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ON THE UNIQUE EXTREMALITY OF QUASICONFORMAL MAPPINGS
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Abstract. Concerning the problem of extremality of quasiconformal mappings with
dilatation bounds, we discuss the unique extremality of the problem and prove the if part of a
conjecture on the unique extremality ([G1], [R1]). To this end, we need to investigate a new
extremal problem in the infinitesimal setting. In particular, we give a complete description of
the unique infinitesimal extremality of partially zero Beltrami differentials.

1. Introduction. The problem of extremality of quasiconformal mappings with di-
latation bounds has been much investigated in the literature. In this paper, we will discuss the
unique extremality of the problem and prove the if part of a conjecture concerning the unique
extremality. To make this precise, we state the problem as follows.

Let R′ andR be two hyperbolic Riemann surfaces covered by the unit disk∆ = {z :
|z| < 1} in the complex plane. Let a compact, possibly empty, subsetE′ of R′ be given in
such a way thatR′ \E′ has positive measure, a non-negative measurable functionb(w) onE′
(known as a dilatation bound function) with‖b‖∞ < 1, and a quasiconformal mappingF of
R′ ontoR such that the complex dilatatioñµ of F satisfies|µ̃(w)| ≤ b(w) for a.e.w ∈ E′.
We denote byQ(F,E′, b) the class of all quasiconformal mappingsG of R′ ontoR such that
G is homotopic toF (mod∂R′) and that the complex dilatatioñν ofG satisfies|ν̃(w)| ≤ b(w)

for a.e.w ∈ E′. Here∂R′ is the ideal boundary ofR′ in the standard sense (see [G2]). Then
F ,E′ andb determine the extremal maximal dilatationK(F,E′, b) ≥ 1, defined as

K(F,E′, b) = inf{K[G|R′ \ E′] : G ∈ Q(F,E′, b)} ,(1.1)

whereK[G|R′ \ E′] is the maximal dilatation ofG onR′ \ E′. To avoid triviality, we will
always assume thatK(F,E′, b) > 1, that is,Q(F,E′, b) contains no mapping which is
conformal inR′ \ E′. An elementG of Q(F,E′, b) is called extremal ifK[G|R′ \ E′] =
K(F,E′, b), and uniquely extremal ifK[G′|R′ \ E′] > K[G|R′ \ E′] for any otherG′ ∈
Q(F,E′, b). If F is (uniquely) extremal inQ(F,E′, b), we occasionally say simply thatF is
(uniquely) extremal.
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As stated above, there have been many literatures on the problem of extremality of qua-
siconformal mappings with dilatation bounds (see, for example, [F], [FS], [G1], [R1], [Sa1-
5]). Among others, it is known that there always exists at least one extremal mapping in
Q(F,E′, b), and a complete characterization of the extremality also appeared in the litera-
ture. For our purpose, we recall this precisely as follows.

As usual, we denote byQ(R) the space of all integrable holomorphic quadratic differen-
tials on the surfaceR, and byM(R) the unit ball of the spaceL∞(R) of all essentially bounded
Beltrami differentials onR. Now we letE′

0 = {w ∈ E′ : b(w) = 0}. For the mappingF , let
µ denote the complex dilatation of the inverse mappingf = F−1, kF = ‖µ̃|R′ \ E′‖∞, and
set

τF (z) =
{
µ(z) z ∈ R \ F(E′ \ E′

0) ,

kFµ(z)/b(f (z)) z ∈ F(E′ \ E′
0) .

(1.2)

Then we have the following result (see, for example, [Sa4]).

PROPOSITION 1.1. F is extremal if and only if the Beltrami differential τF satisfies the
condition

sup

{∣∣∣∣
∫∫

R\F(E′
0)

τF φ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\F(E′
0)

= 1

}
= ‖τF ‖∞ .

While Proposition 1.1 completely characterizes the extremality of the mappingF , less
is known for the unique extremality. In several articles (see, for example, [G1], [R1]) it has
been pointed out that the unique extremality ofF is closely related to the uniqueness of
the Hahn-Banach extension of the linear functionalΛτ ∈ (Q(R)|R \ F(E′

0))
∗ induced by

τ = τF , Λτ (φ) = ∫∫
R\F(E′

0)
τφ. In fact, it was conjectured thatF is uniquely extremal if

and only ifΛτ has a unique norm-preserving extension to a bounded linear functional from
Q(R)|R\F(E′

0) toL1(R\F(E′
0)). HereQ(R)|R\F(E′

0)means the restriction toR\F(E′
0)

ofQ(R).
WhenE′ is the empty set, the unique extremality has been much discussed recently (see

[BLMM], [BMM], [MM], [R4], [Sh1], [Sh2]), and the conjecture was proved affirmatively
in [BLMM]. In this paper, we will study the unique extremality for a general setE′, proving
that the if part of the conjecture is still true in this general case.

THEOREM 1.1. Let F be extremal (in the class Q(F,E′, b)). If Λτ (τ = τF ) has a
unique norm-preserving extension to a bounded linear functional from Q(R)|R \ F(E′

0) to
L1(R \ F(E′

0)), then F is uniquely extremal.

In order to prove Theorem 1.1, we need to investigate a new extremal problem in the
infinitesimal setting, namely, the extremal problem for partially zero Beltrami differentials.
In Section 2, we will introduce such an extremalproblem and explain how these two extremal
problems are related to each other. In Sections3 and 4, we will give a complete description of
the unique infinitesimal extremality of partially zero Beltrami differentials. In Section 5, we
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shall establish a fundamental inequality, which will be used to prove Theorem 1.1 in Section
6.

The author would like to thank the referee for his many valuable suggestions.

2. Partially zero Beltrami differentials. In this section, we will introduce a some-
what new extremal problem in an infinitesimal setting, which, as will be seen, is closely re-
lated to the extremal problem of quasiconformal mappings with dilatation bounds. Indeed, in
the unit disk case, such an extremal problem hasbeen introduced and dicussed in [SC], where
it was used to prove the existence of non-decreasable dilatations in a non-zero infinitesimally
equivalent class. For completeness and for generality, we will repeat some discussions from
[SC].

Let E0, which will be fixed through out Sections 2 through 4, be a compact, possibly
empty, subset ofR such thatR \ E0 has positive measure, andµ0 ∈ L∞(R) be a Beltrami
differential which vanishes on the setE0. Recall that two elementsµ andν in L∞(R) are
infinitesimally equivalent, denoted byµ ≈ ν, if

∫∫
R µφ = ∫∫

R νφ for all φ ∈ Q(R). We
denote by Belt(µ0) the set of all elementsµ in L∞(R) infinitesimally equivalent toµ0 and
set

Belt(µ0, E0) = {µ ∈ Belt(µ0) ;µ(z) = 0 a.e.z ∈ E0} ,(2.1)

‖µ0‖E0 = inf{‖µ‖∞ ;µ ∈ Belt(µ0, E0)} .(2.2)

An elementµ ∈ Belt(µ0, E0) is called infinitesimally extremal if‖µ‖∞ = ‖µ0‖E0, and
uniquely infinitesimally extremal if for any otherν ∈ Belt(µ0, E0), ‖ν‖∞ > ‖µ‖∞. If µ0

is (uniquely) infinitesimally extremal in Belt(µ0, E0), we occasionally say simply thatµ0 is
(uniquely) infinitesimally extremal.

