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Abstract. The purpose of this paper is to derive a generalization of Kohnen-Zagier's
results concerning Fourier coefficients obdular forms of half integral weight belonging to
Kohnen's spaces, and to refine our previous results concerning Fourier coefficients of modular
forms of half integral weight belonging to Kohmis spaces. Employing kernel functions, we
construct a correspondende from modular forms of half integral weighit + 1/2 belong-
ing to Kohnen’s spaces to modular forms of weight 2Ve explicitly determine the Fourier
coefficients of& (f) in terms of those off. Moreover, under certain assumptions abgut
concerning the multiplicity one theorem with respect to Hecke operators, we establish an ex-
plicit connection between the square of Fourier coefficientg ahd the critical value of the
zeta function associated with the imagé /) of f twisted with quadratic characters, which
gives a further refinement of our results comieg Fourier coefficients of modular forms of
half integral weight belonging to Kohnen'’s spaces.

Introduction.  In [20], Waldspurger first found the proportionality between Fourier co-
efficients of modular forms of half integl weight and special values of twistddseries
defined by Shimura correspondences. Kohnegi&r [4], [6] and [7] determined explicitly
the constant of proportionality in the case of modular forms of half integral weight belonging
to Kohnen's spaces of odd level and of trivial character.

In [17], Shimura proved many general formulas of Waldspurger-type in the case of
Hilbert modular formsyf of half integral weight. Among these, some explicit and useful
formulas about the proportionality constant were formulated under assumptiofi Haeits-
fies the multiplicity one theorem of Hecke operators. Manickam-Ramakrishnan-Vasudevan
[13] and [14] also obtained related results in the case of elliptic modular forms of half integral
weight. On the other hand, Kojima [8] and [9] generalized Kohnen-Zagier’s results to the case
of Kohnen’s spaces of arbitrary odd level and of arbitrary character under the assumption of
multiplicity two theorem of Hecke operators. It is to be desired that, under the assumption of
multiplicity one theorem, our results are reformulated in the case of arbitrary odd level and of
arbitrary character in conjunction with the possibility of a further refinement of [8] and [9].
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We refer to [10] and [12] for a generalization of Shimura’s results to the case of Maass wave
forms.

The purpose of this paper is to generalize Kohnen's results to the case of arbitrary odd
level and of arbitrary character, and toddee that, under the assumption of multiplicity one
theorem, the square of Fourier coefficients of modular forms of half integral weight, belonging
to Kohnen's spaces of arbitrary odd level andaobitrary character, ssentially coincides
with the critical values of zeta functions twisted with quadratic character, which refines our
previous results [8] and [9]. The method of this paper is basically the same as that of [6].

Section 0 is a preliminary section. In Sectib, we shall recall the definition of Kohnen’s
space, which is a subspace of modular forms of half integral weight, and Hecke operators
acting on there. We then introduce Poiricaeries of Kohnen's space and modular forms
of integral weight associated with a space of quadratic forms. Furthermore, we determine
explicit Fourier coefficients of Fourier expansion of those.

In Section 2, by virtue of the computation of Gauss sum, we shall derive that a sum of
Kloosterman sum is expressed as that of genus characters. Using this, we shall deduce that a
certain function which is a series whose terms are modular forms associated with a space of
guadratic forms coincides with a series whose terms are Péisesies of Kohnen's space,
which plays an essential role in our later argument.

In Section 3, using the function introduced in Section 2 as a kernel function, we shall
establish a correspondengefrom Kohnen's spacéi,1/2(N, x) of modular formsf (z) =
Zzo:l,(fl)knzo,l(@ a(n)e[nz] of half integral weighk 4 1/2 to the spacé&y; (N, x2) of mod-
ular forms of integral weight 2 Using the identity mentioned above, we shall explicitly
determine Fourier coefficients & = ¥ (f) in terms of those off € Si11/2(N, x). More-
over, it is shown thatr commutes with the action of Hecke operators. Employing the fact
that our correspondencek has an integral expression and the identity mentioned above, the
Fourier coefficients oft *(F) is expressed by a certain cycle integralfofvith the adjoint
mappingy * of ¥.

In Section 4, under the assumption thats an eigenfunction of Hecke operators and
W (f) is a new form inSo (N, x2), it is verified that¥ ( f) is equal toc F with a Fourier co-
efficientc of f and the primitive formF attached tol (f). Furthermore, we can show that
w*(F) is an eigenfunction of Hecke operators using the propertiesthedmmutes with
the action of Hecke operators and those of Hecke operators. By the assumptigrstiest
fies the multiplicity one theorem of Hecke operators, we see that there is a caristach
thatw*(F) = ¢’ f, which means thaf can be recovered fromk (/). Using these facts, the
property of the adjoint mapping* of ¥ and results in Section 3, we may derive that the
square of Fourier coefficients gf is determined by cycle integrals éf. From these, it is
deduced that the square of Fourier coefficierdd|) of f with a fundamental discriminant
D is essentially equal to the critical values bfseries ofF twisted with quadratic charac-
ters. We mention that our results are closely related with those of [17, Theorem 3.6.B], but
there are several differences between Shaisuresults and ours. There he showed that the
critical value of the zeta function attachedKoare represented by the Fourier coefficients of
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certain modular forms related with. We determine explicitly: (] D|) in terms of the critical
values of the zeta function attachedRawith a fundamental discriminar®. Recently, using
Ueda’s results, Sakata [15] showed a relatietween Fourier coefficients of modular forms
in Sk+1/2(N, x) and the critical value of the zeta function associated with the modular form
in Sox (N, x2) determined by the Shimura correspondence under the conditionthat 1.
We note that Ueda [19] investigated the problem of the multiplicity of Hecke operators acting
on Sk11/2(N, x) with x2 = 1.

