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Abstract. We consider a quasiconformal automorphism of a Riemann surface, which
fixes the homotopy class of a simple closed geodesic. Under certain conditions on the injec-
tivity radius of the surface and bounds on the dilatation of the map, the automorphism induces
a periodic element of the Teichmüller modular group. We may also estimate the order of the
period.

1. Introduction. Let R be an arbitrary Riemann surface with possibly infinitely gen-
erated fundamental group. An elementχ of the Teichmüller modular group Mod(R) is in-
duced by a quasiconformal automorphismf of R. We would like to determine when the or-
der ofχ is finite. Whenf is a conformal automorphism ofR, then the elementχ of Mod(R)

induced byf fixes the base point of the Teichmüller spaceT (R). In [3], we proved that, for
a Riemann surfaceR with non-abelian fundamental group, a conformal automorphismf of
R has finite order if and only iff fixes either a simple closed geodesic, a puncture or a point
on R. In each case, we obtained a concrete estimate for the order off in terms of the injec-
tivity radius onR. One of our results is the following. For the definition of the upper bound
condition, see the next section.

THEOREM 1.1 ([3]). Let R be a hyperbolic Riemann surface with non-abelian funda-
mental group. Suppose that R satisfies the upper bound condition for a constant M > 0
and a connected component R∗

M of RM . Let f be a conformal automorphism of R such that
f (c) = c for a simple closed geodesic c on R with c ⊂ R∗

M and l(c) = l > 0. Then the order
n of f satisfies

n < (eM − 1) cosh(l/2) .

The purpose of this paper is to extend Theorem 1.1 to a quasiconformal automorphism
f . One of the difficulties that arise is that the elementχ ∈ Mod(R) induced byf need not
have a fixed point onT (R). However, we will show that if the maximal dilatation off is
smaller than some constant, thenχ is periodic.

The author would like to express her gratitude to Professor Katsuhiko Matsuzaki for his
valuable suggestions.

2. Statement of theorem. Let H be the upper half-plane equipped with the hyper-
bolic metric|dz|/Im z. Throughout this paper, we assume that a Riemann surfaceR is hyper-
bolic. Namely, it is represented asH/Γ for some torsion-free Fuchsian groupΓ acting onH.
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Furthermore, we also assume thatR has a non-abelian fundamental group. The hyperbolic
distance onH is denoted byd, and the hyperbolic length of a curvec on R by l(c). For the
axisL of a hyperbolic element of the Fuchsian groupΓ , we denote byπΓ (L) the projection
of L to H/Γ . When there is no fear of confusion, we denote this simply byπ(L). Also, for
a quasiconformal automorphism̃f of H, we denote byf̃ (L)∗ the geodesic having the same
end points as those of̃f (L).

We recall the definition of Teichmüller spaces and Teichmüller modular groups. Fix a
Riemann surfaceR. We say that two quasiconformal mapsf1 andf2 on R areequivalent
if f2 ◦ f −1

1 is homotopic to a conformal map off1(R) onto f2(R). The reduced Teich-
müller space T (R) with the base Riemann surfaceR is the set of all equivalence classes
[f ] of quasiconformal mapsf on R. The Teichmüller distancedT on T (R) is defined by
dT ([f1], [f2]) = logK(g), whereg is an extremal quasiconformal map in the sense that its
maximal dilatationK(g) is minimal in the homotopy class off2 ◦ f −1

1 . This is a complete
metric onT (R). The reduced Teichmüller modular group Mod(R) of R is a group of the
homotopy classes[h] of quasiconformal automorphismsh of R. Each element[h] of Mod(R)

induces an automorphism ofT (R) by [f ] �→ [f ◦ h−1], which is an isometry with respect to
dT .

We now make a couple of definitions given in terms of the hyperbolic geometry of Rie-
mann surfaces.

DEFINITION. For a constantM > 0, we defineRM to be the set of pointsp ∈ R for
which there exists a non-trivial simple closed curvecp passing throughp with l(cp) < M.
The setRε is called theε-thin part of R if ε > 0 is smaller than the Margulis constant.
Furthermore, a connected component of theε-thin part corresponding to a puncture is called
thecusp neighborhood.

REMARK. Theinjectivity radius at a pointp ∈ R is the supremum of radii of embedded
hyperbolic discs centered atp. Note thatRM coincides with the set of those points having the
injectivity radius less thanM/2.

DEFINITION. We say thatR satisfies thelower bound condition if there exists a con-
stantε > 0 such thatε-thin part of R consists of only cusp neighborhoods or neighborhoods
of geodesics which are homotopic to boundary components. We also say thatR satisfies the
upper bound condition if there exist a constantM > 0 and a connected componentR∗

M of
RM such that the homomorphism ofπ1(R

∗
M) to π1(R) induced by the inclusion map ofR∗

M

into R is surjective.

