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Abstract. A form of Bernstein theorem states that a complete stable minimal surface
in euclidean space is a plane. A generalization of this statement is that there exists no com-
plete stable hypersurface of areuclidean space with vanishirig — 1)-mean curvature and
nowhere zero Gauss-Kronecker curvature. We show that this is the case, provided the immer-
sion is proper and the total curvature is finite.

1. Introduction. Letx: M"* — R"*1 be a hypersurface of the: + 1)-euclidean
spaceR™t1. We assume thalf = M” is orientable and fix an orientation fof. Letg: M —
§7 C R"*1 be the Gauss map in the given orientation, whefeis the unitn-sphere in
R"*1. Recall that the linear operater: T,M — T,M, p € M, associated to the second
fundamental form ok is given by

(A(X),Y)=—(VxN,Y), X, YeT,M,

whereV is the covariant derivative of the ambient space Anig the unit normal vector of
in the given orientation. The map= —dg is self-adjoint and its eigenvalues are the principal
curvaturesy, ko, . .., k, of x.

Assume now that the immersion is complete. We will say that the total curvature of the
immersion is finite iff,, |A|" dM < oo, where|A| = (3, k3)Y2.

Consider now the elementary symmetric functidhsr = 0, 1, ..., n, of the principal
curvaturess, ..., k, of x:

So=1. S= Y ki...ki. in....ip=1....n,

i1<--<iy

and their associatedmean curvaturesl, given by

-1
n
w=(") s
r

Hypersurfaces in euclidean spaces with= 0 generalize minimal hypersurfacgd; =
0). The relation is even deeper, since minimal hypersurfaces are critical points of the func-
tional Ag = [,, HodM for compactly supported variations f, whereas hypersurfaces with
H, 1 = 0 are critical points of the functiona, = [,, H, dM also for compactly supported
variations [11]. A breakthrough in the study of such hypersurfaces was made when Hounie
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and Leite [8] proved that the equatiéfy 1 = 0,r # 0,n — 1, is elliptic provided that rank
A > r. In the case- = 0, no such condition is necessary, since the equation of a minimal
hypersurface is automatically elliptic.

In [1], a definition of stability was given for hypersurfaces of the euclidean space with
H,+1 = 0 (see Section 2 for details) and the following theorems were proved for the special
case where + 1 = n — 1 (in this case, it is not difficult to see that the condition rank r
is equivalent taH,, # 0 everywhere).

THEOREM A (Theorem 1.2 of [1]). Letx: M" — R"*! bean orientable hypersurface
with H,_1 = O and H, # O everywhere. Let D C M be a bounded domain with piecewise
smooth boundary. Assume that

Area of g(D) < Area of a hemisphere of7 .

Then D is stable and the estimateis sharp.

THEOREM B (Corollary 1.7 of [1]). Letx: M" — R"*1and D ¢ M beasin Theo-
rem A. Assume that the Gauss map ¢ restricted to D is a covering map onto g(D), and that
the first eigenvalue 11(g(D)) of g(D) for the spherical Laplacian satisfies L1(g(D)) < n.
Then D isunstable.

Theorem A generalizes a theorem of Barbosa and do Carmo (Theorem 1.3 of [2]), which
gives a condition for stabilitpf bounded domains of orieattle minimal surfaces iR3, and
Theorem B generalizes a theorem of A. Schwarz (see [2], Theorem 2.7) for instability of
similar domains.

The question naturally arises of what can be said about hypersufadgd — R"*1
with H,_1 = 0 andH, # 0 everywhere that are orientabtemplete and stable in the sense
that every bounded domain M is stable. This is a very strong condition, and, in the minimal
case, it has been proved that the only oriblgacomplete stable minimal surfaceRd is the
plane (see [5] and [7]).

Based on the above considerations, in [1] the following conjecture was propidsed.
exists no complete, orientable, stable hypersurface x: M" — R"t1 with H,_, = 0 and
H, # 0 everywhere. Here we show that with some additional conditions the conjecture is
true. Namely, we prove

THEOREM 1.1. There exists no complete orientable, proper, stable hypersurface
x: M" - R"1 n > 3 with H,_1 = 0and H, # 0 everywhere and of finite total cur-
vature.

