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COMPOSITION AND TOEPLITZ
OPERATORS ON GENERAL DOMAINS
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Abstract. Characterizations of invertible and Fredholm composition operators are ob-
tained for Bergman spaces on connected domains in the complex plane. In addition, the iso-
morphism between Toeplitz algebras and their K-theory are discussed.

1. Introduction. Let M andN be two open, connected, non-empty subsets in the
complex plane, which are said simply to be domains. LetL2(M) denote the space of complex-
valued, measurable functions defined onM that are square integrable with respect to the area
measure onM. The Bergman space ofM, denoted byL2

a(M), is by definition the set of
analytic functions in the Hilbert spaceL2(M).

Denoting by∂M the topological boundary ofM, a pointλ ∈ ∂M is said to be removable
with respect toL2

a(M) if there exists an open neighborhoodV of λ such that each function in
L2
a(M) can be extended to an analytic function defined onM∪V . We denote by∂rM the set of

points of∂M which are removable with respect toL2
a(M). The Bergman essential boundary

ofM, denoted by∂eM, is defined to be the set of points of∂M which are not removable with
respect toL2

a(M), so that

∂eM = ∂M − ∂rM .

If M is finitely connected, that is, there are finite holes inM, then the Bergman removable
boundary ofM is nothing but the set of isolated points of∂M. The concept of essential
boundary is first introduced in Axler, Conway and McDonald [1], where they proved that the
essential spectrum of a Toeplitz operator withcontinuous symbol on a domain coincides with
the range of the symbol on its essential boundary. In the present paper, we are concerned with
two classes of operators on domains, namely, composition and Toeplitz operators.

In Sections 2 and 3 of this paper, we obtain characterizations of invertible and Fredholm
composition operators. In the last section, we discuss the isomorphism between two Toeplitz
algebras and their K-theory.

The author is very grateful to the referee for his many invaluable suggestions.

2. Invertibility of composition operators. The research on invertibility of composi-
tion operators on Hardy spaceH 2(D)was initiated in [2]. Hatori [3] and Cao and Sun [4] then
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proved analogous results for the case ofH 2(Bn), whereBn is the unit ball of the complex Eu-
clideann-spaceCn. For composition operators on other spaces, similar results were proved by
Bourdon [5] and Singh and Veluchamy [6]. Also, Takagi [7] studied the Fredholm weighted
composition operators onC(X), the algebra of complex-valued continuous functions defined
on a compact Hausdorff spaceX, orLp(X), whereX is a set with some regular property like
intervals or balls in the Euclideann-spaceRn. In [8], Mihaila discussed the invertibility of
composition operators on Riemann surfaces.

It is well-known that every composition operator on the Hardy space for one complex
variable is bounded. However, a composition operator may be unbounded for general do-
mains. For example, if

M = {z ∈ C | |z| > 1} , N = {z ∈ C | 0< |z| < 1} ,
andρ(z) = 1/z is the map fromM to N , Cρ is the composition operator fromL2

a(N) to
L2
a(M) which is defined byCρf = f ◦ ρ, thenCρ is an unbounded operator. In fact, for
f ∈ L2

a(N), Cρf may not be even inL2
a(M). For instance, iff (z) = z, thenf ∈ L2

a(N),

butCρf /∈ L2
a(M).

From the example above, we also see that even ifρ is invertible,Cρ may not be invertible.

DEFINITION 1. Let µ be a positive measure on a domainM in C. µ is said to be
a Carleson-type measure onM if there exists a constantC > 0 such that for anyf ∈
L2(M, dµ), ∫

M

|f |2dµ ≤ C
∫
M

|f |2dA .
It is obvious thatµ is a Carlson-type measure if and only if there is a constantC > 0

such that for an arbitrary measurable subsetE ofM,

µ(E) ≤ CA(E) ,
whereA(E) is the Lebesgue measure ofE.

PROPOSITION 1. Suppose that M and N are domains in C, and ρ : M → N is an
analytic map such that dA ◦ ρ−1 is a Carleson-type measure. Then Cρ is a bounded operator
from L2

a(N) to L2
a(M).