We then have the following basic result.

THEOREM 2.1. There always exists at least one infinitesimally extremal Beltrami dif-
ferential in Belt(µ0, E0). Furthermore, if Belt(µ0, E0) contains more than one infinitesimally
extremal Beltrami differential, then it must contain infinitely many.

PROOF 1. Letµn ∈ Belt(µ0, E0) satisfy‖µn‖∞ → ‖µ0‖E0 asn → ∞. When re-
stricted onR \E0, (µn) is a bounded sequence inL∞(R \E0). By the *-weak compactness,
there exists a subsequence, also denoted by(µn), which converges to a limitµ ∈ L∞(R \E0)

in the *-weak topology, that is,
∫∫

R\E0
µnφ → ∫∫

R\E0
µφ for anyφ ∈ L1(R \ E0). Now,

whenφ ∈ Q(R), sinceµn ∈ Belt(µ0, E0),
∫∫

R\E0
µnφ = ∫∫

R µnφ = ∫∫
R µ0φ, we

obtain that
∫∫

R\E0
µφ = ∫∫

R
µ0φ. Extendingµ to E0 be zero, we conclude thatµ ∈

Belt(µ0, E0). On the other hand, since(µn) converges toµ in the *-weak topology,‖µ‖∞ ≤
lim inf ‖µn‖∞ = ‖µ0‖E0, which implies thatµ ∈ Belt(µ0, E0) is infinitesimally extremal.

Suppose now thatµ andν are two distinct infinitesimally extremal Beltrami differentials
in Belt(µ0, E0). For 0< t < 1, setµt = tµ + (1 − t)ν. It is then easy to see thatµt is
infinitesimally extremal in Belt(µ0, E0).



108 Y.-L. SHEN

LEMMA 2.1. For any µ ∈ Belt(µ0, E0), it holds that

sup

{∣∣∣∣
∫∫

R\E0

µφ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\E0 = 1

}
= ‖µ0‖E0 .

PROOF 2. Letµ ∈ Belt(µ0, E0) be given. For anyν ∈ Belt(µ0, E0) andφ ∈ Q(R)

with ‖φ‖R\E0 = 1, since
∫∫

R\E0
µφ = ∫∫

R\E0
νφ, it follows that | ∫∫ R\E0

µφ| ≤ ‖ν‖∞,
which implies that

sup

{∣∣∣∣
∫∫

R\E0

µφ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\E0 = 1

}
≤ inf{‖ν‖∞; ν ∈ Belt(µ0, E0)} = ‖µ0‖E0 .

(2.3)

On the other hand, since the set{φ|R\E0;φ ∈ Q(R)} is a closed subspace ofL1(R\E0),
by the Hahn-Banach theorem and the Riesz representative theorem, there exists someν ∈
L∞(R \E0) such that∫∫

R\E0

µφ =
∫∫

R\E0

νφ for all φ ∈ Q(R)(2.4)

and that

sup

{∣∣∣∣
∫∫

R\E0

µφ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\E0 = 1

}
= ‖ν‖∞ .(2.5)

Extendingν to be zero onE0, we obtain from (2.4) thatν ∈ Belt(µ0, E0). Then (2.3) and
(2.5) imply that

sup

{∣∣∣∣
∫∫

R\E0

µφ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\E0 = 1

}
= ‖µ0‖E0 .

The proof of Lemma 2.1 also shows thatν ∈ Belt(µ0, E0) is infinitesimally extremal,
which gives another proof of the existence part of Theorem 2.1. An immediate consequence
of Lemma 2.1 is the following theorem.

THEOREM 2.2. µ ∈ Belt(µ0, E0) is infinitesimally extremal if and only if

sup

{∣∣∣∣
∫∫

R\E0

µφ

∣∣∣∣ ;φ ∈ Q(R), ‖φ‖R\E0 = 1

}
= ‖µ‖∞ .

Now, we point out how the two extremal problems are related to each other. Noting
Proposition 1.1 and Theorem 2.2, we find thatF is extremal inQ(F,E′, b) if and only
if the Beltrami differentialτF is infinitesimally extremal in Belt(τF , F (E′

0)). On the other
hand, ifµ ∈ Belt(µ0, E0) is infinitesimally extremal, then we can conclude by the proof
of Lemma 2.1 thatµ is uniquely infinitesimally extremal if and only if the linear functional
Λµ ∈ (Q(R)|R \ E0)

∗ induced byµ, Λµ(φ) = ∫∫
R\E0

µφ, has a unique norm-preserving

extension to a bounded linear functional fromQ(R)|R \E0 toL1(R \E0). Thus, the conjec-
ture in the Introduction is equivalent to the one thatF is uniquely extremal inQ(F,E′, b) if
and only if τF is uniquely infinitesimally extremal in Belt(τF , F (E′

0)). Hence Theorem 1.1
can be restated as follows.
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THEOREM 2.3. Given the class Q(F,E′, b), if τF is uniquely infinitesimally extremal
in Belt(τF , F (E′

0)), then F is uniquely extremal.

In order to prove Theorem 2.3, we need to investigate the unique infinitesimal extremality
of partially zero Beltrami differentials, which will be done in Sections 3 and 4. Here we want
to discuss a special case. Recall that the boundary dilatation ofµ0 is defined to be

b(µ0) = inf{‖µ|R \E‖∞ ; for all µ ∈ Belt(µ0) and compact subsetsE in R} .(2.6)

It can be defined equivalently as (see [EGL], [GL])

b(µ0) = sup

{
lim sup
n→∞

∣∣∣∣
∫∫

R

µ0φn

∣∣∣∣ ; all degenerating sequences(φn) with ‖φn‖ → 1

}
.

(2.7)

Recall that a sequence(φn) in Q(R) is said to be degenerating ifφn → 0 locally uniformly
in R. Clearly,b(µ0) ≤ ‖µ0‖E0.

THEOREM 2.4. Let µ be infinitesimally extremal in Belt(µ0, E0). If b(µ0) < ‖µ0‖E0,
thenµ is uniquely infinitesimally extremal. Furthermore, there exists some element φ ∈ Q(R)
with ‖φ‖R\E0 = 1 such that µ = ‖µ‖∞|φ|/φχR\E0, where χ stands for the characteristic
function of a set.

