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Abstract. A form of Bernstein theorem states that a complete stable minimal surface
in euclidean space is a plane. A generalization of this statement is that there exists no com-
plete stable hypersurface of ann-euclidean space with vanishing(n − 1)-mean curvature and
nowhere zero Gauss-Kronecker curvature. We show that this is the case, provided the immer-
sion is proper and the total curvature is finite.

1. Introduction. Let x : Mn → Rn+1 be a hypersurface of the(n + 1)-euclidean
spaceRn+1. We assume thatM = Mn is orientable and fix an orientation forM. Letg : M →
Sn

1 ⊂ Rn+1 be the Gauss map in the given orientation, whereSn
1 is the unitn-sphere in

Rn+1. Recall that the linear operatorA : TpM → TpM, p ∈ M, associated to the second
fundamental form ofx is given by

〈A(X), Y 〉 = −〈∇̄XN, Y 〉 , X, Y ∈ TpM ,

where∇̄ is the covariant derivative of the ambient space andN is the unit normal vector ofx
in the given orientation. The mapA = −dg is self-adjoint and its eigenvalues are the principal
curvaturesk1, k2, . . . , kn of x.

Assume now that the immersion is complete. We will say that the total curvature of the
immersion is finite if

∫
M

|A|n dM < ∞, where|A| = (
∑

i k2
i )

1/2.
Consider now the elementary symmetric functionsSr , r = 0, 1, . . . , n, of the principal

curvaturesk1, . . . , kn of x:

S0 = 1 , Sr =
∑

i1<···<ir

ki1 . . . kir , i1, . . . , ir = 1, . . . , n ,

and their associatedr-mean curvaturesHr given by

Hr =
(

n

r

)−1

Sr .

Hypersurfaces in euclidean spaces withHr = 0 generalize minimal hypersurfaces(H1 =
0). The relation is even deeper, since minimal hypersurfaces are critical points of the func-
tionalA0 = ∫

M
H0 dM for compactly supported variations ofM, whereas hypersurfaces with

Hr+1 = 0 are critical points of the functionalAr = ∫
M

Hr dM also for compactly supported
variations [11]. A breakthrough in the study of such hypersurfaces was made when Hounie
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and Leite [8] proved that the equationHr+1 = 0, r �= 0, n − 1, is elliptic provided that rank
A > r. In the caser = 0, no such condition is necessary, since the equation of a minimal
hypersurface is automatically elliptic.

In [1], a definition of stability was given for hypersurfaces of the euclidean space with
Hr+1 = 0 (see Section 2 for details) and the following theorems were proved for the special
case wherer + 1 = n − 1 (in this case, it is not difficult to see that the condition rankA > r

is equivalent toHn �= 0 everywhere).

THEOREM A (Theorem 1.2 of [1]). Let x : Mn → Rn+1 be an orientable hypersurface
with Hn−1 = 0 and Hn �= 0 everywhere. Let D ⊂ M be a bounded domain with piecewise
smooth boundary. Assume that

Area ofg(D) < Area of a hemisphere ofSn
1 .

Then D is stable and the estimate is sharp.

THEOREM B (Corollary 1.7 of [1]). Let x : Mn → Rn+1 and D ⊂ M be as in Theo-
rem A. Assume that the Gauss map g restricted to D̄ is a covering map onto g(D̄), and that
the first eigenvalue λ1(g(D)) of g(D) for the spherical Laplacian satisfies λ1(g(D)) < n.
Then D is unstable.

Theorem A generalizes a theorem of Barbosa and do Carmo (Theorem 1.3 of [2]), which
gives a condition for stabilityof bounded domains of orientable minimal surfaces inR3, and
Theorem B generalizes a theorem of A. Schwarz (see [2], Theorem 2.7) for instability of
similar domains.