REMARK. The lower and upper bound conditions are quasiconformally invariant no-
tions (see [5, Lemma 8]).

We shall obtain a range of maximal dilatations of quasiconformal automorphismsf in-
ducing periodic elementsχ ∈ Mod(R). Moreover, we get a concrete estimate for the order of
χ .



PERIODIC ELEMENTS OF TEICHMÜLLER MODULAR GROUPS 47

THEOREM 2.1. Let R be a Riemann surface satisfying the lower bound condition
for a constant ε > 0 as well as the upper bound condition for a constant M > 0 and
a connected component R∗

M of RM . For a given constant l > 0, there exists a constant
K0 = K0(ε,M, l) > 1 depending only on ε, M and l that satisfies the following: Let f be
a quasiconformal automorphism of R such that f (c) is homotopic to c for a simple closed
geodesic c on R with c ⊂ R∗

M and l(c) = l. Suppose K(f ) < K0. Then there exists a positive
integer n ≤ N0 such that f n is homotopic to the identity. Here

N0 = N0(M, l) = − l

log(tanh(D + 13.5))
,

D = D(M, l) =




2 arccosh

(
sinh(M/2)

sinh(l/2)

)
+ M if l ≤ M ,

M if l ≥ M .

In particular, whenK(f ) = 1, we have the following:

THEOREM 2.2. Let R be a Riemann surface satisfying the upper bound condition for a
constant M > 0 and a connected component R∗

M of RM as well as the lower bound condition.
Let f be a conformal automorphism of R such that f (c) = c for a simple closed geodesic c

on R with c ⊂ R∗
M and l(c) = l > 0. Then the order n of f satisfies

n ≤ − l

log(tanh(D/2))
,

where D = D(M, l) is the same constant as in Theorem 2.1.

Note that forM ≥ arcsinh(2/
√

3) = 0.98· · · and everyl > 0, we have

− l

log(tanh(M/2))
< (eM − 1) cosh(l/2) .

Here the constant arcsinh(2/
√

3) is the smallest possible value ofM for which R satisfies
the upper bound condition (see [6]). Hence whenl ≥ M, the upper bound of the order of
f obtained in Theorem 2.2 is smaller than that in Theorem 1.1. However, whenl < M, the
estimate in Theorem 1.1 is still better than that in Theorem 2.2 for all sufficiently smalll. In
fact, (eM − 1) cosh(l/2) converges toeM − 1 asl → 0, while−l/(log(tanh(D/2))) diverges
to +∞.

In connection with Theorems 2.1 and 2.2, we would like to mention the result about
the discreteness of the orbit of a point in the Teichmüller space underthe action of a certain
subgroup of the Teichmüller modular group.

PROPOSITION 2.3 ([5]). Let R be a Riemann surface satisfying the lower and upper
bound conditions. For a simple closed geodesic c on R, let G be a subgroup of Mod(R) such
that g(c) is homotopic to c for every [g] ∈ G. Then for every point p ∈ T (R), the orbit G(p)

of p is a discrete subset in T (R). Furthermore, for any point p ∈ T (R), there exist only
finitely many elements [g] in G that fix p.
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3. Proof of theorems. For a proof of these theorems, we first prove some properties
on the hyperbolic geometry of Riemann surfaces.

PROPOSITION 3.1. Let R = H/Γ be a Riemann surface satisfying the upper bound
condition for a constant M > 0 and a connected component R∗

M of RM . Suppose that L is the
axis of a hyperbolic element of Γ such that the projection π(L) is a simple closed geodesic c

on R with c ⊂ R∗
M and l(c) = l > 0. Then there exists an axis L′ of a hyperbolic element of

Γ such that L ∩ L′ = ∅, d(L,L′) ≤ D and π(L′) = π(L). Here D = D(M, l) is the same
constant as in Theorem 2.1.

PROOF. First we assume thatl > M. Sincec ⊂ R∗
M , there exists a non-trivial simple

closed curveα passing throughp ∈ c with l(α) < M. It follows from the assumptionl > M

that α is not homotopic toc, which implies that there exists an axisL′ ( �= L) such that
π(L′) = c andd(L,L′) < M.

Next we assume thatl ≤ M. We further assume that there exists an annular neighborhood
A(c) of c with width ω(c), where

ω(c) = arccosh

(
sinh(M/2)

sinh(l/2)

)
.

Then, for anyq ∈ ∂A(c), the boundary ofA(c), the shortest simple closed curveγ passing
throughq and homotopic toc has lengthM.

Indeed, we may assume thatL = {iy | y > 0}, andq̃ = eiθ andq̃ ′ = el+iθ are lifts ofq
to H. Then, by the equality (7.20.3) in [2], we have

1

sinθ
= 1

cos(π/2 − θ)
= coshd(q̃, L) = coshω(c) = sinh(M/2)

sinh(l/2)
.