PROOF 3. Sinceµ is infinitesimally extremal, it follows from Theorem 2.2 that there
exists a sequence(φn) in Q(R) with ‖φn‖R\E0 = 1 such that∣∣∣∣

∫∫
R\E0

µφn

∣∣∣∣ → ‖µ‖∞ .(2.8)

SinceE0 is compact inR, it follows that (φn) is a bounded sequence inQ(R). Otherwise,
there would exist some subsequence, also denoted by(φn), such that‖φn‖ → ∞ asn → ∞.
Letting φ̃n = φn/‖φn‖, we obtain‖φ̃n‖ = 1. So there exists a subsequence, still denoted
by (φ̃n), such thatφ̃n tends locally uniformly inR to someφ̃ in Q(R). By Fatou’s Lemma,
‖φ̃‖ ≤ 1. Then, for any subsetF of R, noting that 0≤ |φ̃n − φ̃| − |φ̃n| + |φ̃| ≤ 2|φ̃|, we
conclude by Lebesgue’s dominated convergence theorem that‖φ̃n−φ̃‖F−‖φ̃n‖F+‖φ̃‖F → 0
asn → ∞. If F = E0, then‖φ̃n− φ̃‖E0 → 0. On the other hand,‖φ̃n‖E0 = ‖φn‖E0/‖φn‖ =
(‖φn‖ − 1)/‖φn‖ → 1, so we have‖φ̃‖E0 = 1, which contradicts‖φ̃‖ ≤ 1.

Now, since(φn) is a bounded sequence inQ(R), there exists a subsequence, also denote
by (φn), which converges to some functionφ ∈ Q(R) locally uniformly inR. By the same
reasoning as above, we have

lim
n→∞(‖φn − φ‖F − ‖φn‖F + ‖φ‖F ) = 0(2.9)

for any subsetF of R. In particular, we have

lim
n→∞ ‖φn − φ‖R\E0 = 1 − ‖φ‖R\E0 .(2.10)
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Under the assumption thatb(µ0) < ‖µ0‖E0, we want to show that‖φ‖R\E0 = 1. Sup-
pose to the contrary that‖φ‖R\E0 < 1, and set

ψn = φn − φ

‖φn − φ‖R\E0

.

Then(ψn) is a sequence inQ(R) which satisfies that‖ψn‖R\E0 = 1, ψn → 0 locally uni-
formly in R and that

∣∣∣∣
∫∫

R\E0

µψn

∣∣∣∣ → ‖µ‖∞ .(2.11)

SinceE0 is compact inR, ‖ψn‖ → 1, so (2.11) implies thatb(µ0) = b(µ) = ‖µ‖∞ =
‖µ0‖E0. This is a contradiction.

Consequently,‖φ‖R\E0 = 1, which implies from (2.8) and (2.10) that
∫∫

R\E0
µφ =

‖µ‖∞ and hence thatµ = ‖µ‖∞|φ|/φχR\E0 as required. Finally, it is easy to see thatµ is
uniquely infinitesimally extremal.

REMARK 2.1. For simplicity, we say that a Beltrami differentialµ0 which vanishes on
the compact setE0 is a Strebel differential (with respect toE0) if b(µ0) < ‖µ0‖E0.

3. Characterization of unique infinitesimal extremality. In this section we will
characterize the unique infinitesimal extremality of partially zero Beltrami differentials un-
der certain condition. In its proof, we need the following fundamental inequality. Recall that
µ0 is a Beltrami differential onR which vanishes on the compact subsetE0.

LEMMA 3.1. Let µ and ν be two Beltrami differentials in the class Belt(µ0, E0). If
‖ν‖∞ ≤ ‖µ‖∞, then

∫∫
R\E0

|µ− ν|2|φ| ≤ 8‖µ‖∞
(

‖µ‖∞‖φ‖R\E0 − Re
∫∫

R\E0

µφ

)
(3.1)

for all φ ∈ Q(R).
REMARK 3.1. WhenE0 = ∅, Lemma 3.1 was proved in [BLMM](see also [R2],

[R3]), and called the infinitesimal delta inequality. For completeness, we give here a short
proof using a discussion from [GL].

PROOF OF LEMMA 3.1. Let k = ‖µ‖∞. For anyφ ∈ Q(R),
∫∫

R\E0
µφ =∫∫

R\E0
νφ. Therefore, Lemma 3.1 follows from the following calculation.
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∫∫
R\E0

|µ− ν|2|φ| =
∫∫

R\E0

∣∣∣∣µ− k
|φ|
φ

+ k
|φ|
φ

− ν

∣∣∣∣
2

|φ|

≤ 2
∫∫

R\E0

∣∣∣∣µ− k
|φ|
φ

∣∣∣∣
2

|φ| + 2
∫∫

R\E0

∣∣∣∣ν − k
|φ|
φ

∣∣∣∣
2

|φ|

= 2
∫∫

R\E0

(
|µ|2 + k2 − 2kReµ

φ

|φ|
)

|φ| + 2
∫∫

R\E0

(
|ν|2 + k2 − 2kReν

φ

|φ|
)

|φ|

≤ 2
∫∫

R\E0

(2k2|φ| − 2kReµφ)+ 2
∫∫

R\E0

(2k2|φ| − 2kReνφ)

= 8k

(
k

∫∫
R\E0

|φ| − Re
∫∫

R\E0

µφ

)
.

For a Beltrami differentialµ in the class Belt(µ0, E0), the setR(µ) = {z ∈ R ; |µ(z)| =
‖µ‖∞} is called the extremal set forµ. We introduce the Reich’s functionalδµ onQ(R)|R\E0

induced byµ, δµ(φ) = ‖µ‖∞‖φ‖R\E0 − Re
∫∫

R\E0
µφ. We say thatµ satisfies Reich’s

condition on a setE ⊂ R \ E0 if there exists a sequence(φn) in Q(R) such thatδµ(φn) → 0
and lim inf|φn(z)| > 0 for almost allz in E. We are in a position to prove the main result of
this section.

THEOREM 3.1. Let µ be a Beltrami differential in the class Belt(µ0, E0) with |µ| =
‖µ‖∞ almost everywhere on R \E0. Then the following conditions are equivalent:

(a) µ is uniquely infinitesimally extremal in the class Belt(µ0, E0).
(b) µ is infinitesimally extremal in the class Belt(µ0, E0) and, for every compact subset

E of R \ E0 with positive measure and every r > 0, µχE + (1/(1 + r))µχR\E is a Strebel
differential (with respect to E0).

(c) For every measurable subset E of R \ E0 with positive measure, there exists a
sequence (φn) in Q(R) with ‖φn‖R\E0 = 1 such that

(
‖µ‖∞ − Re

∫∫
R\E0

µφn

)/∫∫
E

|φn| → 0 .

(d) µ satisfies Reich’s condition on R \ E0.