The question naturally arises of what can be said about hypersurfacesx : Mn → Rn+1

with Hn−1 = 0 andHn �= 0 everywhere that are orientable,complete and stable in the sense
that every bounded domain inM is stable. This is a very strong condition, and, in the minimal
case, it has been proved that the only orientable, complete stable minimal surface inR3 is the
plane (see [5] and [7]).

Based on the above considerations, in [1] the following conjecture was proposed.There
exists no complete, orientable, stable hypersurface x : Mn → Rn+1 with Hn−1 = 0 and
Hn �= 0 everywhere. Here we show that with some additional conditions the conjecture is
true. Namely, we prove

THEOREM 1.1. There exists no complete orientable, proper, stable hypersurface
x : Mn → Rn+1, n ≥ 3, with Hn−1 = 0 and Hn �= 0 everywhere and of finite total cur-
vature.

2. Proof of Theorem 1.1. Before going into the proof of Theorem 1.1, we need to
fix some notation and to recall relevant facts on stability. Further details can be found in [11],
[12], [3] and [1].

Let x : Mn → Rn+1 be an orientable hypersurface withHr+1 = 0. A regular domain
D ⊂ M is a domain with compact closure and piecewise smooth boundary. We say thatD is
stable if either A′′

r (0) > 0 for all variations with compact support inD or A′′
r (0) < 0 for all
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such variations. A justification for this definition can be found in the Introduction of [1]. If
for some variation with compact support inD we haveA′′

r (0) > 0, while for some other such
variation, we haveA′′

r (0) < 0, we say thatD is unstable.
Following [11], we define a linear mapPr of TpM by

P0 = I, Pr = SrI − APr−1 ,

whereI is the identity matrix andA is the linear map defined in the Introduction. Next, we
define a second order linear operatorLr by

Lrf = div(Pr∇f ) ,(1)

where∇f is the gradient off . We then write the Jacobi equation of the variational problem
that defines the hypersurfaces withHr+1 = 0:

Trf
def= Lrf − (r + 2)Sr+2f = 0 .(2)

The Jacobi equation (2) is the linearization of the equationHr+1 = 0. As we mentioned in the
Introduction,Hn �= 0 everywhere is a sufficient condition for (2) to be elliptic. By (1), this is
equivalent to the fact thatPr has all its eigenvalues of the same sign. We denote byθi(r) the
eigenvalues of

√
PrA whenPr is positive definite, and the eigenvalues of

√−PrA whenPr

is negative definite. We will assume for convenience thatPr is positive definite, leaving the
details of the other case to the reader.

With this notation, we can rewrite the Jacobi operatorTr as ([1], Section 2)

Tr = Lr + ‖√PrA‖2 ,

where‖√PrA‖2 = ∑
i θ2

i (r). Finally, we define the Morse index formIr of our variational
problem as

Ir (f, g) = −
∫

M

f Tr(g) dM .

In the caser + 1 = n − 1, i.e.,Hn−1 = 0, it can be shown that ([1], Lemma 2.4)

(θi(n − 2))2 = −Sn .(3)

In the proof of our theorem, we are going to use Theorems A and B of the Introduction.
Concerning Theorem A, it should be noticed that the fact that the area ofg(D) is smaller than
the area of a hemisphere ofSn

1 implies, by symmetrization, thatλ1(g(D)) > n, and the latter
is what is used in the proof of Theorem 1.2 of [1]. Thus, Theorem A′ below holds:

THEOREM A ′. Let x : Mn → Rn+1 and D ⊂ M be as in Theorem A of the Introduc-
tion. Assume that λ1(g(D)) > n. Then D is stable.

We also need a lemma which is proved in [1] (Lemma 2.7) and that will be quoted here
as Lemma A. We useC∞

0 (D) to denote the space of differentiable functions that vanish on
the boundary∂D of a regular domainD, andC∞

c (D) to denote those differentiable functions
that have a (compact) support inD.

