,F is
a Lie subalgebra af. Let H be the connected closed subgroupgioivith Lie algebrah. We
claim thatH acts onM with cohomogeneity one and a singular orbit= H - o.

By construction} is invariant under the Cartan involution gmwvith respect to the Cartan
decompositiory = € @ p. This implies that the orbif - o of H througho is totally geodesic
in M. Moreover, the tangent spaceBf o ato is T, F by construction of). Both F andH - o
are connected, complete, totally geodesic submanifoldg efith the same tangent space at
o, and hence they must coincide.

Let k € K be an isometry that leaves invariant, that isk(F) = F. Then we have
AdKT,F = k. T,F = T,F, wherek,, denotes the differential df at o, and hence& ¢
Nk (T, F), the normalizer of, F in K. By assumption there exists a connected Lie subgroup
H’ of G acting onM with cohomogeneity one such thAt= H' - o = H'/H/. The above
argument shows that the slice representatiopbn the normal space, F of F ato is just
the restriction of the slice representationog (7, F) onv, F. Since by assumptiof, acts
transitively on the unit sphere in, F, Nx (T, F) must also act transitively on the unit sphere
in v, F. We conclude thall acts onM with cohomogeneity one anl = H - o.
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SinceT, F is a Lie triple system imp, the linear subspaad, F is a Lie triple system in
ip. Thus there exists a unique connected, complete, totally geodesic submaifofdys*
with o* € F* andT,«F* = iT,F. Let H* be the connected Lie subgroup 6f with Lie
algebrah* = Ne(T,F) @ iT,F C g*. As above, we see that the orlait* - o* of H* through
o* coincides withF*. Moreover, by construction, the slice representationd/ gf7, F) on
vo F and onv,« F* are equivalent. Thugl* acts onM* with cohomogeneity one anl* =
H*-o* is a totally geodesic singular orbit of this action. Of course, the construction described
above can also be done in the other direction, starting from a Riemannian symmetric space of
compact type. We summarize this in

PrROPOSITION 2.1. Let F beatotally geodesic singular orbit of a cohnomogeneity one
actionon M and H bethe connected Lie subgroup of G with Liealgebrath = N¢(T, F) DT, F.
Then H acts on M with cohomogeneity one such that F = H - o. Moreover, let H* be the
connected Lie subgroup of G* with Lie algebra h* = N¢(T,F) ® iT,F C g*. Then H* acts
on M* with cohomogeneity one such that F* = H* - o™ isatotally geodesic singular orbit of
this action.

Conversely, let F* be atotally geodesic singular orbit of a cohomogeneity one action on
M* and H* bethe connected Lie subgroup of G* with Liealgebrab* = Ng(Ty+« F*) @i T, F*.
Then H* acts on M* with cohomogeneity one such that F* = H* - 0*. Moreover, let H be
the connected Lie subgroup of G with Lie algebra h = Ng(T,«F*) & T,«F* C g. Then H
actson M with cohomogeneity one suchthat F = H - o isatotally geodesic singular orbit of
this action.

Thus we see that there is a one-to-one @poadence between the congruence classes
of totally geodesic singular orbits of cohomogeneity one actiongZoand those of totally
geodesic singular orbits of cohomogeneity one actions on the dual g8pac&Ve empha-
size that this does not yield a one-to-one correspondence between cohomogeneity one actions
with a totally geodesic singular orbit oW and those o/*. The reason is that a cohomo-
geneity one action oM has at most one singular orbit, whereas a cohomogeneity one action
on M* has exactly two singular orbits. Indeed, if the actionMi has two non-congruent
totally geodesic singular orbits, then the above construction gives two non-conjugate co-
homogeneity one actions ai. For example, lem* = " = SOn+1)/SO(n) and
M =RH" = SO°(1,n)/SO(n). The action ofH* = SOk + 1)SO(n — k) C SO(n + 1)
on §” is of cohomogeneity one with two totally geodesic singular orsftand s” -1, If
we chooseF* = S¥, then the corresponding cohomogeneity one actioR##t is given by
H = SO0°(1,k)SO(n — k) with F = RH* as a totally geodesic singular orbit. But if we
chooseF* = §" %=1 thenH = S0°(1,n —k — 1)SO(k + 1) with F = RH" *lasa
totally geodesic singular orbit.