PROOF 4. Suppose thatµ is uniquely infinitesimally extremal. For every compact sub-
setE ofR\E0 with positive measure and everyr > 0, letµ(r,E) = µχE+(1/(1+r))µχR\E.
We need to show thatµ(r,E) is a Strebel differential, that is,b(µ(r,E)) < ‖µ(r,E)‖E0.

It is easy to see thatb(µ(r,E)) ≤ ‖µ‖∞/(1 + r). Suppose to the contrary that
b(µ(r,E)) = ‖µ(r,E)‖E0. Let ν(r,E) be an infinitesimally extremal Beltrami differential in
the class Belt(µ(r,E),E0). Then‖ν(r,E)‖∞ = ‖µ(r,E)‖E0 = b(µ(r,E)) ≤ ‖µ‖∞/(1 +
r). Clearly,ν = µ−µ(r,E)+ ν(r,E) = (r/(1+ r))µχR\E + ν(r,E) ∈ Belt(µ0, E0). Since
‖ν‖∞ ≤ (r/(1 + r))‖µ‖∞ + ‖ν(r,E)‖∞ ≤ ‖µ‖∞, we conclude by the unique infinitesimal
extremality ofµ that ν = µ, that is,µ(r,E) = ν(r,E) is infinitesimally extremal. Since
|µ| = ‖µ‖∞ almost everywhere onR \E0, this case cannot occur. So (a) implies (b).
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Now, letµ satisfies the condition (b). By Theorem 2.4, there exists an elementφ(r,E)

in Q(R) with ‖φ(r,E)‖R\E0 = 1 such that the infinitesimally extremal Beltrami differential
ν(r,E) in Belt(µ(r,E),E0) has the form‖ν(r,E)‖∞|φ(r,E)|/φ(r,E)χR\E0. On the other
hand, sinceµ is infinitesimally extremal in Belt(µ0, E0), andν = µ− µ(r,E)+ ν(r,E) =
(r/(1+ r))µχR\E + ν(r,E) ∈ Belt(µ0, E0), we have‖µ‖∞ ≤ ‖ν‖∞ ≤ (r/(1+ r))‖µ‖∞ +
‖ν(r,E)‖∞, so‖ν(r,E)‖∞ ≥ ‖µ‖∞/(1 + r). Consequently,

‖µ‖∞
1 + r

≤ ‖ν(r,E)‖∞ = Re
∫∫

R\E0

ν(r,E)φ(r,E)

=Re
∫∫

R\E0

µ(r,E)φ(r,E)=Re
∫∫

E

µφ(r,E)+Re
1

1 + r

∫∫
R\E0\E

µφ(r,E) .

Thus,

‖µ‖∞ − Re
∫∫

R\E0

µφ(r,E) = Re
∫∫

E

rµφ(r,E) ≤ ‖µ‖∞r
∫∫

E

|φ(r,E)| .(3.2)

For each measurable subsetE of R with positive measure, choose a compact subsetẼ of
E with positive measure. Then for anyr > 0, there exists an elementφ(r, Ẽ) in Q(R) with
‖φ(r, Ẽ)‖R\E0 = 1 such that

‖µ‖∞ − Re
∫∫

R\E0

µφ(r, Ẽ) ≤ ‖µ‖∞r
∫∫

Ẽ

|φ(r, Ẽ)| ≤ ‖µ‖∞r
∫∫

E

|φ(r, Ẽ)| .(3.3)

Forn ≥ 1, setr = 1/n andφn = φ(r, Ẽ). Then we conclude by (3.3) that

0 ≤
(

‖µ‖∞ − Re
∫∫

R\E0

µφn

)/ ∫∫
E

|φn| ≤ ‖µ‖∞
n

→ 0 .

So (b) implies (c).
Finally, let the condition (c) be satisfied. Suppose thatµ is not uniquely infinitesimally

extremal. Then there would exist someν in the class Belt(µ0, E0) such that‖ν‖∞ ≤ ‖µ‖∞
and that|ν − µ| ≥ ε0 > 0 on some positive measure subsetE of R \ E0. Note that for this
setE, there exists a sequence(φn) in Q(R) with ‖φn‖R\E0 = 1 such that(

‖µ‖∞ − Re
∫∫

R\E0

µφn

)/ ∫∫
E

|φn| → 0 .(3.4)

On the other hand, by Lemma 3.1 we have that

ε2
0

∫∫
E

|φn| ≤
∫∫

R\E0

|ν − µ|2|φn| ≤ C‖µ‖∞
(

‖µ‖∞ − Re
∫∫

R\E0

µφn

)
,

which contradicts (3.4). So (c) implies (a).
We will prove the equivalence of (a) and (d) in the next section (Theorem 4.1).

REMARK 3.2. From the proof we see that it holds that (b)⇒(c)⇒(a) for any Beltrami
differentialµ in the class Belt(µ0, E0). The condition|µ| = ‖µ‖∞ almost everywhere in
R \ E0 is only used in the proof of (a)⇒(b). Indeed, whenµ satisfies the condition (a)
(without the condition that|µ| = ‖µ‖∞ almost everywhere inR \ E0), (b) still holds for
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those compact subsetsE of R \E0 with positive measure and‖µ|E‖∞ = ‖µ‖∞. We will use
this fact in the next section.

REMARK 3.3. We say thatµ is uniquely infinitesimally extremal with respect toS ⊂
R \ E0 with positive measure if for any otherν ∈ Belt(µ0, E0) with ‖ν‖∞ ≤ ‖µ‖∞, µ = ν

almost everywhere onS. Examining the proof of(c) ⇒ (a), we find that if the condition (c) is
satisfied for every compact subsetE of S ⊂ R \E0 with positive measure, thenµ is uniquely
infinitesimally extremal with respect toS.

4. Characterization of unique infinitesimal extremality (continued). We continue
to discuss the unique infinitesimal extremality of partially zero Beltrami differentials. We will
modify the discussion in [BLMM].

In general, for a bounded linear functionalΛ with real partλ on a subspaceY of a
normed spaceX, we may define

λ(x0) = inf
y∈Y{λ(y)+ ‖λ‖‖y − x0‖}

and

λ(x0) = sup
y∈Y

{λ(y)− ‖λ‖‖y − x0‖} .
The analysis in the proof of the Hahn-Banach theorem leads to the following lemma.

LEMMA 4.1. Λ has a unique norm-preserving extension from Y to X if and only if
λ(x0) = λ(x0) for all x0 ∈ X \ Y .

We say thatλ satisfies the unique approximation property atx0 ∈ X \ Y if there exists
sequences(yn1) and(yn2) in Y such that

λ(yn1 − yn2) = ‖λ‖(‖yn1 − x0‖ + ‖yn2 − x0‖)+ o(1) .

Then we have

LEMMA 4.2. Λ has a unique norm-preserving extension from Y to X if and only if λ
satisfies the unique approximation property at each x0 ∈ X \ Y .