LEMMA A ([1], see also [14]). The following statements are equivalent :
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(i) There exists f ∈ C∞
c (D) such that Ir (f, f ) ≤ 0.

(ii) There exists f ∈ C∞
c (D) such that Ir (f, f ) < 0.

(iii) There exists f ∈ C∞
0 (D) such that Ir (f, f ) < 0.

We still need a definition. We say that the boundary∂D of a regular domainD is a
first conjugate boundary if there exists a Jacobi field that vanishes on∂D and there exists no
Jabobi field that vanishes in (the open set)D. A Jacobi field f N is a normal vector field such
thatf satisfies the Jacobi equation (2).

Let D be a domain such that∂D is a first conjugate boundary. We observe that every
domain properly contained inD is stable and every domain that containsD properly is un-
stable. In fact, ifD′ � D is not stable, there existsf ∈ C∞

c (D′) such thatIr (f, f ) ≤ 0. By
Lemma A, there existsf ∈ C∞

0 (D′) such thatIr (f, f ) < 0. By the Morse Index Theorem,
there existsD′′ ⊂ D′ and a Jacobi field vanishing on∂D′′. This is a contradiction and proves
the first part of the statement.

To prove the second part of the statement, letD′′ � D. Since∂D is a conjugate bound-
ary, by the Morse Index Theorem there existsf ∈ C∞

0 (D′′) with Ir (f, f ) < 0. By Lemma
A, there existsf ∈ C∞

c (D′′) with Ir (f, f ) < 0, henceD′′ is unstable.

REMARK 2.1. Although we have no need of it, it is not hard to show that the two-part
statement that we just proved is an equivalent definition of a first conjugate boundary.

The proof of Theorem 1.1 will depend on Lemmas 2.2, 2.3 and 2.5 below.

LEMMA 2.2. Let x : Mn → Rn+1 be an orientable hypersurface with Hn−1 = 0 and
Hn �= 0 everywhere. Assume that its Gauss map g : Mn → Sn is injective. Let D ⊂ M be a
regular domain such that ∂D is a first conjugate boundary. Then the following hold.

(a) The first eigenvalue λ1(g(D)) for the spherical Laplacian satisfies λ1(g(D)) = n.
(b) Let f : g(D) → R be the first eigenfunction of g(D). Then u = f ◦ g satisfies the

Jacobi equation, u > 0 in D and u = 0 on ∂D.

PROOF. We will prove (a). Indeed,λ1(g(D)) is not smaller thann. Otherwise, we
could find a domainD′ ⊂ D such thatλ1(g(D′)) < n. ThusD′ is unstable by Theorem B
and this contradicts the fact that every domain contained inD is stable (since∂D is a first
conjugate boundary). Also, it cannot occur thatλ1(g(D)) > n. Otherwise, we could find
a domainD′′ ⊃ D such thatλ1(g(D′′)) > n. By Theorem A′, D′′ is stable, and this is a
contradiction. Thusλ1(g(D)) = n and this proves (a).

We now prove (b). Since the Gauss map is injective,∂(g(D)) = g(∂D), and then

�̃u + nu = 0, u > 0 in D , u = 0 on ∂D ,

where�̃ is the Laplacian of the pullback metric〈〈 , 〉〉 on M by g (we recall thatHn �= 0).
By Stokes theorem,
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0 =
∫

D

(‖∇̃u‖2 − nu2)dS =
∫

D

(‖∇̃u‖2 − nu2)|Sn|dM ,(4)

wheredM anddS = |Sn|dM are the volume elements of the induced metric and the pullback
metric, respectively.

For notational simplicity, we write(θi(n−2))2 = θ2
i . Since, by (3),θ2

i = −Sn, we have,
assuming thatPr is positive definite,

1

n
‖√PrA‖2 = 1

n

∑
j

θ2
j = |Sn| .

Also, denoting byλi the eigenvalues of
√

PrA

‖√PrA‖ ,

we obtain that

λ2
i = θ2

i∑
j θ2

j

= 1

n
.