The classification of cohomogeneity one actions on connected, simply connected, ir-
reducible Riemannian symmetric spaces ahpact type has been obtained by Hsiang and
Lawson (for spheres), Takagi, Uchida and Iwata (for other rank one spaces), and Kollross (for
higher rank cases, see [6] for details). An obvious method for obtaining now the classification
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of cohomogeneity one actions @i with a totally geodesic singular orbit would be to deter-
mine the totally geodesic singular orbits of the cohomogeneity one actioms*an the list
provided by Kollross. Nevertheless, this is a tedious task which we prefer to avoid as long as
possible by employing general theory.

We recall that a connected submanifélaf a Riemannian manifold/ is reflectiveif the
geodesic reflection i is a globally well-defined isometry @ff, and reflective submanifolds
are necessarily totally geodesic. However, note that a totally geodesic submanifold is not
always reflective. IfM = G/K is a connected, simply connected, Riemannian symmetric
space of compact or of noncompact type, there is a simple criterion to decide whether a
totally geodesic submanifold is reflective or not. Wherr is totally geodesic, then the
tangent spac&, F of F at any pointo is a Lie triple system in the vector spageof the
corresponding Cartan decompositiongf Then F is reflective if and only if the normal
spacev, F is also a Lie triple system ip. The simplest example of a non-reflective totally
geodesic submanifold is/adimensional real hyperbolic spaBH* canonically embedded
in n-dimensional complex hyperbolic spa€#" as a totally geodesic submanifold for all
k <n. Fork =n, RH" is areflective submanifold &€ H".

The following proposition will be very useful for classification purposes.

PrROPOSITION 2.2. Let F* beatotally geodesic singular orbit of a conomogeneity one
action on M* = G*/K by a connected subgroup H* of G*. Then F* isreflective if and only
if there exists a connected, simply connected Riemannian symmetric space M’ = G* /K’ such
that the actions of H* and K’ on M* have the same orbits.

PROOFE  We first assume that* is reflective. LetF*! be the reflective submanifold
of M* with o* € F*+ andT,: F*- = v,«F*. Letg* = ¢ @ p* be the Cartan decomposition
of g* ato*. We denote by, -) the negative of the Killing form of*. We decomposg*
orthogonally intap* = T,« F* @ T, F* and define an involution’ on g* by
X if X e N(TsF*) ® T,«F*,

—X if X € (Ne(Tp F¥))* @ T, F*- |

where (Ng(T,+ F*))* is the orthogonal complement &f(7,«F*) in ¢. Note that we have
Ng(Tp« F*) = Ng(T,« F*+). Since bothT,« F* andT,: F*1 are Lie triple systems, one can
show thats” is a Lie algebra automorphism. Indeed, sifigeF** is a Lie triple system, we
have

cr’X:{

[Tor F**, Tor F*] C Ne(Te F*5) = Ne(Tor ),
which implies([T,« F*+, T« F*+], (Ng(T, F*)1)) = 0 and henc@(Ng(T,« F*)1), T, F*4]
C T,«F* by means of the Jacobi identity. The other relevant inclusions can be deduced
in a similar fashion. Thug’ is an involutive Lie algebra automorphism gf and hence
induces a Cartan decompositigh = ¢ @ p’ with ¥ = Np(T,«F*) & T,«F* andp’ =
(Ng(T, F*)* @ T,«F*L. Let K’ be the connected closed subgroupdfwith Lie algebra
¢'. ThenG*/K’ is a connected, simply connected Riemannian symmetric space of compact
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type. By construction, the orbi”’ - o* of K’ througho* € M* coincides with the reflective
submanifoldF*. Since the Lie algebr* of H* is contained irt’ and H* acts onM* with
cohomogeneity one, the cohomogeneity of the actio& 0bn M* must also be one. This
implies that the orbits of the actions &f* andK’ on M* coincide.