We now proceed to discuss the unique infinitesimal extremality of a Beltrami differential.
Let, as before,µ0 be a Beltrami differential onR which is zero on the compact subsetE0.
Then we have

LEMMA 4.3. If µ ∈ Belt(µ0, E0) satisfies Reich’s condition on a set E ⊂ R \E0, then
µ is uniquely infinitesimally extremal in the class Belt(µ0, E0) with respect to E.

PROOF 5. Suppose thatµ is not uniquely infinitesimally extremal with respect toE.
Then there would exist someν in the class Belt(µ0, E0) such that‖ν‖∞ ≤ ‖µ‖∞ and that
|ν − µ| ≥ ε0 > 0 on some positive measure subsetẼ of E. It follows from Lemma 3.1 that

ε2
0

∫∫
Ẽ

|φ| ≤
∫∫

R\E0

|ν − µ|2|φ| ≤ C‖µ‖∞δµ(φ)(4.1)
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for all φ ∈ Q(R).
On the other hand, sinceµ satisfies Reich’s condition onE, there exists a sequence(φn)

in Q(R) such that lim inf|φn| > 0 almost everywhere inE and thatδµ(φn) → 0. Applying
Fatou’s Lemma, we then obtain a contradiction from (4.1).

LEMMA 4.4. If µ is uniquely infinitesimally extremal in the class Belt(µ0, E0), then µ
satisfies Reich’s condition on its extremal set.

PROOF 6. Suppose thatµ is uniquely infinitesimally extremal in the class Belt(µ0, E0),
and letE = R(µ) be its extremal set. Without loss of generality, we may assume that
‖µ‖∞ = 1. Takeφ ∈ Q(R) such that‖φ‖R\E0 = 1, and letψ = |φ|µχE. Clearly,
ψ ∈ L1(R \ E0) and ∫∫

R\E0

µψ =
∫∫

E

|φ| = ‖ψ‖R\E0 .

Sinceµ is uniquely infinitesimally extremal in Belt(µ0, E0), Λµ(ψ) = ∫∫
R\E0

µψ is

the unique norm-preserving extension fromQ(R)|R \E0 toL1(R \ E0). By Lemma 4.1, for
the real partλµ = ReΛµ, noting that‖λµ‖ = ‖Λµ‖ = ‖µ‖∞ = 1, there exists a sequence
(φn) in Q(R) such thatλµ(φn)− ‖φn − ψ‖R\E0 → λµ(ψ), that is,

Re
∫∫

R\E0

µψ + ‖φn − ψ‖R\E0 − Re
∫∫

R\E0

µφn → 0 .

Consequently,

0 ≤ δµ(φn) = ‖φn‖R\E0 − Re
∫∫

R\E0

µφn

≤ ‖ψ‖R\E0 + ‖φn − ψ‖R\E0 − Re
∫∫

R\E0

µφn

= Re
∫∫

R\E0

µψ + ‖φn − ψ‖R\E0 − Re
∫∫

R\E0

µφn → 0 .

On the other hand, since

0 ≤
∫∫

E

(|ψ| + |φn − ψ| − |φn|)
≤ ‖ψ‖R\E0 + ‖φn − ψ‖R\E0 − ‖φn‖R\E0

≤ ‖ψ‖R\E0 + ‖φn − ψ‖R\E0 − Re
∫∫

R\E0

µφn → 0 ,

we may assume without loss of generality that|ψ| + |φn − ψ| − |φn| → 0 for almost all
z ∈ E. Hence lim inf|φn(z)| ≥ |ψ(z)| = |φ(z)| > 0 for almost allz ∈ E.

An immediate consequence of Lemmas 4.3 and 4.4 is the following theorem, which gives
another characterization of the unique infinitesimal extremality of Beltrami differentials with
constant absolute value onR \ E0 (see Theorem 3.1).
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THEOREM 4.1. If µ ∈ Belt(µ0, E0) satisfies the condition that |µ| = ‖µ‖∞ almost
everywhere in R \ E0, then µ is uniquely infinitesimally extremal in Belt(µ0, E0) if and only
if µ satisfies Reich’s condition on R \ E0.

We are now in a position to characterize the unique infinitesimal extremality for an ar-
bitrary Beltrami differential. Letµ ∈ Belt(µ0, E0). We say that a Beltrami differentialη is
an admissible variation ofµ if η equals zero onE0, ‖η‖∞ ≤ ‖µ‖∞, and if there exists some,
possibly empty, subsetE of R \E0 such that|µ| ≤ k0 < k = ‖µ‖∞ almost everywhere inE
andµ = η in R \ E.

LEMMA 4.5. If µ is (uniquely) infinitesimally extremal in the class Belt(µ0, E0), then
every admissible variation η of µ is (uniquely) infinitesimally extremal.

PROOF 7. Supposeµ is infinitesimally extremal in the class Belt(µ0, E0), andη is any
admissible variation ofµ. Then there exists a subsetE of R \ E0 such that|µ| ≤ k0 < k =
‖µ‖∞ almost everywhere inE andµ = η in R \ E. Take any real numbert > 2k/(k − k0).
Then, for any Beltrami differentialη′ in the class Belt(η,E0), tµ + η′ − η ∈ Belt(tµ,E0).
Sincetµ is infinitesimally extremal, we have

tk = ‖tµ‖∞ ≤ ‖η′‖∞ + ‖tµ− η‖∞
≤ ‖η′‖∞ + max{(t − 1)k, tk0 + k} = ‖η′‖∞ + (t − 1)k ,

so‖η′‖∞ ≥ k ≥ ‖η‖∞, that is,η is infinitesimally extremal.
If µ is uniquely infinitesimally extremal in the class Belt(µ0, E0), the above reasoning

also shows thatη is uniquely infinitesimally extremal.

Now we can prove the following general characterization theorem for the unique infini-
tesimal extremality of Beltrami differentials.

THEOREM 4.2. Let µ ∈ Belt(µ0, E0). The following conditions are equivalent:
(1) µ is uniquely infinitesimally extremal in Belt(µ0, E0).
(2) µ is infinitesimally extremal in Belt(µ0, E0) and, for every r > 0, every admis-

sible variation η of µ, and every compact subset E of R(η) with positive measure, ηχE+
(1/(1 + r))ηχR\E is a Strebel differential.

(3) For every admissible variation η of µ and every compact subset E of R(η) with
positive measure, there exists a sequence (φn) in Q(R) with ‖φn‖R\E0 = 1 such that(

‖η‖∞ − Re
∫∫

R\E0

ηφn

)/ ∫∫
E

|φn| → 0 .

(4) Every admissible variation η of µ is uniquely infinitesimally extremal with respect
to R(η).