Finally, the authors are grateful to the referee who suggested revisions of the original
version of this paper.

0. Notation and preliminaries. We denote byZ, Q, R andC the ring of rational
integers, the rational number field, the real number field and the complex number field, re-
spectively. For & € C, we define,/z = z%? so that—n/2 < argz¥? < /2 and put
k%2 = (Jz)* for everyk e Z. Further we puk[z] = exp(2riz) for z € C. For a com-
mutative ringR with identity element, we denote L (2, R) the special linear group of all
matrices of degree 2 with coefficients fhand$) the complex upper half plane, i.e.,

SL(2, R) = {(i Z)

H={z=x+iyeClx,y e Randy > 0}.

a,b,c,d € Randad — bc = 1}

and

For a positive integei, we put

To(m) = {(‘Cl Z) € SL(2,2)

c=0 (modm)}.

Define an action of L(2, R) on H* = $H U RU {o0} by

az+>b
cz+d

€N >y = e H* for yz(f_ Z)GSL(Z,R)

and forz € ©*. The symbol(ﬁ) indicates the same as that of [14]. koe Z, the notation
> n(e) (resp.3_, .y« ) means that runs over aln € Z/cZ (resp.(Z/cZ)*).

1. Kohnen's spaces and modular forms. Forinteger$, M and a Dirichlet character
¥ moduloM, we denote bys; (M, ) the space of modular cusp forms of weightith level
M and charactey. Further we denote b v (p) the Hecke operators afa(M, ) for ev-
ery primep. Let N be an odd integely a Dirichlet character modulty such thaty (—1) = ¢
andk a non negative integer. We denote$yy.1/2(N, x) the subspace df, (4N, x) consist-
ing of thosef whose Fourier expansion has the form

(1-1) f@= Y  amelnzl,

e(—1)kn=0,1(4)
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wherey = (4—*‘9))(, Kk = 2k + 1 andS, (4N, x) is the space of cusp forms of half integral

weightk + 1/2 with level 4V and a charactef modulo 4V in the sense of Shimura [16]. If
f andg are cusp forms of,. (4N, x), we determine the Petersson inner prodycty) by

1 N
(1-2) (fig)=— f(Z)g(Z)yk+l/272dxdy,
LAN JTo(4N)\$H
wherez = x +iy € $Handiy = [SL(2,2) : T'o(M)]. We denote by Pr the projection from
Sk (4N, x) to Sky1/2(N, x). For a positive integen we determine the:-th Poincaé series
$k,aN,m,5 Dy the relation

1Tk —=1/2)
(1-3) (9> Or.aNm.5) = l4ﬁmag(m)

foreveryg(z) = Y 1 ag(m)e[mz] € Sc(4N, ). PUt P n.m,x = Pk an,m,z). Then we
have the following Fourier expansion

9]

(1-4) Pi Nm.y (2) = > Gk N.m.x (Welnz].
n=1,&(—1)*n=0,1(4)

By the same method as that of [6, pp. 251-257], we have the following proposition.

PROPOSITION 1.1. Let m be a positive integer such that e(—1)*m = 0,1 (mod 4.
Then

(1-5)
gk,N,m,x(n)
2 [(k+1)/2] k/2—1/4 C T
= 3(8mn+ D) V2 (n/m) D Henm, 0 Jiay( T/mn
c=1,N|c
with

k: 4
Hye(n,m, x) = (11— (-1 z)(1+< />>
Nc

1 5 ANC [ =4\ T2 15+ m-b76)( %
X _ ’ -
AN 5 5 Canc o e xRN Ty )

8(4Nc')*

where Ji_1/2(t) = (/22 30 (= 1) (¢/2)% {r!T (k+r+1/2)} 1, thesum Y5« (resp.
ZS(C)) is taken over all § € (Z/cZ)* (resp. 8§ € Z/cZ), $~* means an integer such that
§-871=1 (mod 4V¢'), and ¢;(x) = e[x/1].

We review the definition of Hecke operators given in [5, Section 3]. For a pgime
(p 1 N), we define a Hecke operat®y1/2 v, (p? by
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(1-6)
Tit12.8.4 (PP £ (2)

o0

e(=1)k
= > {a(pzn) + x(p)((i)n)pkla(n) + x(pz)kala(n/pz)}e[nz]
n=1,6(—1)kn=0,1(4) p
foreveryf(z) = Z;’;l’g(_l)kn;o!lw a(n)e[nz] € Siy1/2(N, x). Foraprimep (p|N), put

e¢]

(1-7) U(p?) f(x) = > a(pnyelnz]

n=1¢(—1)¥n=0,1(4)

forevery f(z) =3 ,_1 c(_1)tn=0.1(a) @(M)elnz] € Sk+1/2(N, x). Let N, k be positive inte-
gers andy a Dirichlet character moduly whose conductor i%/1. Denote byy; the primitive
character associated wigh PutN, = N/N1. We consider integers ¢, D, D’ such that