Since, for anyX ∈ TpM,

‖X‖2 =
∥∥∥∥
( √

PrA

‖√PrA‖
)−1∥∥∥∥

2∥∥∥∥
√

PrA

‖√PrA‖X

∥∥∥∥
2

,

we can write

‖∇̃u‖2 = n
‖√PrA∇̃u‖2

‖√PrA‖2
.

Therefore, we have from (4),

0 =
∫

D

(
n‖√PrA∇̃u‖2

‖√PrA‖2
− nu2

)
1

n
‖√PrA‖2dM

=
∫

D

(‖√PrA∇̃u‖2 − ‖√PrA‖2u2)dM .

By using that∇̃ = A−2∇ ([1], Lemma 2.9), thatPr commutes withA, and that
〈〈A−1X,A−1X〉〉 = 〈X,X〉, we have, by Stokes Theorem,

0 =
∫

D

(|√Pr∇u|2 − ‖√PrA‖2u2) dM = Ir (u, u) .

Now we use that∂D is a first conjugate boundary. Thus for everyϕ ∈ C∞
0 (D), we have

thatIr (ϕ, ϕ) ≥ 0. Otherwise, there existsg ∈ C∞
0 (D) with Ir (g, g) < 0; by the Morse Index

Theorem, there exists a Jacobi field inD′ � D vanishing in∂D′, and this is a contradiction.
Then, for anyv ∈ C∞

0 (D), we obtain for allt ∈ R,

0 ≤ Ir (u + tv, u + tv) = 2tIr (u, v) + t2Ir (v, v) .

HenceIr (u, v) = 0, and thusu satisfies the Jacobi equation. This proves (b) and completes
the proof of Lemma 2.2. �
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LEMMA 2.3. Let Sn
1 ⊂ Rn+1 be the unit sphere of Rn+1 and p = (0, . . . , 0, 1) ∈

Sn
1 . Then there exist a domain D, symmetric relative to the equator of Sn

1 , and a function
f : Sn

1 → R such that λ1(D) = n and that f is the first eigenfunction of D. Furthermore,
limq→±p f (q) = −∞, q ∈ Sn

1 , where −p is the antipodal point to p.

PROOF. This is an application of Lemma 2.2 to rotation hypersurfaces. LetRn+1 have
coordinatesx1, . . . , xn+1 = y. Following [10], we letOx1 be the axis of rotation and lety =
h(x1) be the equation of the generating curveC of the rotation hypersurfacex : Mn → Rn+1

with Hn−1 = 0. It is easily checked thatHn �= 0 everywhere for such hypersurfaces and that
the curveC is symmetric.

Now consider the domainW ⊂ M bounded by the rotation of the points of contact of the
tangent lines toC issued from the origin 0 ofRn+1. It is known ([1], §3.7) that the support
function 〈x,N〉 satisfies the Jacobi equation, is positive inW and vanishes in∂W . Thus
∂W is a first conjugate boundary and, since the Gauss map of such rotation hypersurfaces is
injective ([10], §2), Lemma 2.2 implies that the symmetric domainD = g(W) ⊂ Sn

1 satisfies
λ1(D) = n. Furthermore, iff is the first eigenfunction ofD, then, again by Lemma 2.2,
u = f ◦ g satisfies the Jacobi equation,u > 0 in W andu = 0 in ∂W . It follows that
u = 〈x,N〉.

SinceM behaves asymptotically like a parabola ([10], §2), we have that the support
function transfered toSn, with a convenient choice of orientation, tends to−∞ on both ends
of M. Thusf satisfies limq→±p f (q) = −∞. �

REMARK 2.4. If we know the explicit expresion of the generating curveC, we can
write explictly the functionf . For instance, in the case of a rotation hypersurfacex : M3 →
R4 with H2 = 0, we know that the generating curveC is given by

y = 1 + x2
1

4
.