(5) Every admissible variation η of µ is uniquely infinitesimally extremal.
(6) Every admissible variation η of µ satisfies reich’s condition on R(η).
(7) λµ satisfies the unique approximation property at eachψ ∈ L1(R \E0)\Q(R)|R \

E0.
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PROOF 8. (1) is equivalent to (7) by Lemma 4.2.
(1) ⇒ (2). Sinceµ is uniquely infinitesimally extremal, it is definitely infinitesimally

extremal, and every admissible variationη of µ is also uniquely infinitesimally extremal by
Lemma 4.5. Hence (2) can be proved by the same method as in the proof of(a) ⇒ (b) of
Theorem 3.1 (see remark 3.2).

(2) ⇒ (3). Sinceµ is infinitesimally extremal, every admissible variationη of µ is
also infinitesimally extremal by Lemma 4.5. Therefore (3) can be proved by the same method
as in the proof of(b) ⇒ (c) of Theorem 3.1.

(3) ⇒ (4). This can be proved by the same method as in the proof of(c) ⇒ (a) of
Theorem 3.1(see remark 3.3).

(4) ⇒ (1). Suppose thatµ is not uniquely infinitesimally extremal. Then there would
exist someν in the class Belt(µ0, E0) such that‖ν‖∞ ≤ ‖µ‖∞ and that|ν − µ| ≥ ε0 > 0
on some positive measure compact subsetE of R \ E0. Noting thatµ itself is an admissible
variation ofµ, we conclude that the set{z ∈ E ; |µ(z)| = ‖µ‖∞} must be a set of measure
zero. So we may assume that for somek0 < k = ‖µ‖∞, the setẼ = {z ∈ E : |µ(z)| ≤ k0} is
compact and has positive measure.

Defineη = k((µ − ν)/|µ − ν|)χẼ + µχR\Ẽ. Thenη is an admissible variation ofµ.
Now setη′ = η + ν − µ. Thenη′ ∈ Belt(η,E0). Noting that

η′ = k
µ− ν

|µ− ν|χẼ + µχR\Ẽ + ν − µ =
(

k

|µ− ν| − 1

)
(µ− ν)χẼ + νχR\Ẽ ,

we get|η′| ≤ max{|k − |µ − ν||, k} = k, which implies that‖η′‖∞ ≤ k. Since|η| = k

on Ẽ, andη is uniquely infinitesimally extremal with respect to its extremal subsetR(η), we
conclude thatη′ = η and consequently thatµ = ν on Ẽ ⊂ E, which is a contradiction.

(1) ⇒ (5). This follows directly from Lemma 4.5.
(5) ⇒ (6). This follows directly from Lemma 4.4.
(6) ⇒ (4). This follows directly from Lemma 4.3.

5. A fundamental inequality. In this section, we establish a fundamental inequality
parallel to the delta inequality in [BLMM], which will be used to prove Theorem 2.3 in the
next section. We shall repeat some discussion from [BLMM] for completeness.

LEMMA 5.1. Let G be a quasiconformal mapping in the class Q(F,E′, b). Let, as
before, µ̃, ν̃, µ and ν denote the complex dilatations of the mappings F, G, f = F−1 and
g = G−1, respectively. If kG ≤ kF , then

∫∫
R\F(E′

0)

∣∣∣∣ µ̃(f )− ν̃(f )

1 − µ̃(f )ν̃(f )

∣∣∣∣
2

|φ| ≤ C

(
kF‖φ‖R\F(E′

0)
− Re

∫∫
R\F(E′

0)

τF φ

)
,

for all φ ∈ Q(R). The constant C depends only on kF and ‖b‖∞.
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PROOF 9. Setτ = τF , k = kF , α = µ̃(f ), β = ν̃(f ). SinceG ∈ Q(F,E′, b), it
follows from the main inequality of Reich-Strebel (see [G2]) that

∫∫
R

|φ| ≤
∫∫

R

|φ| |1 − µφ/|φ||2
1 − |µ|2

|1 + β(µ/α)(φ/|φ|)(1 − µφ/|φ|)/(1 − µφ/|φ|)|2
1 − |β|2 ,

for all φ ∈ Q(R), or equivalently (see [R2], [R3]),

Re
∫∫

R

(α − β)(1 − αβ̄)

(1 − |α|2)(1 − |β|2)
µ

α
φ ≤

∫∫
R

|α − β|2
(1 − |α|2)(1 − |β|2) |φ| .(5.1)

Noting thatµ/α = −∂f /∂f andα = β = 0 onR \ F(E′
0), we obtain from (5.1) that

Re
∫∫

R\F(E′
0)

(α − β)(1 − αβ̄)

(1 − |α|2)(1 − |β|2)
µ

α
φ ≤

∫∫
R\F(E′

0)

|α − β|2
(1 − |α|2)(1 − |β|2) |φ| .(5.2)

Adding Re
∫∫

R\F(E′
0)
((β − α)(1 − αβ̄)/(1 − |α|2)(1 − |β|2))(|α|/α)|φ| to both sides of the

above inequality, we conclude that

∫∫
R\F(E′

0)

(1 − |α|)2|α − β|2 + (1 − |α|2)(|α|2 − |β|2)
2|α|(1 − |α|2)(1 − |β|2) |φ|

≤ Re
∫∫

R\F(E′
0)

(α − β)(1 − αβ̄)

(1 − |α|2)(1 − |β|2)
1

α
(|µ||φ| − µφ) ,

or equivalently,

∫∫
R\F(E′

0)

(1 − |α|)|α − β|2
2|α|(1 + |α|)(1 − |β|2) |φ|

≤ Re
∫∫

R\F(E′
0)

(α − β)(1 − αβ̄)

(1 − |α|2)(1 − |β|2)
1

α
(|µ||φ| − µφ)

+
∫∫

R\F(E′
0)

|β|2 − |α|2
2|α|(1 − |β|2) |φ| .

(5.3)

We first assume that|τ | ≥ k/2 onR \F(E′
0), that is,|α| = |µ| ≥ k/2 onR \F(E′) and

|α| = |µ| ≥ b(f )/2 onF(E′ \ E′
0). Note that onR \ F(E′)

(1 − |α|)|α − β|2
2|α|(1 + |α|)(1 − |β|2) |φ| ≥ (1 − max{k, ‖b‖∞})|α − β|2

4
|φ| .(5.4)

Using the identity

||w| −w|2 = 2|w|(|w| − Rew) ,

we get
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Re
(α − β)(1 − αβ̄)

(1 − |α|2)(1 − |β|2)
1

α
(|µ||φ| − µφ)

≤ |α − β||1 − αβ̄ |
(1 − |α|2)(1 − |β|2)

1

|α| {2|µ||φ|(|µ||φ| − Reµφ)}1/2

≤
{

4/(1 − ‖b‖2∞)2
√

1/k
√|α − β|2|φ|√k|φ| − Reτφ in F(E′ \ E′

0)

4/(1 − k2)2
√

1/k
√|α − β|2|φ|√k|φ| − Reτφ in R \ F(E′)

≤ 4√
k(1 − (max{k, ‖b‖∞})2)2

√|α − β|2|φ|√k|φ| − Reτφ .