(1-8) k>2,(N1,1)=1,D,D =0,1(4),(N,D)=1,e(-1)*D >0 and DD’ > 0.
Define a functionf, yz ,(z; D, D', x1) on$ by
(1-9) fenzs @ DD, x1) = Y wpla,b.o)@z®+ bz + o) xa(o)

(a,b,c)

where(a, b, ¢) runs over all integers i@3 such thab? — dac = N2DD' andN?t|a, andwp
means the symbol given in [6, p. 238]. Then we can easily check the following properties

(1-10) fin2 (9 D D', x) = 32O vz + 9% fi y2, @ D, D', x1)

for everyg = (;‘ 'g) € I'o(N1t) and

fk,Nf,t(_Z; Dv Dls Xl) = fk,Nf,l‘(Z; D, D/s Xl) .

Next we shall determine explicit Fourier coefﬁcient#nglz (7 D, e(—=D)¥m, x1). This
function can be decomposed into

[o/0]
(1-11) finz. @ Doe(=Dm, x1) = fngf,z(Z) +2 ) Frz, @
a:l,letla
with
flgle,t(Z) =2 Z wp(0, b, c)(bz + c)kal(c)

b,cEZ,b>0,b2=\D|m
and
b2 — N2|D|m
a _ 1
fenz, )= > wp <a, by ——p—— )
beZ,b2=N?|D|m(4a)
—k

b2 — N12|D|m> l(b2 — Nf|D|m>

2
b
x<az+z+ l I
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We have
(1-12)
b2 —|D
fN ’3 (@)= Z ®p (leta/, N1b', %)
b (2N1ta'),(b)2=|D|m(4ta’)

<(b’>2— |D|m
XX\ —————

(N1b)2 — N2|D|m\ ~*
4a’t

N2td' (z +n)% + N1b'(z +n) +
)Z(l @ +m)?+ Nib'(z +n) e

neZ

Here we need a formula fer> 0

oo+iC b2 — N2|DIm\ ™ _, .
/ <aZ2+ bz + 1| | > e—27rmzdZ
—oo+iC da

(1-13)
[ a72
(- 1)k2k+1/2 k+1, k—1/2 s l/z(nn N1|D|m)em,nb/a

~ (N3 DIm)k2-14 Ja(k — 1)) a

(cf.[1, 29.3.57]). Hence we may derive the following.
(—1)kk+1/2k+1

Ny Y2 JE(DIm)k 214 d (k — 1)1

leta/
fk,le,t(Z) =

(1-14)
n |D|m)€2m»nZ

o
k—1/2
X Zn /Slea’,D,s(1)km,x1(|D|m’n)Jk_l/2( Nita’

n=1

with
S Nya, D& (—1ykm, x, (| Dlm, n)

B 3 N2a. Nub b?> — |D|m b? — |D|m nb)
- wp 1a1 10, 4a X1 4ﬂ €2Na .

b(2N1a),b2=|D|m(4a)

Next we shall computgfkoN2 t(z). If f=4m/|D| e Z, then we may check
’ 1)

fkc?le,r(Z) Z( )(Nlllez+c) kxa(o)

ceZ

—k
=2y ( )Xl(r)(NllDl) kZ(fz+|D|Nl+n> :

r(DNy)

(1-15)

Using Lipschitz’s formula

s ,—mis/2 X .

n=1

(1-16) da+nT =

neZ
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we may verify that

2(N1| D)~k (=i)k(2m)*
k—21)!

Fonz,@ = ( o )X1(|D|)W(Xl)

(1-17) D , ,
x (2)1/2|D|1/z : pI xl(n)<;>n“e2m"fz if f=+m/ID]€Z,
-1

0 otherwise,
whereW (x1) is the Gauss sum ¢f;. We may deduce the following

PrROPOSITION 1.2. Put

o]

finz. @ Doe(=Drm, x1) =Y "¢ vz, (3 D, e(=1) melnz].
n=1

Then

(1-18)
Ci vz, (3 D, e(—=1)km)

(— 1)k2k+l/2 k+1 k-1/2
= /
=2 k+l/2(|D| )k/z 1/4(]( 1)' Z vVia SN]_l‘a/ D.e(—1)km, Xl(|D|m I’l)

D N1|D) K (— i)k @2k D\ Y2
xJk1/2<7mN 'm,|m>+2( d |2k_(1;!) (er) <N )x (|D|)W(X1)< )

5 |D|1/2{X1(n/f>( /f)(n/f)kl it f=m/IDlZ and n/f €Z,

0 otherwise.