2. Proof of Theorem 1.1. Before going into the proof of Theorem 1.1, we need to
fix some notation and to recall relevant facts on stability. Further details can be found in [11],
[12], [3] and [1].

Letx: M" — R"*1 be an orientable hypersurface wiih ;1 = 0. A regular domain
D c M is a domain with compact closure and piecewise smooth boundary. We sdy that
stable if either A/ (0) > O for all variations with compact support in or A/(0) < 0 for all
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such variations. A justification for this definition can be found in the Introduction of [1]. If
for some variation with compact supportinwe haveA’ (0) > 0, while for some other such
variation, we havet’ (0) < 0, we say thaD is unstable.

Following [11], we define a linear map. of T, M by

Po=1, P =5I1-AP_1,

wherel is the identity matrix and is the linear map defined in the Introduction. Next, we
define a second order linear operatorby

(1) er = diV(Per) s

whereV f is the gradient off. We then write the Jacobi equation of the variational problem
that defines the hypersurfaces wiih,1 = 0:
®) Tf €L f— 2827 =0.
The Jacobi equation (2) is the linearization of the equatipry = 0. As we mentioned in the
Introduction,H,, # 0 everywhere is a sufficient condition for (2) to be elliptic. By (1), this is
equivalent to the fact tha®,. has all its eigenvalues of the same sign. We denot @y the
eigenvalues of/P, A when P, is positive definite, and the eigenvalues¢f P, A when P,
is negative definite. We will assume for convenience thais positive definite, leaving the
details of the other case to the reader.

With this notation, we can rewrite the Jacobi operdioas ([1], Section 2)

T, =L, + IVPA|?,

where|| /P A||2 = > Giz(r). Finally, we define the Morse index fori of our variational
problem as

I.(f,9) = _/;WfTr(g)dM~
Inthecase +1=n—1,i.e.,H,_1 = 0, it can be shown that ([1], Lemma 2.4)
(3) 0i(n — 2)* = =5,

In the proof of our theorem, we are going to use Theorems A and B of the Introduction.
Concerning Theorem A, it should be noticed that the fact that the arg@fis smaller than
the area of a hemisphere 8f implies, by symmetrization, that (¢(D)) > n, and the latter
is what is used in the proof of Theorem 1.2 of [1]. Thus, Theorémelow holds:

THEOREM A’. Letx: M" — R"1and D ¢ M beasin Theorem A of the Introduc-
tion. Assumethat A1(g(D)) > n. Then D is stable.

We also need a lemma which is proved in [1] (Lemma 2.7) and that will be quoted here
as Lemma A. We us€° (D) to denote the space of differentiable functions that vanish on
the boundary) D of a regular domairD, andC2°(D) to denote those differentiable functions
that have a (compact) supportin

LEMMA A ([1], see also [14]). The following statements are equivalent :
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(i) Thereexists f € C2°(D) suchthat I, (f, f) <O.
(i) Thereexists f € C°(D) suchthat I.(f, ) <O.
(i) Thereexists f € Cg°(D) suchthat I, (f, f) <O.

We still need a definition. We say that the bounda#y of a regular domairD is a
first conjugate boundary if there exists a Jacobi field that vanishesadm and there exists no
Jabobi field that vanishes in (the open get)A Jacobi field f N is a normal vector field such
that f satisfies the Jacobi equation (2).

Let D be a domain such thatD is a first conjugate boundary. We observe that every
domain properly contained i is stable and every domain that contaibgproperly is un-
stable. In fact, ifD’” ¢ D is not stable, there exis{ € C2°(D’) such that.(f, f) < 0. By
Lemma A, there existg' € C3°(D’) such that/,(f, f) < 0. By the Morse Index Theorem,
there existdD” ¢ D’ and a Jacobi field vanishing @D”. This is a contradiction and proves
the first part of the statement.

To prove the second part of the statementJét> D. Sinced D is a conjugate bound-
ary, by the Morse Index Theorem there exigte C3°(D") with I.(f, f) < 0. By Lemma
A, there existsf € C°(D") with I.(f, f) < 0, henceD” is unstable.

REMARK 2.1. Although we have no need of it, it is not hard to show that the two-part
statement that we just proved is an equivalent definition of a first conjugate boundary.

The proof of Theorem 1.1 will depend on Lemmas 2.2, 2.3 and 2.5 below.