Thus, by Theorem 7.2.1 in [2], we see that

sinh
1

2
d(q̃, q̃ ′) = |q̃ − q̃ ′|

2(Im q̃ Im q̃ ′)1/2 = el − 1

2el/2 sinθ
= sinh(l/2)

sinθ
= sinh

M

2
,

which implies thatl(γ ) = d(q̃, q̃ ′) = M.
We can take a pointq0 ∈ ∂A(c) such thatq0 ∈ R∗

M . Indeed, otherwise,∂A(c)∩R∗
M = ∅.

Sincec ⊂ R∗
M , this means thatR∗

M is an annular neighborhood ofc, contradicting the upper
bound condition.

By the definition ofRM , there exists a non-trivial simple closed curveβ passing through
q0 with l(β) < M. By the consideration above, we see that the curveβ is not homotopic toc.
Hence there exists an axisL′ ( �= L) such thatπ(L′) = c andd(L,L′) < 2ω(c) + M.

Finally, we assume thatl ≤ M and that the width of the maximal annular neighborhood
A(c) of c is less thanω(c). Then there exists an axisL′ ( �= L) such thatπ(L′) = c and
d(L,L′) < 2ω(c). �

We now estimate the number of axes satisfying Proposition 3.1.

DEFINITION. For an elementγ of a Fuchsian group, we say that two axesL1 andL2

areγ -equivalent ifγ n(L1) = L2 for somen ∈ Z.
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PROPOSITION 3.2. Let R = H/Γ be a Riemann surface and D0 > 0 a constant.
Furthermore, let L be the axis of a hyperbolic element γ ∈ Γ such that the projection π(L)

is a simple closed geodesic c on R with l(c) = l > 0. Let S be the set of axes L′ of hyperbolic
elements of Γ satisfying the following: (i) L ∩ L′ = ∅, (ii) d(L,L′) ≤ D0, (iii ) π(L′) = c

and (iv) there exists an arc α connecting L and L′ whose projection to R has no intersection
with c except at the end points. Then the number of γ -equivalence classes of axes in S is
dominated by

− l

log(tanh(D0/2))
.

PROOF. We may assume thatL = {iy | y > 0}. We takeθ0 (0 < θ0 < π/2) so that
coshD0 = (cosθ0)

−1 and setθ = π/2 − θ0. Furthermore, we set

T+ = {reiθ | 1 ≤ r < el} and T− = {rei(π−θ) | 1 ≤ r < el} .

Thend(L, T+) = D0 andd(L, T−) = D0. To estimate the number ofγ -equivalence classes
of elements inS, we have only to consider the maximal numbern of disjoint axesL′ that are
tangent toT+ or T−.

LetC be the Euclidean circle onC that is tangent to the segmentT+ and has centera > 0
with radiusr. Thenr = a sinθ , and the circleC passes through two points,

x1 = (1 − sinθ)a and x2 = (1 + sinθ)a .

The ratio of these points is given by

s = x2

x1
= 1 + sinθ

1 − sinθ
= 1 + cosθ0

1 − cosθ0
= coshD0 + 1

coshD0 − 1
= 1

(tanh(D0/2))2 .

Hence it is easy to see that

n ≤ 2 · l

logs
= − l

log(tanh(D0/2))
. �

The following proposition gives a relationship between the hyperbolic distance of two
axes and that of their images under a quasiconformal map.

PROPOSITION 3.3 ([1]). Let f be a K-quasiconformal automorphism of H. Then there
exists a constant C = C(K) > 0 depending only on K such that, for any two geodesics L1

and L2 in H, the inequality

K−1 · d(L1, L2) − C ≤ d(f (L1)∗, f (L2)∗) ≤ K · d(L1, L2) + C

holds. The constant C(K) satisfies C(K) → 0 as K → 1, and may be taken to be

(1/2) arccosh
(
2−(K−1)2

e6(K+1)2
√

K−1) .

The following proposition gives a sufficient condition for the maximal dilatations of
quasiconformal maps to be bounded away from one.
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PROPOSITION 3.4 ([4]). Let R = H/Γ be a Riemann surface. Suppose that R satisfies
the lower bound condition for a constant ε > 0 as well as the upper bound condition for a
constant M > 0 and a connected component R∗

M of RM . Let B > 0 and l > 0 be constants.
Then there exists a constant A0 = A0(ε,M,B, l) > 1 depending only on ε, M, B, l and
satisfying the following conditions: Given a quasiconformal automorphism f of R, suppose
that there exist three disjoint axes Li (i = 1, 2, 3) of hyperbolic elements of Γ such that

1. their projections π(Li) on R are simple closed geodesics ci (i = 1, 2, 3) with ci ⊂
R∗

M and l(ci) ≤ l,
2. d(L1, L2) ≤ B,
3. f̃ (L1)∗ = L1, f̃ (L2)∗ = L2, f̃ (L3)∗ �= L3 for a lift f̃ of f to H.