2. Gauss sum, Kloosterman sum and a basic identity. Let N be an odd integer, and
x a Dirichlet character modulty whose conductor id/1. Pute = x(—1) andN2 = N/N1.
We denote byy1 the primitive character associated with Forc € Z (> 0)(N1|c), n and
h e Z, put

1 4 4e 4
(2-1) Bac.,(Q()) = (1+ < >> E (—)X1(5)(1— <—>i)€4c(5Q(n)),
c 8 8
n(2c),8(4c)

whereQ(n) = Dn? — 2hn + ¢(—1)*m and D, m are the integers given in (1-8). Further put
¢ = cgeo, Whereco is odd andcj is a power of 2. Then the quadratic reciprocity law implies
that

(2-2) Sac, 1 (Q) = x1(4c))Facy (Q())Fco,x, (2 ()

with
1 4 4 4y
s = (1+(5)) X (5)(1-(5))esso0m

n(2cg),8 (46‘6)
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and
-1/2
1/-4 8
Seo. n =—<—) <—) 8)eq (60(n)).
0 (Qm) =~ — n%g) — ) ®e(60m)
Put
S
Nl_l_[P, : co—l_[pH”’ [1 7" =2,
i=l+1

wherep; (L<i < s)areprimeang; # p; (i # j). According as the natural isomorphism
of group(Z/N12)* = ]_[ﬁzl(Z/p,.”" Z)*, we can decomposg; into ]_[f:l x1.i. Using this,
we may derive

(2-3)
Sac. 1 (Q(m)) =X1<2“2 I1 p?f)
i=l+1
]—[l 1p)‘ Jtvi 1 s
X]_[x1,< /= H’U )szm(Q(n))]"[spw,- ) T 3 5 m).
i= =41

For positive integers, h andm, defineCp ,, (N1a, h, x1) by

Cp.m(N1a, h, x1) = (4N1a) ™" >~ eanya(—hn)
n(2N1a)
(2-4)

D _
x Y. (3)(4N1a/d>1/2m<d)HNla/d(m, n®|D|d?, x1).
d|(N1a,n)

Puta = 2°T[;_; pf"' = 2%a1d», Where (a1, d2) = 1, (N1, d2) = 1. Then, by (2.3), we may
deduce that

Cp,m(Nia, h, x1)

1/2 D
= (_il) @N1a)™t Y (3)(4N1a/d)l/le(d)mla/d,xl(Q(n))

d|N1a

1/2
= (_il) (26+22( )(26+2/d)1/2 1(d)X1(22+2/d){3’2e+2/d(Q(”))>

(2-5) 12
; l ojtvj
vito = l_['= Pj
X 1_[( ey =129, (%)Sﬁi“i Xi'(Q(n)))
i=1 Pi l o
u 1 D\ o, 122 s oo ,
y w2 (7 )W P @ [T a4 (00) ).
i=i41 \Pi dpli |

1
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Fori (1<i 1), we now calculat@pg,-w, il-(Q(n))‘

1 —4 \?
§ 4tV ¢ (Q(”)) v (ﬁ)
P; pl 1+ i pi1+ i
(2'6) §

S(p O‘I‘H’I)x p’ n(p?i+vi)

We can pu = « + p;’ with a € (Z/p™"2)* andp e Z/p{Z. Assume thap; { D.
DetermineD~! € Z such thatQ(n) = D1((Dn — h)? — A) (mod pf"“’), whereA =
h? — e(=1)* Dm. Then we have

— Qi TV
(7)Y e (BQMm) = e g (—8D 1A><—pa,.+v,.)<—pa,.+v,.) p; :

Pi . .
( oc, +v; ) 1 4

Therefore we may confirm

_ 1 D
SP?i+Ui,)_(1,i(Q(n)) = pfai+vi)/2 p;y,«kv;

X Y ) Kai@e g (—aD T e (~fDTIA),

a(p;H* B(p;H

(2-8)

which is zero unlesp?" |D~1A. Under this condition, we may check

(2-9) Y ui@e gy (—aD™TA) = W(RL)xLi (=D Hxwi(A/p")
alp;)>

It follows from this that

[ l

1 v o4V
H(WMJ(]—[ P ’“))Spfwv,-,m(Q(n))

(2-10) " - |
[T=1p) A D
—]_[ WL xLi (=D ,< = >X1,i( 1 a,->< alﬂl)-
p; [Tjzipy’/ \p;

SinceW (1) = [Ti_y W(X1.0) X1 (N1/p}"). (2-10) is equal to

1 W% p-1 Ald D D A
(2-11) N Vo xa=D Ol mﬂ(ﬁl)(afl) if @A,

0 otherwise.
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Assume that =/ + 1 andp; 1+ D. Then we have

1 D\ .. ) o
) (3> (/DY 25 @ R0 (P DS i 1y 5, (Q(0)
(2-12) AIpi
1(pi) (D \ <= (D
_ A )<—a,.) 3 <—l>(Pf)l/23pz(Q(n)).
pi Di 1=0 pi ’

By virtue of [6, pp. 259-264], (2-12) is equal to

_ . ( D . .
Xl(P?')(Ti> if P?'|A,
D;

0 otherwise.