Conversely, assume that there exists a connected, simply connected Riemannian sym-
metric spaceM’ = G*/K’ such that the actions ¢i* and K’ on M* have the same orbits.
Let o* ando’ be the Cartan involutions aof* with respect tot and ¥, respectively, and
g* = t @ p* be the Cartan decomposition gf with respect tas*. SinceF* is totally ge-
odesic, it follows by a result of Hermann [5] that ando’ commute. Thug’ induces an
orthogonal decomposition

g=C et )o@ ep),
where the indicest indicate the intersections dfandp with the +1-eigenspaces af’,
respectively. By construction, we hayg = T, F* andp*® = v,« F'*. Standard properties of
Cartan decompositions imply*, p* ] C ¢4 and[£+, p*] C p*, which shows thap* is a
Lie triple system irp*. ThusF* is a reflective submanifold a¥/*.

If G*/K andG* /K’ are two connected, simply connected Riemannian symmetric spaces
of compact type, then the action of each isotropy group on the other symmetric space is often
called aHermann action. Hermann proved that such an action is variationally complete in the
sense of Bott and Samelson. Proposition 2.2 thys 8t a totally geodesic singular orbit of
a cohomogeneity one action on a connected, simply connected Riemannian symmetric space
is reflective if and only if it is a totally geodesic orbit of a Hermann action.

In the next section we will investigate which reflective submanifolds can be the singular
orbit of a cohomogeneity one action.

3. Reéflectivesingular orbits. The totally geodesic singular orbits of cohomogeneity
one actions on the rank one symmetric spaces of honcompact type, that is, on the hyperbolic
spaceRH", CH", H H" andOH?, have been classified by the first author and Briick in [1]
as follows.

THEOREM 3.1 ([1]). Atotally geodesic submanifoldof M € (RH", CH",HH", OH?},
n > 1,isthesingular orbit of a cohomogeneity one action on M if and only if it is one of the
following reflective submanifolds:

RH" : pt, RHY, ..., RH" 2,

CH" : pt, CHY,...,CH" 1, RH",

HH" : pt, HHY, ... ,HH"", CH",

OH? : pt, OHY, HHZ

Here, pt means a point, which arises as a singular orbit of the action of the isotropy group
K. For rank one symmetric spaces the action of the isotropy group is obviously of cohomo-
geneity one. All submanifolds in the above list are reflective submanifolds. Indeed, it follows
from this classification that a totally geodesic submani®lid one of these hyperbolic spaces
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is a singular orbit of a cohomogeneity one action on that space if and oAlysifreflective.
We thus have only to deal with the case of higher ranks, that is, rank greater than one.

We keep the notation introduced in Section 2. lFetbe a reflective submanifold of
M and F* be its complement at € F, that is, the connected, complete, totally geodesic
submanifold ofM with T, FL = v,F. Note thatF+ is reflective as well. We recall that a
connected, complete, totally geodesic submanifold of a Riemannian symmetric space is itself
a Riemannian symmetric space. The restrictions of the geodesic symmetries of the ambient
space to the submanifold provide the geodesic symmetries. The following result yields a
simple criterion for deciding whether a reflective submanifold arises as a singular orbit of a
cohomogeneity one action.

ProPOSITION 3.2. Let F bea reflective submanifold of a connected Riemannian sym-
metric space M of noncompact type. Then F isa singular orbit of a conomogeneity one action
on M if and only if the rank of F isone.

PROOE We can assume thaf has rank greater than one, since the rank one case has
been settled by Theorem 3.1.

First assume thaF is a singular orbit of a cohomogeneity one actionn We may
assumethat € F. Thenthere exists a Lie subgrofipof G acting onM with cohomogeneity
oneand withF = H.o = H/H,. By assumption, the slice representatiorHgfon the normal
spacey, F is transitive on the unit sphere ig F. SinceF is totally geodesic, any isometry
in H, restricts to an isometry af . This shows that the slice representationfon v, F
is the restriction toH, of the isotropy representation @&+ on 7, F*. It follows that the
isotropy subgroup of'* is also transitive on the unit spherefipF -+, and hence - is a rank
one symmetric space.