(5.5)

We also have

|β|2 − |α|2
2|α|(1 − |β|2) |φ| ≤

{
2/(k(1 − ‖b‖2∞))(k|φ| − Reτφ) in F(E′ \E′

0)

2/(k(1 − k2))(k|φ| − Reτφ) in R \ F(E′)

≤ 2

k(1 − (max{k, ‖b‖∞})2) (k|φ| − Reτφ) .

(5.6)

It follows from (5.3) through (5.6) that

∫∫
R\F(E′

0)

|α − β|2|φ|
(5.7)

≤ C1(k, ‖b‖∞)
( ∫∫

R\F(E′
0)

√|α − β|2|φ|√k|φ| − Reτφ + ∫∫
R\F(E′

0)
(k|φ| − Reτφ)

)
,

where

C1(k, ‖b‖∞) = 32

k(1 − (max{k, ‖b‖∞})2)3 .

Using the Cauchy-Schwartz inequality, we obtain from (5.7) that∫∫
R\F(E′

0)

|α − β|2|φ| ≤ C1(k, ‖b‖∞)

×
(√∫∫

R\F(E′
0)

|α − β|2|φ|
∫∫

R\F(E′
0)

(k|φ| − Reτφ)

+
∫∫

R\F(E′
0)

(k|φ| − Reτφ)

)
.

(5.8)

By (5.8) it sufficies to show the lemma assuming that
∫∫

R\F(E′
0)
(k|φ| − Reτφ) �= 0. Letting

t2 =
∫∫

R\F(E′
0)

|α − β|2|φ|
/∫∫

R\F(E′
0)

(k|φ| − Reτφ) ,
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(5.8) then implies thatt ≤ C1(k, ‖b‖∞)(1 + 1/t), which implies thatt is bounded, so∫∫
R\F(E′

0)

|α − β|2|φ| ≤ C2(k, ‖b‖∞)
∫∫

R\F(E′
0)

(k|φ| − Reτφ) .(5.9)

Consequently,∫∫
R\F(E′

0)

∣∣∣∣ α − β

1 − αβ

∣∣∣∣
2

|φ| ≤ C3(k, ‖b‖∞)
∫∫

R\F(E′
0)

(k|φ| − Reτφ) .(5.10)

Now we suppose that the setE = {z ∈ R \ F(E′
0) ; |τ | < k/2} has positive mea-

sure. Choose some non-zero elementψ ∈ Q(R′). We define a Beltrami differential̃η onR′
as follows: Whenw ∈ R′ \ f (E), η̃(w) = 0. In the case whenw ∈ f (E) ∩ (R′ \ E′),
if µ̃(w) �= ν̃(w), then η̃(w) is the unique pointζ on the hyperbolic circleρ(ζ, µ̃(w)) =
ρ(0, k/2) whose hyperbolic distance tõν(w) is a minimal; if µ̃(w) = ν̃(w) �= 0, then
η̃(w) = aµ̃(w), wherea is a positive constant, such thatη̃(w) is on the hyperbolic cir-
cle ρ(ζ, µ̃(w)) = ρ(0, k/2); if µ̃(w) = ν̃(w) = 0, thenη̃(w) = k|ψ(w)|/(2ψ(w)). In
the case whenw ∈ f (E) ∩ E′, if µ̃(w) �= ν̃(w), then η̃(w) is the unique pointζ on the
hyperbolic circleρ(ζ, µ̃(w)) = ρ(0, b(w)/2) whose hyperbolic distance tõν(w) is a min-
imal; if µ̃(w) = ν̃(w) �= 0, η̃(w) = aµ̃(w), wherea is a positive constant, such that
η̃(w) is on the hyperbolic circleρ(ζ, µ̃(w)) = ρ(0, b(w)/2); if µ̃(w) = ν̃(w) = 0, then
η̃(w) = b(w)|ψ(w)|/(2ψ(w)). Let H be a quasiconformal mapping onR′ with complex
dilatationη̃, and setF1 = F ◦H−1,G1 = G ◦H−1. We also denote bỹµ1, µ1, ν̃1 andν1 the
complex dilatations ofF1, F−1

1 = H ◦ f ,G1 andG−1
1 = H ◦ g, respectively.

Noting that

µ1 = η̃ − µ̃

1 − µ̃η̃

∂F

∂F
◦ f = µχR\E +

(
η̃ − µ̃

1 − µ̃η̃

∂F

∂F
◦ f

)
χE ,(5.11)

we conclude that

|µ1| = |µ|χR\E +
∣∣∣∣ η̃ − µ̃

1 − µ̃η̃
◦ f

∣∣∣∣χE
= |µ|χR\E + k

2
χ(R\F(E′))∩E + b(f )

2
χF(E′)∩E .

(5.12)

So |µ1| ≥ k/2 onR \ F(E′) and|µ1| ≥ b(f )/2 onF(E′ \ E′
0). On the other hand, since

|µ̃1(H ◦ f )| = |µ1|, we conclude that

k1 = kF1 = ‖µ̃1|H(R′) \H(E′)‖∞ = ‖µ1|R \ F(E′)‖∞ = k ,

and

|µ̃1| = |µ̃1(H ◦ f ◦ F ◦H−1)| ≤ b(f ◦ F ◦H−1) = b(H−1) on H(E′) .

Similarly,

ν1 = η̃ − ν̃

1 − ν̃η̃

∂G

∂G
◦ g = νχG◦f (R\E) +

(
η̃ − ν̃

1 − ν̃η̃

∂G

∂G
◦ g

)
χG◦f (E) ,(5.13)
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so we obtain by the assumptionkG ≤ kF = k and the definition of̃η that kG1 ≤ kG ≤ k,
|ν̃1| ≤ b(H−1) onH(E′) and henceG1 ∈ Q(F1,H(E

′), b(H−1)).
Let f1 = F−1

1 . Then by definition,

τ1 = τF1 = µ1χR\F1(H(E
′\E′

0))
+ k1µ1/b(H

−1 ◦ f1)χF1(H(E
′\E′

0))

= µ1χR\F(E′\E′
0)

+ kµ1/b(f )χF(E′\E′
0)
,

so|τ1| ≥ k/2 onR\F(E′
0) = R\F1(H(E

′
0)). Noting thatG1◦F−1

1 = G◦F−1, we conclude
by (5.10) that∫∫

R\F(E′
0)

∣∣∣∣ α − β

1 − αβ

∣∣∣∣
2

|φ| ≤ C3(k, ‖b‖∞)
∫∫

R\F(E′
0)

(k|φ| − Reτ1φ)(5.14)

for all φ ∈ Q(R).
Now

3Re
∫∫

E

τφ − Re
∫∫

E

τ1φ ≤ (3k/2 + k/2)
∫∫

E

|φ| = 2k
∫∫

E

|φ| .
Hence

3Re
∫∫

R\F(E′
0)