(2-13)

Wheni 21+ 1, p;|D andp; is odd, we may verify that

2 (B a2 m@s o, o 00)
pf"' <\ d i p;'/d.xa
d‘p,"
(2-14) . .
)'(1(17?")< pia-><D/fi) if p'|A, pi|D andp; is odd,
= A/p,'l p;'
0 otherwise,

wherep’ is the symbol given in [6, pp. 262—-264]. Applying the above argument due to [6,
pp. 259-264], we may find that

(2-15)
. e 1/2 L (D
p.m(Nia, h, x1) = ) Ni"W(x1)x1(=D™) I

D/p* p* o,
x x1(A /4a) Hpv|4a( oY )((h2—|D|m)/pV) if h==|Dm (mod &),

0 otherwise,

wherep is a prime andr||8 meansy, 8 € Z, «|8 and(«, B/a) = 1. We put
- _ 1 (D
G(x1, D) = W(x1)x1(=D™") v )
1

By virtue of (2-15), we may confirm that

1/2

3 = - _

(_—1) G (7. DINT Swya, ,e(~1tm 5y (| Dl )

(2-16)

_ D 12 2 2

= > (7 ) Vaa/d)25a(d) Hysaam, n?| DI 2, x0)
d|(a,n)

for every positive integet. By (2-16), we may derive the following proposition.
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PrROPOSITION 2.1. Let m, n be positive integers and D a positive integer such that
D =0,1 (mod 4, (N, D) =1ande(—1)*D > 0. Then

& 1/2~ _ 1 D _ n
—) GG DINTT D w®| — ) 1aOSnywy/ap.e-vim | 1P

1|Na,t|n

D _
(2-17) = > (7)(Na/l)l/le(bHNa/z(m,n2|D|/12,m)
ll(a,n),(I,N2)=1

D
-y (7>(Na/l)l/2)_((l)HNa/l(m:”2|D|/12aX)'
l|(a,n)

We assume thdt > 2 andD is a fundamental discriminant satisfying—1) D > 0 and
(D, N) = 1. Define a function2; n(z, t; D, x) on$) x $ by

o
2Nz, T3 D, x) = iNc,jj) Z k=172
(2-18) m=1.e(—1)km=0,1(4)
D = —
X (Zu(t)<7>)<1(t)t" 1fk,le,N2/,(tz; D, s(—1)*m, X1)>e[mr]
t|No

for everyz andr € $), where

2k — 2\
kD = (_1)[k/2]|D|k+l/2n,(k - 1>2 3A+2

Then we may deduce the following theorem.
THEOREM 2.2 (A basic identity). Suppose that k > 2. Then

> D
(2-19) 2w T:D.x)=C Z"“<Z (g)m/d)";z(d)Pk,N,nzm/dz,xm)e[nz]
n=1

d|n
with

_, 3(=1*/2A@2mk 1 D _
. 1 1/2 k
C = lch!DW Fl x1(=D)W(x1)e / Ni".

PrROOF 1. By Propositions 1.1 and 1.2, comparing the Fourier coefficients of right and
left hand sides at[m1], e[nz], we need to verify that
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(2-20)
D
incepm Y2y ) <7>x1(r)t"1[8(\/m/|D|)2s(s, k) (N1 D)~
t|No
x (=DFHEDZ )k D12k — 1)!—1( ]]V) )Xl(|D|)X1< ,/|D|/m) W (x1)
D =1
JID s( =D
((n/rMDv )( | '/m) (r | '/m)
+ 2= k2 p (NSTY2 /N1 (| DIm)M/ 2 YAk — 1))y~
- D
X Z SNl(Ng/t)a/,D,s(—l)km,xl('Dlm’ ;)\/; l(n/t)kl/z.]kl/z(%)}
a'=1
k1 k [(k+1)/2] md? \M/?
%:( )("/d) X(d)<5 21plja2.m + (=1 \/_271< 2|D|>
21D 21D
xZHNC( L >Jk 1/2(13; mnd2| l))
where
5 _ 1 if xeZ, and  s(e. k) = 1 if e=1,
) = {0 otherwise, SEB T2k otherwise .

By virtue of Proposition 2.1, the equalities (2-20) coincides with

(2-21)

c > u(t)[( W)m(nm)a(t¢|D|/m)5<¢m/|D|>

t|No,t|n

+ (=) kD 2, =14 o V2N ( 0 >X1(|D|)W(X1)85(8 "INt

n\ 1 mns/|Dlm
X |D|1/4ZX1(I)< >S(N/t)a D,e(— 1)Am X1<|D|m [)ﬁJkl/z(T)}

a=1
/7 n D B
- <z|gmﬂma(7m> <W>X1(W'D'/m)5(x/m/lD|)

ad D
+ (_1)[(k+l)/2]m71/4\/_2n,|D|l/4nl/2Z Z <E>dl/2)Z(d)

a=1d|(a,n)

n?|D| 7n/|Dim
X Hyaya\m, —z= x1 k-2 — 35—
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= Zopt m/|D|k[Z (g)(n/d%x(d) <\/|D|/mk5,,z|D Jizm + (~DIEFD/2
d|n

3
42 \ K214 n2|D| n
xnﬁ(ﬂ";wl) VID|/m ZHN‘< 7 ,x)Jk 1/2<N d\/m|D|>>i|
_ 2. k-1 k(D . —1/4,_ \[(+D)/2]
= 3Cn*/m/ID [(NW)x(n¢|D|/m>5(n¢|D|/m)+m (-1
N 1/4Oo D\ 15 n?|D]
x N2 2Dy Y (= )T R @ Hvaga m, — x
a=1d|(n,a)
< J wns/m|D|
=12\ —

with

C' = 2inc; pm* T V2NTH D22k

(ny/1D|/m)*=t.