Conversely, assume that the rankfof is one. We define a linear subspdgef g by
h = Ne(ToF) @ T,F C £ p. SinceT, F is a Lie triple system ip, the subspack is a Lie
subalgebra of. Let H be the connected closed subgrougiotvith Lie algebrah. Then, as
shown above, we havH - 0 = F. Letk be an isometry o in the identity component
of the isometry group of - and assume thatfixeso. SinceM has rank greater than one,
we must have dinF+ > 1. The assumption thaf has rank one now implies that it is
semisimple. Thug is generated by some curvature transformatdi (X,Y) : T,F+ —
T,FL+, X,Y € T,F*. This is because the isotropy elyya coincides with the holonomy
algebra for semisimple Riemannian symmetric spaces. SiHcés totally geodesic inV/,
RFL(X, Y) is just the restriction of the curvature transformatiot (X, Y) : T,M — T,M
to 7, FL. SinceM is also semisimple by assumption, it follows thatxtends to an isometiy
of M. Then Adk’) normalizesT, F, and the isotropy representationft in o is a restriction
of the slice representation &f, onv,F = T,F*. Since F- has rank one, we eventually
conclude thatH, acts transitively on the unit sphereipF, which means thatl acts with
cohomogeneity one oM.
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Leung classified in [7] and [8] the reflective submanifolds of connected, simply con-
nected, irreducible Riemannian symmesjaces of compact type. Using duality and Propo-
sition 3.2, we now obtain the classification of reflective submanifolds of connected, irre-
ducible Riemannian symmetric spaces of nanpact type which arise as a singular orbit of
a cohomogeneity one action. We use the following notation for hyperbolic Grassmann mani-
folds: G;(R") = SO°(k,n—k)/SO(k)SO(n—k), G (C") = SU (k,n—k)/S(U (k)U (n—k))
andGj(H") = Sp(k,n — k)/Sp(k)Sp(n — k).

THEOREM 3.3. Let M be a connected, irreducible Riemannian symmetric space of
noncompact type and rank greater than one. Let F be a reflective submanifold of M. Then
F is the singular orhit of a cohomogeneity one action on M if and only if F is one of the
following reflective submanifolds:

Gi(R"Y (L <k <n—k, (k,n) #(2,2m),m > 2): Gi_;(R"™), Gi(R"™),

Gi(R™) (k= 4): Gi_y(R* ™) = Gy (R,

G§(R2”) (n>3): GT_(Rzn_l) — RH2n72, G§(R2n—l), Gﬂi(cn) — CH”il,

G3(R® = SL(4,R)/SO(% : G(R® = G3(R%), SL(3,R)/SO(3) x R,

Gi(CY (L<k <n—k, (k,n) #(2,2m),m > 2): Gi_,(C"™h), G (C"™1),

G{(C™) (k= 3): G;_y(C*™h = G;(C*™h,

G§(C2”) (n > 3) : Gﬂi(c2n—1) — CH2n72, G;«:Zn—l), GT_(H n) — Hanl’

GiH") L <k <n—k):Gi_y(H"™),Gy(H"™,

G{(H#) (k 22): G{_;(H# ™) = G{(H# ),

SL(n,R)/SO(n) (n=30rn>5):SL(n —1,R)/SO(n —1) xR,

SL(n,H)/Sp(n) n > 4): SL(n —1,H)/Sp(n — 1) x R,

SL(3,H)/Sp(3): SL(2,H)/Sp(2) x R=RH® x R, SL(3,C)/SU(3),

SO(m,H)/Un) (n>5):S0n—1,H)/Uxn —1),

Sp(n,R)/Um) (n>3): Sp(n —1,R)/U(n — 1) x RH?,

SL(n,C)/SU@m) (n>5): SL(n —1,C)/SU(n — 1) xR,

SL(4,C)/SU4) = S0(6,C)/SO(6): SL(3,C)/SU®B) xR, SO(5,C)/S0(5),

SL(3,C)/SU@®3): SL(2,C)/SU(2) x R=RH®x R, SL(3,R)/S0(3),

SOm,C)/SO(m) (n=50rn=>7):50(n—1,C)/SO(1n — 1),

Sp(n, C)/Sp(n) (n = 3): Sp(n —1,C)/Sp(n — 1) x Sp(1,C)/Sp(D),

EZ/SU6)SU(2) : F,/Sp(3)SU(2),

Eg**/Spin(10)S0(2) : OH?,

Eg?*/F4:RH® xR, SL(3,H)/Sp(3),

F}/Sp(3)SU(2) : G4(RY),

FF/Fs:S0(9,C)/SO(9).