LEMMA 2.2. Letx: M" — R"*! be an orientable hypersurface with H,_1 = 0 and
H, # 0 everywhere. Assume that its Gaussmap ¢g: M" — S" isinjective. Let D C M bea
regular domain such that 9 D is a first conjugate boundary. Then the following hold.

(@) Thefirst eigenvalue A1(g(D)) for the spherical Laplacian satisfies A1(g(D)) = n.

(b) Let f: g(D) — R bethefirst eigenfunction of g(D). Thenu = f o g satisfiesthe
Jacobi equation, u > 0in Dandu =00naD.

PrROOF We will prove (a). Indeedr1(g(D)) is not smaller tham. Otherwise, we
could find a domairD’ c D such thatv1(g(D’)) < n. ThusD’ is unstable by Theorem B
and this contradicts the fact that every domain containeB is stable (sincé D is a first
conjugate boundary). Also, it cannot occur thatg(D)) > n. Otherwise, we could find
a domainD” > D such that\1(g(D”)) > n. By Theorem A, D" is stable, and this is a
contradiction. Thus.1(¢g(D)) = n and this proves (a).

We now prove (b). Since the Gauss map is injectiMg(D)) = ¢g(d D), and then

Au+nu=0, u>0inD, u=0o0ndD,

whereA is the Laplacian of the pullback metri¢, )) on M by g (we recall thatH, # 0).
By Stokes theorem,
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() 0=/(||w||2—nu2)dS=/(Wu||2—nu2>|sn|dM,
D D

whered M andd S = |S,|d M are the volume elements ofglinduced metric and the pullback
metric, respectively.

For notational simplicity, we writ€9; (n — 2))? = 62. Since, by (3)§? = —,,, we have,
assuming thaP, is positive definite,

1
VPR = 292 1Sl -

Also, denoting by,; the eigenvalues of

VP A
IVPAll
we obtain that
62 1
W=t ==
Z.,' 9]. n
Since, foranyX e 7, M,
-1,2 2
VP A
#=| () |l
I Al v/ PrAll
we can write
. VP AVu|?
||Vu||2 — n% )
v/ PrAll

Therefore, we have from (4),

n||vP, AVu||2 2)1
o=/< nu? | =||VPrA|2dM
b\ IIVPA|2 n

=/(||¢PrA%u||2— I/ PrAll2u?)dM .
D

By using thatV = A~2V ([1], Lemma 2.9), thatP, commutes withA, and that
(A71X, A~1X)) = (X, X), we have, by Stokes Theorem,

= / (VP Vul?2 = |VPAlPu?) dM = I, (u, u) .
D

Now we use thad D is a first conjugate boundary. Thus for everg C3°(D), we have
that/, (¢, ¢) > 0. Otherwise, there existse Cy°(D) with (g, g) < 0; by the Morse Index
Theorem, there exists a Jacobi fieldit & D vanishing ind D', and this is a contradiction.
Then, forany € C3°(D), we obtain for alk € R,

0< L (u+tv,u+tv)=2tL(u,v) + 2L (v, v).

Hencel, (u, v) = 0, and thus: satisfies the Jacobi equation. This proves (b) and completes
the proof of Lemma 2.2. O
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LEMMA 2.3. Let S7 c R"*! be the unit sphere of R"*1and p = (0,...,0,1) €
S7. Then there exist a domain D, symmetric relative to the equator of S7, and a function
f: 87 — Rsuchthat A1(D) = n and that f is the first eigenfunction of D. Furthermore,
limy—+, f(qg) = —00,q € 7, where —p isthe antipodal point to p.

PROOF.  This is an application of Lemma 2.2 to rotation hypersurfacesRI‘ét have
coordinatessy, ..., x,4+1 = y. Following [10], we letOx; be the axis of rotation and let=
h(x1) be the equation of the generating cutvef the rotation hypersurface: M" — R*+1
with H,_1 = 0. Itis easily checked that, # 0 everywhere for such hypersurfaces and that
the curveC is symmetric.