D _qyeHet/2
X<N1>( D X1(|DI)W(X1)S(8,k)(k i

We can check that

3 uma(?wwm Wm/wn( \/—>X1(”\/|D|/m)

t|(N2,n) DI/
= > M(t)é( )8(\/ /|D)< >X1(n/f)
(2-22) t|(N2,n)
—5(\/m/ID)< >X1(n/f) >
t|(N2,n/f)
1 if (N2.n/f)=1,

< /f>X1(n/f) { otherwise,
with f = /m/[D]. Observe tha€’ = (2/3)Cn*~1/m/ID]*. This completes the proof.

3. Shimura-Shintani correspondence and kernel functions. This section is devoted
to establishing Shimura correspondengegrom S 1/2(N, x) to Sa (N, x?2) using kernel
functions, and to detemining explicit Fourier coefficientsdoff) in terms of those off
for every f belonging to Kohnen's spaci1/2(N, x). Let N be an odd integer ang a
Dirichlet character. Assume th&tis a fundamental discriminant such th&t1)*D > 0 and
(N, D) = 1. Define

oo

D
(3-1) WN (@) =) (Z <E>X(d)dk1a(n2|D|/d2))e[nz]

d|n
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foreveryf(zr) = Ze(fl)knso,l@) a(n)e[nt] € Sk+1/2(N, x). Thenitis verified that

(3-2) WN.x.0(f)(@) = (G, DS, (=2, % D, x))

with G'(x1, D) = (Nﬂl)m(—D)W(Xl)el/le‘k. By Theorem 2.2 and (1-3), we obtain that
(fs kN (=Z,% D, x))

= D -
=CY’ nkl< > (E)x(d)(n/d)k(f, Pk,N,nzm/dz,X))e[—nZ]

) & D Ck—1/2
(39 _¢ Z""1<Z (E)x(d)(n/d)ki;,\} : 47”12(' o dé)21/2a<n2|D|/d2>)e[nz]

- X D
=G'(x1,D) ) (Z <E>x(d)dk_la(nlel/dz))e[nz] :

n=1 “dn

By (1-10) and [6, Proposition 1], we may confirm th&% y(—z, t; D, x) belongs to
Sok(N, x2) if k = 2. We deduce the following theorem.

THEOREM 3.1. Supposethat k = 2. Then

oo

D
(3-4) Wny o (@) =) (Z (E)X(d)dkla(n2|D| /d2)>e[nz]

n=1 “dln

belongs to Sx (N, x?) for every f(r) = Zs(,l)knzo)lm)a(n)e[nf] € Skt1/2(N, x),
and the mapping Yn .0 : Skt12(N,x) — Sok(N, x2) has the kernel function
G'(x1. D)1 n (=2, %: D, x). Moreover, the diagram of mappings

YN x.D
Skt1/2(N, x) —2= Sa(N, x?)

(35)  Terews(? (e U@ | T2 1P Ty 2@

Skt1/2(N, x) —— S (N, x?)

YN x.D

iscommutative for every prime p,q (p1 N, ¢q|N).

PROOF 2. By virtue of Theorem 2.2, we obtain the equality (3-4). The relation (3-5) is
an immediate consequence of a computationafrfer coefficients. We omit the details.

We call the mapping?y . ,.p the D'* Shimura correspondence frofp1/2(N, x) to
Sa(N, x?). We denote by, the adjoint mapping oy, p. i.e.,

(3-6) oW, p () = (W p (), F)
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forevery f(t) € Sky1/2(N, x) andF(z) € Sa (N, x2). It follows from this that
l1’>"1\/,X,1)(F)(f)

= (inG'(x1, D))*lf F(@)82k,n(=2, 75 D, x)y
To(N\$

) D
(3-7) = (nG (1. D) liver Y mk‘l/ZZu(t)<7>X1(t)t"‘l

e(—=1)km=0,1(4) t|N2

o dxdy
2

X </ F(2) fy N2 Ny (=123 D, e(—=1)fm, X1)y2k2dxdy>e[mf] ,
To(N)\$ !

wherez = x + iy € $. In particular, if F is a new form ofSx (N, x2), then
UhpP@ =6 G 0u D)t Y w2

e(—1)km=0,1(4)

(3-8)
X </ F(2) fin2 N, (=2 D, e(=1)¥m, x1)y2k2dxdy)e[mt].
To(N)\$) o

For D' € Z, put

, 2
(3-9) LNf,,,D(D)={Q=(bi2 ”é)

a,b,c €Z, N?tla, b — dac = NlZDD/} .
0 0
(o el 1) The
. 0\ . N , J 20 e
mappingQ — Qo (0 1) gives a bhijection ofLle),)D(D) onto Lle)n/z)D(Dt ). Since
! O\ _(p ,
a)D(Q ) (O 1)) = (ﬂ—z)a)D(Q), we obtain

(3-10) 2o (123 Dy e(=Dfm, x1) = fi w2 ny (5 Do e (=D mi?, xa)

forz (t|N2). Hence we have

W p(F)@ =inG pG . D)™t Y w2
e(—1km=0,1(4)

t

Fori' € Z (> 0)andQ € Lyz, p(D), put Q o (IO (]).) -

(3-11)

D
x l; M(I)(T)Xl(t)tkl(F(Z), finz.n, (=2 D, (=D mi?, za))elme].
t{N2

Note that
Finzang (2 Doe(=Dfmi? 10) = fi 2 oy, @5 Doe(=1) mi?, 7).