We finally remark that any two isometric refitive submanifolds in a connected, irre-
ducible Riemannian symmetric space of noncompact type are congruent by an element in the
full isometry group (Leung [8]). This impl&gthat from each of the above reflective submani-
folds we obtain indeed only one cohomogeneity one actioiaup to orbit equivalence.
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4. Non-reflective singular orbits. The classification (up to orbit equivalence) of co-
homogeneity one actions on connected irreldiecRiemannian symmetric spaces of honcom-
pact type with a reflective singular orbit turned out to be quite simple due to Leung’s classifi-
cation of reflective submanifolds. We will now investigate the case of non-reflective singular
orbits. In this case it is a problem whether such actions exist. It follows from Theorem 3.1
that any totally geodesic orbit of a cohomogeneity one action must be reflective if the rank of
M is one. In this section we will show that this is no longer true if the rank is greater than one.

We start with a lemma useful for the case whéh is a compact Lie group.

LEMMA 4.1. Let G* bea connected, simply connected, compact Liegroupand Hy', H;
be connected maximal subgroups of G*. Consider the action of H; x H; on G* defined by
(h1,h2) - g = haghy* for all hy € H;, hp € Hi and g € G*. Assume that this action is
of cohomogeneity one and that an orbit (H;* x H) - g through g € G* isatotally geodesic
singular orbit. Then Hy = H; and g isinthe normalizer N« (H{") of Hy in G*.

PROOFR Assume thatH; x H) - g is a totally geodesic singular orbit. First of all, the
stabilizer of H} x H; atg is
Hi N gH; g™t = ((ghag™ ho) | ho € Hi , ghog™t € H3},
and hence
Hf x H3
HinN gH%‘g_1 '
As (H{ x H3) - g is a singular orbit, the stabilizer gtmust act transitively on a sphere of

positive dimension. Moreover, sin¢él;” x Hy) - g is totally geodesic, the singular orbit is
also a symmetric space. Altogether this can happen o= H| = gHz*g_l.

(H{ x Hy) - g =

Assume thaH acts onM with cohomogeneity one with a totally geodesic non-reflective
singular orbitF. According to Proposition 2.1, we cdhen construct a cohomogeneity one
action of a subgroug{* c 1°(M*) on the simply connected dual spak& with a totally
geodesic non-reflective singular orl#it. The action ofH* must be orbit equivalent to a
cohomogeneity one action in the list provided by Kollross [6]. Because of Theorem 3.1 we
may assume that the rank &f, and hence oM*, is greater than one. Taking into account of
Proposition 2.2 and Lemma 4.1 the only possibilities for a cohomogeneity one actidri on
with a non-reflective totally geodesic singular orbit are the following:

(@) theactionof0@2n —2)onS02n—1)/U(n—1) =S02n)/U(n) (n > 4),

(b) the action 0iG2, onSO(7)/SO(3)SO4) = G§(R7),

(c) the action ofG» on SO(7)/U3) = SO®)/U@4) = SO(8)/SO(2)S0O(6) =

G5 (R,

(d) the action ofSpin(9) onSO(16)/SO(2)SO(14) = G}(Rle),

(e) the action oSp(n)Sp(1) onSO(4n)/SO(2)SO (4n — 2) = Gj(R“”) (n > 2),

() theaction ofSU(3) onG2/S0O(4),

(g) the action 0iG2 x G2 on Spin(7),

(h) the action ofSU(3) x SU(3) onGa.
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We will now discuss these actions individually.

(@ SO(2n — 2) is contained inSO(2n — 1), and since both groups act with coho-
mogeneity one or$ 0 (2n)/ U (n), they must be orbit equivalent. According to Proposition
2.2, every totally geodesic singular orbit of the actionS@f (2n — 1) on SO(2n)/U (n) is
reflective, and hence we can ignore this action.

(b) We decompose the Lie algelw&7) orthogonally into

s0(7)=go®R’,

whereR’ is the 7-dimensional irreducible representatiogafLet h be a Cartan subalgebra

of g2 and
QZZh@ @ Jo

aeXt
be the corresponding root space decompositiagp afith

> = {a1, a2, a1 + a2, 201 + a2, 31 + az, 301 + 202} .