τφ

= 2Re
∫∫

R\F(E′
0)\E

τφ + Re
∫∫

R\F(E′
0)\E

τφ + 3Re
∫∫

E

τφ

≤ 2k
∫∫

R\F(E′
0)\E

|φ| + Re
∫∫

R\F(E′
0)\E

τ1φ + Re
∫∫

E

τ1φ + 2k
∫∫

E

|φ|

= 2k‖φ‖R\F(E′
0)

+ Re
∫∫

R\F(E′
0)

τ1φ ,

that is,

k‖φ‖R\F(E′
0)

− Re
∫∫

R\F(E′
0)

τ1φ ≤ 3

(
k‖φ‖R\F(E′

0)
− Re

∫∫
R\F(E′

0)

τφ

)
.(5.15)

Finally, we obtain from (5.14) and (5.15) that∫∫
R\F(E′

0)

∣∣∣∣ α − β

1 − αβ

∣∣∣∣
2

|φ| ≤ 3C3(k, ‖b‖∞)
∫∫

R\F(E′
0)

(k|φ| − Reτφ) .

This completes the proof of Lemma 5.1.

6. Proof of Theorem 2.3. In this section we will prove Theorem 2.3, an equivalent
form of Theorem 1.1. We first note the following

LEMMA 6.1. Given the class Q(F,E′, b), if τF is uniquely infinitesimally extremal in
Belt(τF , F (E′

0)), then F is uniquely extremal with respect to the extremal set R(τF ) = {z ∈
R ; |τF (z)| = kF } in following sense: IfG is any other mapping in the classQ(F,E′, b) with
kG ≤ kF , then the complex dilatations of F andG must coincide on the set f (R(τF )).
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PROOF 10. Suppose the contrary. Then there would exist some mappingG in the class
Q(F,E′, b) with kG ≤ kF such that the complex dilatationsµ̃ andν̃ of the mappingsF and
G satisfy the condition that|(µ̃(f ) − ν̃(f ))/(1 − µ̃(f )ν̃(f ))| > ε0 > 0 on some compact
subsetE of R(τF ) with positive measure. By Lemma 5.1, for allφ ∈ Q(R), it holds that

ε2
0

∫∫
E

|φ| ≤ C

(
kF‖φ‖R−F(E′

0)
− Re

∫∫
R\F(E′

0)

τF φ

)
.(6.1)

On the other hand, sinceτF is uniquely infinitesimally extremal in Belt(τF , F (E′
0)), by

our Theorem 4.2, (6.1) implies that the setE has measure zero. This is a contradiction.

Now we prove Theorem 2.3. Let the classQ(F,E′, b) be given, andµ̃ andµ be the
complex dilatations of the mappingsF andf = F−1, respectively. Suppose thatτ = τF

is uniquely infinitesimally extremal in Belt(τF , F (E′
0)). We want to show thatF is uniquely

extremal.
Suppose the contrary. Then there would exist some mappingG �= F in the class

Q(F,E′, b) with kG ≤ kF . Let ν̃ andν denote the complex dilatations of the mappings
G andg = G−1, respectively. Then the setE = {z ∈ R : ν̃(f ) �= µ̃(f )} has positive mea-
sure. On the other hand, Lemma 6.1 implies thatF is uniquely extremal with respect toR(τ),
so the set{z ∈ E ; |τ | = k = kF } has measure zero. Hence there exists a constantk0 < k

such that the set̃E = {z ∈ E ; |τ (z)| ≤ k0} has positive measure. We may assume thatẼ is
compact.

Now we define a Beltrami differential̃η on R′ as follows: Whenw ∈ R′ \ f (Ẽ),
η̃(w) = 0; whenw ∈ f (Ẽ) ∩ (R′ \ E′), η̃(w) is the unique pointζ on the hyperbolic circle
ρ(ζ, µ̃(w)) = ρ(0, k) whose hyperbolic distance tõν(w) is a minimal; whenw ∈ f (Ẽ)∩E′,
η̃(w) is the unique pointζ on the hyperbolic circleρ(ζ, µ̃(w)) = ρ(0, b(w)) whose hyper-
bolic distance tõν(w) is a minimal. LetH be a quasiconformal mapping onR′ with complex
dilatationη̃, and setF1 = F ◦H−1,G1 = G ◦H−1. We also denote bỹµ1, µ1, ν̃1 andν1 the
complex dilatations ofF1, F−1

1 = H ◦ f ,G1 andG−1
1 = H ◦ g, respectively.

Noting that

µ1 = η̃ − µ̃

1 − µ̃η̃

∂F

∂F
◦ f = µχR\Ẽ +

(
η̃ − µ̃

1 − µ̃η̃

∂F

∂F
◦ f

)
χẼ ,(6.2)

we conclude that

|µ1| = |µ|χR\Ẽ +
∣∣∣∣ η̃ − µ̃

1 − µ̃η̃
◦ f

∣∣∣∣χẼ
= |µ|χ

R\Ẽ + kχẼ∩(R\F(E′)) + b(f )χẼ∩F(E′) .
(6.3)

Since|µ̃1(H ◦ f )| = |µ1|, we conclude thatk1 = kF1 = k, and|µ̃1| ≤ b(H−1) onH(E′).
Similarly,

ν1 = η̃ − ν̃

1 − ν̃η̃

∂G

∂G
◦ g = νχG◦f (R\Ẽ) +

(
η̃ − ν̃

1 − ν̃η̃

∂G

∂G
◦ g

)
χG◦f (Ẽ) ,(6.4)
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so we have by the assumptionkG ≤ kF = k and the definition of̃η that kG1 ≤ kG ≤ k,
|ν̃1| ≤ b(H−1) onH(E′) and henceG1 ∈ Q(F1,H(E

′), b(H−1)).
Now by definition,

τ1 = τF1 = µ1χR\F1(H(E
′)\H(E′

0))
+ k1µ1/b(H

−1 ◦ f1)χF1(H(E
′)\H(E′

0))

= µ1χR\F(E′\E′
0)

+ kµ1/b(f )χF(E′\E′
0)

= τχR\Ẽ + µ1χẼ∩(R\F(E′)) + kµ1/b(f )χẼ∩F(E′) .

(6.5)

Therefore,τ1 = τ onR \ Ẽ, ‖τ1‖∞ = ‖τ‖∞, and|τ1| = ‖τ1‖∞ on Ẽ. In particular,τ1 is
an admissible variation ofτ and hence is uniquely infinitesimally extremal. Then Lemma 6.1
implies thatF1 is uniquely extremal with respect to the extremal setR(τ1), that is,µ̃1(f1) =
ν̃1(f1) onR(τ1). SoG1 ◦ F−1

1 = G ◦ F−1 is conformal inẼ andν̃(f ) = µ̃(f ) on Ẽ, which
is a contradiction. This completes the proof of Theorem 2.3.
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