We now introduce an equivalence reIationILm,lz’Nzt’D(s(—l)"mtz) as follows. For
Q. Q" € Lyz ny ple(=D)"mr?),

(3-12) Q~ Q' ifandonlyif Q' ='gQg forsome g € I'o(N).
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Denote by Fo(N)\Lle’Nzt’D(e(—l)"mtz) the set of all equivalence classes of
Lle’Nzt’D(e(—l)"mtz) with respect to this equivalence relation. Then, we obtain

LleyNzt’D(s(—l)kmtz)

= {90919 € T3\[o(N), 0 € To(N\Ly2 v, p(e(=Dfmi?)},

~ ~ b/2
wherer's = g’ € To(N) |’ Og' = ). For = (7, "1%). putwn(@) = wn(a. b.o.

0(z,1) =az2+bz+c = (z,1)0'(z,1) andx1(Q) = x1(c). Then we see
wp('g09) = wp(Q), 51(0) = 11( g0 P X1(8)?,
0(z,1) = (Nyz +8)%('g09)(g9(2), 1)

(3-13)

(3-14)

* %
foreveryg = (

Ny 8) € T'o(N). This implies that

finz.on,(—2 Doe(=Dfmi?, 31)

= finzan,(@ D, e(—=D)kmr?, 1)

= > Y 1@ (vz+8) *ep(@)0(9(2). D x1(0)

QTONN\L 2 (e (=Dme?) 9

(3-15)

*

where the sun}_ , is taken over aly = (: 5

) € T\To(N). By [6, pp. 265-266], we may
confirm
(F. finzuny(—2: Do e(=Dfmi?, 30))
(3-16) ok — 2
= iﬁ(k 1)2‘2k+2(|D|mr2>1/2—kyk,N,X(F; D, e(~Dkmi?)
with

Ve (F: D, e(—Dkmi?) = ) o0 [ Fedg .
€0

OETo\L 2 v, p(E(=Dimi2)

wherecQ anddQ)kz is the symbol given in [6, p. 240]. Consequently, we obtain the following
theorem.

THEOREM 3.2. Let k bea positive integer such that k = 2. Then

_ (2% =2\ B
Vi PO = 656 0 D) (3 P2 eyt

(3-17) D
x oy Zu(r)<7>71(r)r"yk,N,x(F; D, e(~Dfmt*)elmr].

e(—1)km=0,1(4) t|N2
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In particular, if F isanew formof So (N, x2), then

2k — 2

k—1

X Z Yi,N,x (F; D, 8(—1)km)e[mt] .
e(—1)km=0,1(4)

Cycle integrals of this type were first investigated by Shintani [18].

lI/Ii},x,D(F)(t) = C];]bG/(Xl, D)_1< )2_2k+27T|D|1/2_k

(3-18)

4. Fourier coefficients of modularforms of half integral weight. ~ This section is
devoted to deriving a relation between Fourier coefficients of modular forms of half integral
weight belonging to Kohnen'’s spaces and th#éiaal values of zeta functions of modular
forms. We first deduce the following

THEOREM 4.1. Let m,n be positive integers such that &(—1)*m, e(—1)*» = 0,1
(mod 4, e(—1)*n is a fundamental discriminant and (n, N) = 1. Suppose that f(r) =
ZS(*l)kl‘lEo,l(ll) a(l’l)e[n‘[] € Sk+]_/2(N, X) SatleleS

(4-1) Tis1jon, 0 (PO =P, U@GHfF =M f

for every prime p and ¢ (p ¥ N,q|N) and ¥y, p(f) is a new formin Sy (N, x?). Let
F(z) = Zf;‘;l a’(n)e[nz] be the primitive form associated with ¥y , p(f). Moreover, sup-
posethat f satisfies the following condition:

If f' € Skr1/2(N, x) satisfies Tir1/2.n. (p?)(f)) = 1(p) f for every

4-2

(4-2) prime p (p ¥ N), thenthereisa constant ¢’ € Csuchthatf’ = ¢’ f .
Then we have

(4-3) amyam)(f, )~ =y, (F; e(=Dfn, e(=D m)(F, F)~*.

with

2k —2

g. — Cki]bG/(Xla D)_17T<k B 1)2—2k+2|D|1/2—k )

PrROOF 3. By Theorem 3.1, we have
(4-4) T N x2(P)UN .0 (f) = M(p)¥n.x.p(f) foreveryprimep (p IN).
Since¥y ,.p(f) is a new form, there is a constarit e C such that
(4-5) N x.p(f) =C"F.

PutD = e(—1)n. Then, comparing Fourier coefficients of right and left hand side$zat
we have

(4-6) a(|D)) = ¢".

Observe thatTy ,, v (p?) = X(p)Tit1/2nx(p?) (p + N) and T 2 (P)
)_((pZ)TZk’N’Xz(p) (p 1 N)and wlt,x,D is the adjoint mapping oy , p with respect to
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the Petersson inner products. By Theorem &4,, p is commutative with the action of
Hecke operators. This implies that

(4-7) Ter1/2.8.4 (PN, p(F) = M(p)¥y , p(F) forevery primep (ptN).
By the assumption, we obtain

(4-8) Wy p(F)=c'f forsome ¢’ eC.

Comparing Fourier coefficients of the both sides[aiz], we find that

2k —2

4-9)  a(m) = 1,G (xa. D)ln(k . )22k+2|D|1/2k7/k,N,X(F; D, e(~=1fm).