The fundamental weight of the irreducible representatiog,obn R’ is 201 + ap, and the
weight space decomposition Bf is

R7 = VO ® VO(]_ Y Va1+a2 Y V2a1+o:2 B

where Vg is one-dimensional and the other three weight spaces are two-dimensional. Note
thath @ Vg is a Cartan subalgebra 66(7), and weight spaces satisfy the general relation
[Va, Vg1 C Vot ® ga+ps- We now define a linear subspacef so(7) by

t= h @ o2 S 931 +200 ® VO (&) Val .

It follows from the bracket relations for root and weight spacestitiea subalgebra afo(7).
We choose a nonzero vectdir € h with a1 (H) = 0. ThenRH @ g3q, 424, IS an ideal int and
is isomorphic taso(3). It is now immediate that is isomorphic tao(3) ® so(4). The Cartan
decomposition 0§o(7) with respect tct is given byso(7) = £ @ p with

P =0 2] Jar+ar @ 9201+ay @ 9301ty @ VO!1+O!2 @ V2011+ot2 .

Sincegy is invariant under the Cartan involution &f(7) with respect to the Cartan decompo-
sitionso(7) = £ @ p, the orbitF* of G, through the origin* of M* = SO(7)/S0O(3)SO (%)
is totally geodesic. Moreover, since

92N (50(3) ® 50(4)) = b ® goy © g30y+20, = 50(3) B 50(3) = 50(4),
we haveF* = G2/S0(4). The normal space,« F* of F* ato* is
Vo* F* = Va1+a2 @ V2a1+a2o

Note that the action ofo(4) on this 4-dimensional space is the standard one, which confirms
that the action 0&2 on M* is indeed of cohomogeneity one. Using again the bracket relations
for weight spaces, we get

[Vox F*, vox F*] C h® Gaq D 9301+20, D Vo ® Val .
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But
[Vals Va1+a2] C Gy D 920140, D V2a1+a2 s

which readily implies that,« F* is not a Lie triple system ip. HenceF* is non-reflective.
SinceG, is connected, it preserves the orientation of 3-plane®’inTherefore the second
singular orbit isp* (F*), wherep* is the natural orientation-reversing isometry(é@(R7).
Clearly, p*(F*) is another copy of52/S 0 (4) embedded irGé“(R?) as a totally geodesic
non-reflective submanifold. Using Propositi@.1, from each of the two totally geodesic
singular orbits we can now construct a cohomogeneity one actiom oa G§(R7) =
S0°(@3,4)/S0O(3)S0O (4. In both cases the corresponding subgroug @f (3, 4) is the split
real form Gg of G(z:. The isometryp* of M* gives rise to an isometry of M under which
the two cohomogeneity one actions thare conjugate. Thus, to sum up, the actiogfon
G§(R7) induces exactly one (up to orbit equivalence) cohomogeneity one actiG@(cRY).
The corresponding subgroup §0° (3, 4) is G2, and the totally geodesic non-reflective sin-
gular orbit is isometric to the noncompact symmetric spﬁ§ﬁ§0(4).

(c) The action ofG, on G%(RE‘) can be seen by identifying® with the octonionD
and taking into account that, is the automorphism group @. The stabilizer ofG; at a
unit vectoru € ImO is SU (3), and that ofSU (3) at a unit vectow € Im O perpendicular to
u is SU(2). Thus the stabilizer of;; at the 2-plané’/ spanned by andv is U (2), and hence
G-V =G2/U2) = G%(R7). The stabilizer oiG; at the 2-pland/ spanned by £ ReO
andu is SU(3), and hences, - U = G»/SU(3) = S8. These two singular orbits coincide
with the singular orbits of the cohomogeneity one actiors 6f(7) on G%(RE‘), where the
SO(7) sits insideSO(8) according to the decompositid®® = R @ R’ = ReO & ImO.
This implies that the action afi; on G}(RS) is orbit equivalent to the action & (7) on
Gj(RB), which is an action of the type describan Proposition 2.2. Hence the action@$
on G%(RE‘) has no totally geodesic non-reflective singular orbits.

(d) The stabilizer ofpin(9) at a unit vector € R®is Spin(7). The representation of
this Spin(7) onR'® has three irreducible componefs @R’ ®R8, where the representation
onRu is trivial, the one orR” is the standard one, and the oneRStis the spin representation.
Take unit vectors € R’ andw € R8. One can see that the orbit through the 2-plane spanned
by u andv (resp. u andw) is Spin(9)/Spin(6)SO(2) (resp. Spin(9)/G250(2)). A di-
mension argument shows that they are the singular orbits dfthe(9)-action onGj(Rle).
Since both singular orbits are not symmetric, they cannot be totally geodesic. Thus we can
ignore this action.