A simple computation shows that the support function transfered toSn
1 , i.e., 〈x,N〉 ◦

g−1 = f is given by

f (z) = 1 − 2z2
√

1 − z2
, z = g ◦ x1 = x1√

4 + (x1)2
.

Sincef is a radial function, one can easily check, by using the expression of the Laplacian
for radial functions (see, for instance, Sakai [13], p. 263) that

�̃f + 3f = 0 ,

as it should be.
Lemma 2.5 below follows an argument of do Carmo and Silveira [4].

LEMMA 2.5. Given finitely many points p1, . . . , pk ∈ Sn
1 , there exists a domain W ⊂

Sn
1 that omits neighborhoods Ui ⊂ Sn

1 of pi, i = 1, . . . , k, and satisfies λ1(W) = n.
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PROOF. For eachpi , make a rotation ofSn
1 so thatpi = (0, . . . , 0, 1). LetDi andfi be

the domain and the function given by Lemma 2.3. Seth = ∑
i fi and defineW as a connected

component of the set{p ∈ Sn
1 ; h ≥ 0}.

We recall that a hemisphereH of Sn
1 has eigenvaluen and that, of all domains inSn

1 with
the same area, the spherical cap has the smallest eigenvalue. SinceD1 ∩D2 �= ∅, the set{p ∈
Sn

1 ; f1 +f2 ≥ 0} is not empty. Thus a connected componentD12 of {p ∈ Sn
1 ; f1 +f2 ≥ 0}

has eigenvaluen with eigenfunctionf1 + f2. By the above minimization property,

A(D12) > A(H ⊂ Sn
1) ,

whereA( ) denotes the area of the enclosed domain. By the same token,A(Di) > A(H),
i = 1, . . . , k. ThusD12 ∩ D3 �= ∅, and an induction shows thatA(W) > A(H). This
shows thatW is not empty. Clearly,λ1(W) = n, andh is the first eigenfunction ofW . Since
limp→pi fi = −∞, W omits neighborhoodsUi of pi , as we desired. �

PROOF OFTHEOREM 1.1. The proof uses some recent results of [6] on finite total cur-
vature, complete hypersurfaces ofn-dimensional euclidean spaces. We assume the existence
of an immersionx : Mn → Rn+1 as in Theorem 1.1. Sincex is proper, has finite total curva-
ture, andHn �= 0 everywhere, Theorems 1.1 and 4.1 of [6] imply that there exist a compact
manifold M̄ and pointsq1, . . . , qk ∈ M̄ such thatM is diffeomorphic toM̄ − {q1, . . . , qk}
and the Gauss map extends to a homeomorphismḡ : M̄ → Sn

1 . Setpi = ḡ(qi), i = 1, . . . , k.
Let W ⊂ Sn

1 be the domain, given by Lemma 2.5, that omits neighborhoodsUi of pi and is
such thatλ1(W) = n. Let W ′ � W be a domain inSn

1 that still omits neighborhoods ofpi ,
and setD = g−1(W ′). Sinceg is bijective andλ1(g(D)) < n, we conclude, by Theorem B,
thatD is unstable. This contradicts the assumption and completes the proof. �

EXAMPLE. The following example shows that the hypothesis of stability in Theorem
1.1 cannot be dropped. As mentioned in [1], the hypersurfaceM in R4 generated by the rota-
tion of the parabolah(z) = 1 + z2/4 around thez-axis is a nonstable complete hypersurface
with H2 = 0 andH3 �= 0 everywhere. By using the orthogonal parametrizationx : M → R4,
it is represented as

x(z, θ, ϕ) = (h cosθ sinϕ, h sinθ sinϕ, h cosθ, z) ,

from which we can easily compute that|A|3 = (27/8)f −9/2, and that∫
M

|A|3 dM = 27

2
π2 .

ThusM has finite total curvature, and this proves our claim.
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