Now consider the domaiWw C M bounded by the rotation of the points of contact of the
tangent lines taC issued from the origin 0 oR”*L. It is known ([1], §3.7) that the support
function (x, N) satisfies the Jacobi equation, is positiveWhand vanishes i W. Thus
aW is afirst conjugate boundary and, since the Gauss map of such rotation hypersurfaces is
injective ([10], 82), Lemma 2.2 implies that the symmetric domir= g(W) C S7 satisfies
M1(D) = n. Furthermore, iff is the first eigenfunction oD, then, again by Lemma 2.2,

u = f o g satisfies the Jacobi equatiom,> 0 in W andu = 0 in aW. It follows that
u = {x,N).

Since M behaves asymptotically like a parabola ([10], 82), we have that the support
function transfered t6”, with a convenient choice of orientation, tendsteo on both ends
of M. Thusf satisfies lig_.+, f(g) = —oco. 0

REMARK 2.4. If we know the explicit expresion of the generating cu€yewe can
write explictly the functionf. For instance, in the case of a rotation hypersurfaca/® —
R* with H» = 0, we know that the generating curgeis given by

X
=141,
y=1+-

A simple computation shows that the support function transferef fa.e., (x, N) o
g1 = fis given by

f@ 12 x s
7) = , Z=gox]= ——.
1-22 gen VA4 (x1)2

Since f is a radial function, one can easily check, by using the expression of the Laplacian
for radial functions (see, for instance, Sakai [13], p. 263) that

Af +3f=0,

as it should be.
Lemma 2.5 below follows an argument of do Carmo and Silveira [4].

LEMMA 2.5. Givenfinitely many points ps, ..., px € S7, thereexistsa domain W C
S that omits neighborhoods U; C S of p;, i = 1,..., k, and satisfies A1 (W) = n.



STABLE COMPLETE HYPERSURFACES 161

PROOF.  For eaclp;, make a rotation of so thatp; = (0, ..., 0, 1). LetD; and f; be
the domain and the function given by Lemma 2.3./8et ) ", f; and defindV as a connected
component of the sép € S7 ; 7 > 0}.

We recall that a hemisphere of S7 has eigenvalue and that, of all domains i} with
the same area, the spherical cap has the smallest eigenvalue Dginde, # @, the sef{p <
S1 s fi+ f2 = O} is not empty. Thus a connected componbmj of {p € ] ; f1+ f2 > 0}
has eigenvalue with eigenfunctionf; + f>. By the above minimization property,

A(D12) > A(H C 87),

whereA( ) denotes the area of the enclosed domain. By the same tdkén) > A(H),
i = 1...,k. ThusD12 N D3 # @, and an induction shows that(W) > A(H). This
shows that¥ is not empty. Clearlyl1(W) = n, and# is the first eigenfunction o#. Since
lim,_ p; fi = —o0, W omits neighborhoods; of p;, as we desired. O

PROOF OFTHEOREM 1.1. The proof uses some recent results of [6] on finite total cur-
vature, complete hypersurfacesmtlimensional euclidean spaces. We assume the existence
of an immersionc: M" — R"*1 asin Theorem 1.1. Sinceis proper, has finite total curva-
ture, andH, # 0 everywhere, Theorems 1.1 and 4.1 of [6] imply that there exist a compact
manifold M and pointsgy, ..., gx € M such thatV is diffeomorphic toM — {q1, . . ., gx}
and the Gauss map extends to a homeomorphism — S7. Setp; = g(gi),i =1,... k.

Let W C S7 be the domain, given by Lemma 2.5, that omits neighborhdgdsf p; and is
such thatiy (W) = n. Let W 2 W be a domain ins7 that still omits neighborhoods of;,
and setD = ¢~ 1(W’). Sincey is bijective andr1(g(D)) < n, we conclude, by Theorem B,
that D is unstable. This contradicts the assumption and completes the proof. O

ExaMPLE. The following example shows that the hypothesis of stability in Theorem
1.1 cannot be dropped. As mentioned in [1], the hypersurfade R* generated by the rota-
tion of the parabol#(z) = 1+ z2/4 around the-axis is a nonstable complete hypersurface
with H> = 0 andH3 # 0 everywhere. By using the orthogonal parametrization — R4,
it is represented as

x(z,0, ¢) = (hcosd sing, hsind sing, h cosy, z) ,
from which we can easily compute that|® = (27/8) f~%2, and that
27
/ |ARdM = =72,
M 2

ThusM has finite total curvature, and this proves our claim.
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