(e) The stabilizer ofSp(n)Sp(1) at a unit vectom: € R* is Sp(n — 1)Sp(1). The
representation of thiSp(n — 1)Sp(1) on R*" has three irreducible componeiits & R3@
R*~4, where the representation &u is trivial, the one orR® is equivalent to the standard
representation ofp(1) on R3, and the one oR*~* is the standard representation. Similar
to the argument of case (d), one can obtain the singular orbits by taking unit veatoRs
andw € R*~%. The orbit through the 2-plane spannedibgndv is Sp(n)Sp(1)/Sp(n —
HUMU(1) = CP¥~1 x CPL This is symmetric, but it follows from the classification
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of totally geodesic submanifolds in real Grassmannians of oriented 2-planes by Chen and
Nagano [4] that it cannot be totally geodesic. The other singular orbit is the orbit through the
2-plane spanned by andw, Sp(n)Sp(1)/Sp(n — 2)U(1)Sp(1) = Sp(n)/Sp(n — 2)U (1),
which is not symmetric. Thus we can ignore this action.

(f) Leth be a Cartan subalgebra gf and

g2=ho @ Ja
aeXt
the corresponding root space decompositiognfwhere we use the same notation for the
roots ofgy as in case (b). We define two subalgebrag.afespectively by

50(4) = b @ goy D 9301420,
and
su(3) = b ® ga, D 9301+a2 D J301+205 -
The first subalgebra gives the Cartan decomposigiog so(4) & p with

P = Bar D Gor+ar D 9201+ar D G301+as -
Since the second subalgebig3) is invariant under the Cartan involution @f with respect
to g2 = s0(4) @ p, the orbitSU (3) - o* of SU(3) through the origin* € M* = G2/S0(4)
is totally geodesic. Since

su(3) Ns0(4) = b D g3, +20, = RO 5u(2) = u(2),

we see thaSU (3) - o* is a complex projective plan@P?2 = SU(3)/U(2). The tangent and
the normal space & P2 ato* is given by

T+CP% = 9o, D 930s+0, aNd vp+CP? = Gag+ar @ 920140z 5

respectively. The action af(2) on v,CP? is equivalent to the action af(2) on C2, which
implies that the slice representation@t2) is transitive on the unit sphere in-CH?2. This
shows that the action U (3) on G2/S 0 (4) is of cohomogeneity one. Finally, the bracket
relations for root spaces show that

(8201 +a> Bagtaz] C Gy @ 9301420, C 50(4),

and taking bracket again wilfpy,+o gives agsaqy,+«,-cOmponent, which implies that,C P2
is not a Lie triple system ip, and henceC P? is non-reflective. We now construct the dual
action onM = G%/SO(4) according to Proposition 2.1. The corresponding group acting on
M with cohomogeneity one iSU (1, 2), and the totally geodesic non-reflective singular orbit
is a complex hyperbolic plar@H? = SU (1, 2)/S(U (1)U (2)).

We now investigate the second singular orbit of $ii&(3)-action onM* = G2/S0O (4).
For this we move the origin ofi2/S O (4) to a suitable point. The starting point is now the
Cartan decompositiop = ¢t @ p, whereg = g» andt = so(4), and a maximal abelian
subspace in p, which leads to the root space decomposition

sod=t=(Pt, and p=ad P v

aeXt acXt



COHOMOGENEITY ONE ACTIONS 175

Then we have

5”(3) = (Eaz S? E30!1+0!2 @ E‘.°>Otl+240(2) S (ad Pay 2] P3ag+an 2] P3a1+2a2) .

Sincesu(3) is invariant under the Cartan involution with respecgte ¢ @ p, the orbit F* of
SU (3) through the origirv* is totally geodesic i *. Moreover, since

su(3) N 50(4) = Eo, @ 3040, B E301+20, = 50(3),

the singular orbitF* is isometric to the symmetric spasé/ (3)/50 (3). The tangent and the
normal space of* ato* is

ToF*=a® Pay @ P3ay+ay D P3ag+2a7 and v« F* = Pa; @ Pay+az @ P2yt = R3 .