Then K(f ) ≥ A0.

We now prove our theorems.

PROOF OF THEOREM 2.1. We setB := D = D(M, l) in Proposition 3.4 and let
A0 = A0(ε,M, l) > 1 be a constant depending only onε, M andl obtained in Proposition
3.4. SettingA = min{A0, 2}, we prove the statement forK0 = A1/(N0+1). Namely, we show
that, if K(f ) < K0, then there exists an integern ≤ N0 such thatf n is homotopic to the
identity.

Let Γ be a Fuchsian model ofR. Furthermore letL1 be an axis such thatπ(L1) = c and
γ1 the primitive hyperbolic element ofΓ with axisL1. By applying Proposition 3.1 toL1,
we see that there exists an axisL2 of a hyperbolic elementγ2 of Γ such thatL1 ∩ L2 = ∅,
d(L1, L2) ≤ D andπ(L1) = π(L2).

Let f̃ be a lift of f to H satisfyingf̃ (L1)∗ = L1. SinceK(f ) < K0 = A1/(N0+1), we
haveK(f k) < A for k ≤ N0 + 1. Then, by Proposition 3.3,

d(L1, f̃
k(L2)∗) = d(f̃ k(L1)∗, f̃ k(L2)∗) ≤ A · d(L1, L2) + C(A)

≤ 2D + C(2) = 2D + (1/2) arccosh(e54/2)(1)

≤ 2D + 27

for all k ≤ N0 + 1.
We consider the setS0 of all axesL′ of hyperbolic elements ofΓ satisfying the following

conditions: (i)L1 ∩ L′ = ∅, (ii) d(L1, L
′) ≤ 2D + 27, (iii) π(L′) = c and (iv) there exists

an arcα connectingL1 andL′ such that the projection ofα to R has no intersection withc
except at the end points. We see that the setS′ = {f̃ k(L2)∗}N0+1

k=1 is contained inS0. Indeed,
by the proof of Proposition 3.1, the axisL2 satisfies the property (iv), and sincẽf k is a
homeomorphism, the axes̃f k(L2)∗ satisfy the same property. The other properties (i), (ii),
(iii) are also satisfied.

By Proposition 3.2, the number ofγ1-equivalence classes of elements inS0 is dominated
by N0. Hence there exist at least two elements inS′, say f̃ m1(L2)∗ and f̃ m2(L2)∗ (1 ≤
m1 < m2 ≤ N0 + 1), that areγ1-equivalent to each other. Thus there existsj ∈ Z such that
γ

j

1 ◦ f̃ n(L2)∗ = L2, wheren = m2 − m1 (≤ N0). With this n, we will prove thatf n is

homotopic to the identity. We setF = γ
j

1 ◦ f̃ n, which is a lift off n to H.
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Suppose to the contrary thatf n is not homotopic to the identity. We setχ(γ ) = F ◦ γ ◦
F−1 for γ ∈ Γ . Then there existsγ3 ∈ Γ such thatχ(γ3) �= γ3. Settingγ ′

i = γ3 ◦ γi ◦ γ −1
3

for i = 1, 2, we claim that eitherχ(γ ′
1) �= γ ′

1 or χ(γ ′
2) �= γ ′

2 is satisfied. Suppose that both
χ(γ ′

1) = γ ′
1 andχ(γ ′

2) = γ ′
2 are satisfied. Sinceχ(γi) = γi , we haveβ ◦ γi ◦ β−1 = γi

(i = 1, 2), whereβ = γ −1
3 ◦ χ(γ3). Thus,β fixes all fixed points ofγ1 andγ2. Sinceγ1

andγ2 are non-commutative, the Möbius transformationβ fixes four points and must be the
identity. This contradicts thatχ(γ3) �= γ3.

Hence eitherF(γ3(L1))∗ �= γ3(L1) or F(γ3(L2))∗ �= γ3(L2) is satisfied. Also, we may
assume without loss of generality thatF(γ3(L1))∗ �= γ3(L1). Sinceπ(γ3(L1)) = π(L1) = c,
we can apply Proposition 3.4 to the liftF of f n and to the three axesL1, L2 andγ3(L1).
Then we haveK(f n) ≥ A0, a contradiction, since we assumedK(f n) < A ≤ A0. Hence if
K(f ) < A1/(N0+1), thenf n is homotopic to the identity. �

PROOF OFTHEOREM 2.2. In the proof of Theorem 2.1, we can replace the inequality
(1) with

d(L1, f̃
k(L2)∗) = d(f̃ k(L1)∗, f̃ k(L2)∗) = d(L1, L2) = D.

Hence we have only to replace the constant 2D + 27 withD in Theorem 2.1. �
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