On the other hand the valuéis determined as follows.
cam)(f, fY =am)({c'f, )= a(m)(¥y , p(F), f)

(4-10) R
=a(m)(¥n,y,p(f), F) =a(m)a(|D))(F, F).

Hence we deduce that
(4-11) a(m)a(IDD(f, £~ =Evin. (F; D, e(=D*m)(F, F)~*.
SinceD = ¢(—1)*n, we see thatD| = |n| = n. This completes our proof.

Let D be a fundamental discriminant such thét1) D > 0. Under the same assump-
tion of Theorem 4.1, we have

(4-12) la(IDDIP(f, £)~ =Eyin,x (F; D, D)(F, F)™*
with
VeNx(F: D, D) = > ®p(0)x1(Q) / F(2)dg 2.
OeToN\L 2 v, (D) ‘0
In the remainder of this section, we assume that
(4-13) (D,N)=1 and (N1, Np) =1.

Forl (I||N2), we put

_( B i 2 _
Wl_(yN 81) with o, 8,v,6 € Z and adl“ — ByN =1,

wherel||N2 meand|N2 and(l, N2/1) = 1. We determineg2|W; = (1/1)'W; QW, for every
[ORS Lle)NZ’D(D). SinceW[lgWI € I'o(N) for everyg € T'o(N), we have the bijection of
Fo(N)\Lle,NZ,D(D) ontoFo(N)\Lle)Nz’D(D). By [3, Section 1], we can take as a complete
set of representatives de‘ro(N)\Lle’Nz)D(D) the following set:

0 DN1/2
(4-14) {(DN;L/Z h ) | Wi ‘ weZ/DN1Z andl||N2} .
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N b/2 ! .
ForQ = (ij é ) € To(N\Lyz v, p(D), Wi = (;‘N fl)(a — 5;), we obtain

~ ~ ~ ~ (D
(4-15)  x1(QIW) = x1(0) x1(82) = x1(Q)x1(8%), wp(Q|W)) = wD(Q>(7) :

We note that ifl’|| N2, (I,1') = 1 andp®|| N2, then
Sy =858 (ModN), 8, =1 (mod(N/p%)?),

(4-16) 1, ,
F@do\wwz = FlaW, ~(2)doxz ,

wherez’ = Wi(2), FlacW; () = @etW, Dk ez+d)=2 FOW My with wt = (1),

SinceF (z) is a primitive form, there are a constartit) and a primitive form#; in Sx (N, x2)
such that

(4-17) Flaw b =c)F .
The constant (/) has the following property:
(4-18) If II'|N2 and (I,I')=1, then c(l')=cl)c{l).

PutFi(z) =Y 24 aj(n)e[nz]. By (4-12) and (4-14), we find that

D
VN (Fi D, D) =i(iDNp)* 1 ) <7>X1(5121)C(1)

1INz
(+19) < D I (k)
x Y ajn) Y <—>X1(u)eDNl(—nu) 2
n=1 neZ/N1DZ

We can easily check that

D
> (—)m(u)enm(—nu)
w

weZ/N1DZ

D D 3/2 D
= (V)Xl(D)<_1) |D|1/2<—>)21(n)8W(X1)
1 — n

D (D
L<s, F, (;);ﬁ) =y (;)xl(n)a;(n)n—s

n=1

~ 1—(%))’(1(19)61’(17)17") < (2>_)
_H(l—(%)xl(ma;(mps ARV

(4-20)

and

pll
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By [2, Th. 4.6.16], we see thaf(p) = x2(p)d’(p). Therefore we may deduce that
(4-21)
Yk,N.x (F; D, D)

i(iDND)*Y(k — 1! ( D D\ 32 b
= 20k <E>X1(D)W(X1)(_—1) |D|Y2¢ I|ZN <7>X1(3121)c(1)
2

1—(2)y / —k
1 (,,)Xl(p)a (P)p L<k, F <2>)21) .
o \1= (2)a(pa‘(p)p ’

Putn; =[]\, p;' N2 = [[i_;;1 p;"- Then, by (4-16), (4-18) and (4-20), the summation
taken over all in (4-21) is equal to

a D b
(4-22) I 1+(W)x1(19,»’)6(p,-’)

i=l+1

1 (2)apna (pop*

1- (%)Xl(ﬁi)a’(Pi)Pi_k
Consequently, we conclude the following theorem.

THEOREM 4.2. Under the same assumption asthat of Theorem4.1, supposethat D is
a fundamental discriminant such that e(—1)*D > 0, (N, D) = 1and (N1, N2) = 1. Then

(4-23)  |a(DDI*(F, F) = RIDI*Y2NZ Lk — 1)1k, f>L(k, F, (D)xl>

*

with
s 1—(2)zappra’ (piyp*
D . - ) x1(pi)a’ (pi) p;
R= ] |1+ <—vi>x1(p,»’)c(p,-’) (p )
i=l+1 P 1- (%)Xl(Pi)a/(Pi)pi_k

It should be remarked that there are non-trivial examples satisfying the condition (4-2).
By [11, Theorem 2.1], we may check that dig)»(7, x) = dimSa(7, x2) = 1. Hence, we
see that a non-zero forthin Ss,2(7, x) provides such an example Wit # 1.
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