The action ofs0(3) on the normal spadé3 is the standard one, which implies that the action
of SU(3) is of cohomogeneity one. Since there is only &ié(3)-action onG2/S0(4)
up to conjugation, we conclude that t§&/ (3)-action onG2/S 0 (4) has indeed two totally
geodesic singular orbi8 P2 andSU (3)/S 0 (3). The bracket relations for root spaces imply
thatv,« F* is not a Lie triple system ip, which shows thaSU (3)/SO(3) is non-reflective.
We again apply the construction described in Proposition 2.1 to get a second cohomogeneity
one action onMf = G%/SO(4). This time SL(3, R) is the subgroup oGg which acts with
cohomogeneity one 0@%/50(4), and the totally geodesic non-reflective singular orbit is
SL(3,R)/SO(3).

(g) The orbitF* of the action ofG2 x G2 through the identity of Spin(7) is clearly
the totally geodesic subgrodp, = (G2 x G2)/AG», whereAG; is the diagonal embedding
of G2 in G2 x G2. On algebra level we have the following situation. Consider the Cartan
decomposition ofpin(7) @ spin(7) = £ @ p with

tE={(X,X)| X espin(7)} and p={(X,—X)|X € spin(7},

and the decompositiospin(7) = g» & R’, whereR is the 7-dimensional irreducible repre-
sentation ofy2. Then we have

T,F*={(X,—X)| X egz) and v F*={(X,—-X)|X eR'},

and
Ne(ve F*) = Ne(To F*) = {(X, X) | X € g2} = g2.

Clearly, the slice representation 8k (T, F*) = G2 is transitive on the unit sphereipF* =
R’, which shows that the action &> x G2 on Spin(7) is indeed of cohomogeneity one. But
v F* cannot be a Lie triple system, since otherwigel’*, v, F*] C Ng(T,F*) = g2, which
would imply that(spin(7), g2) is a symmetric pair, which is not true. Hence it follows that
F* is non-reflective. We now construct the dual action according to Proposition 2.1, which
is the action ong onSO(7,C)/SO (7). This action is of cohomogeneity one with a totally
geodesic non-reflective singular ormg/Gz.

We also have to consider the second singular orbit of the actiah of G2 on Spin(7).
Letz € Spin(7) be the generator of the cent&s of Spin(7). SinceG, has trivial centerz is
not contained inF* = G2 C Spin(7), and hence théGs x G2)-orbit throughz is different
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from the orbit throughe. Moreover, we havéhi, hp) - z = hizhy = z(hihy ") for all
hi1, ho € G2, which shows that théG > x G2)-orbit throughy is the left translate i§pin(7) of
the totally geodesitG, x G)-orbit throughe. Since left translation is an isometry, we see that
the second singular orbit of the action is another totally geodesic non-refléctiveSpin (7)
(which is obviously not a subgroup). Since both singular orbits are conjugate via some left
translation inSpin(7), the cohomogeneity one action 80 (7, C)/SO(7) constructed from
the second singular orbit is orbit equivalent to the one constructed from the first one.

(h) The story for the action ofU (3) x SU(3) on G is more or less the same as
in the previous case. We have to replapen(7) by g2, g2 by su(3), and the decomposition
spin(7) = g2®R’ by g2 = su(3) ®R®, respectively. The dual action is the actiorsaf(3, C)
on G‘Z:/Gz with totally geodesic non-reflective singular orSit.(3, C)/SU(3). The second
singular orbit goes through an elemenin the centralizer ofSU(3) in G2, which is not
contained in the center ¢fU (3).

Summing up, we have now obtained the following theorem, which implies the main
result in the introduction.

THEOREM 4.2. Let M be a connected, irreducible Riemannian symmetric space of
noncompact type and F a totally geodesic non-reflective submanifold of M. Then F is the
singular orbit of a cohomogeneity one action on M if and only if F' is one of the following
totally geodesic non-reflective submanifolds:

G5(R") : G3/S0(4),

50(7,C)/SO(7): GS/Go,

G2/SO(4) : CH?, SL(3,R)/SO(3),

GS/G2: SL(3,C)/SU(3).
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