PROOF. By the identity∫
N

f dA ◦ ρ−1 =
∫
M

f ◦ ρdA , f ∈ L2
a(N)

and the definition of a Carlson-type measure, one can see easily thatCρ is bounded. �

THEOREM 2. Suppose that M and N are domains in C, and ρ : M → N is a noncon-
stant analytic map such that both dA ◦ ρ−1 and dA ◦ ρ are Carleson-type measures. Then Cρ
is an invertible operator from L2

a(N) onto L2
a(M) if and only if

(i) ρ is injective, and
(ii) N − ρ(M) ⊂ ∂r (ρM).
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PROOF. Assuming thatCρ is an invertible operator fromL2
a(N) ontoL2

a(M), we first
prove thatρ is injective. LetKM

z (w) andKN
z (w) denote respectively the reproducing kernels

of L2
a(M) andL2

a(N). It is routine to check that for anyz ∈ M, we have

C∗ρKz = Kρ(z) .
If there arez1, z2 ∈ M with z1 �= z2 such thatρ(z1) = ρ(z2), thenC∗ρ(Kz1 −Kz2) = 0. It is
obvious thatKz1 −Kz2 �= 0, and hence this contradicts the invertibility ofCρ. Henceρ must
be injective. (i) is proved.

Sinceρ(M) ⊂ N, we see thatL2
a(N) ⊂ L2

a(ρ(M)). Cρ is also an operator from
L2
a(ρ(M)) to L2

a(M), which we write byC̃ρ . SincedA ◦ ρ−1 is a Carlson-type measure
on N , so is also onρ(M), it is verified thatC̃ρ is a bounded operator fromL2

a(ρ(M)) to
L2
a(M) by Proposition 1. This shows thatC−1

ρ ◦ C̃ρ is a bounded operator fromL2
a(ρ(M)) to

L2
a(N), so that for anyg ∈ L2

a(ρ(M)), we haveC−1
ρ ◦ C̃ρg ∈ L2

a(N). Let

h = C−1
ρ ◦ C̃ρg ∈ L2

a(N) ,

andTρ = Cρ−1 be the composition operator fromR(C̃ρ) toL2
a(ρM). Then

TρCρh = TρC̃ρg = g .

For anyw ∈ ρ(M), it is easy to see that(Cρh)(ρ−1w) = g(w), and furtherh(w) = g(w).
Hence every function inL2

a(ρ(M))may be extended to a function inL2
a(N). This proves (ii).

Conversely, if (i) and (ii) in the Theorem hold, theñCρ : L2
a(ρ(M)) → L2

a(M) is

invertible with inversẽCρ−1. SinceN−ρ(M) ⊂ ∂r (ρ(M)),we see thatL2
a(ρ(M)) = L2

a(N).

This shows thatCρ is indeed invertible. �

REMARK. If we assume only thatdA◦ρ−1 is a Carleson-type measure,Cρ may not be
an invertible operator even ifρ is invertible. For instance, in the previous example,dA ◦ ρ is
a Carlson-type measure, butCρ−1 is not invertible.

EXAMPLE. Suppose that{αi}∞i=1 is a Blaschke sequence in the unit discD of the com-
plex plane,M = D − {αi}∞i=1, N = D andρ is the inclusion map fromM into N . Then it
is obvious thatdA ◦ ρ anddA ◦ ρ−1 are Carleson-type measures,ρ satisfies the assumption
of Theorem 2. Indeed, it is easy to see that{αi}∞i=1 is the removable boundary ofρ(M) by
the uniqueness theorem of analytic functions. Furthermore,Cρ is an invertible operator from
L2
a(N) ontoL2

a(M).

COROLLARY. Suppose thatM andN are domains in C, and ρ : M → N is an analytic
map such that ∂r (ρ(M)) = ∅. If both dA ◦ ρ−1 and dA ◦ ρ are Carlson-type measures, then
Cρ is an invertible operator from L2

a(N) onto L2
a(M) if and only if ρ is invertible.

REMARK. It is well-known that ifρ is an analytic self-map of the unit discD in the
complex plane, thenCρ is always a bounded linear operator on Bergman spaceL2

a(D) or
Hardy spaceH 2(D) andCρ is invertible if and only ifρ is invertible. By Theorem 2, we
see that the invertibility of a composition operator is not equivalent to the invertibility of its
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symbol for general domains in the complex plane. However, if the topological boundary of
the domain does not contain any removable points, then the invertibility of the composition
operator does imply the invertibility of its symbol.

3. Fredholmness of composition operators. We know that on almost all spaces of
analytic functions, the invertibility of a composition operator is equivalent to the property that
being Fredholm. It is thus natural to study the Fredholmness of composition operators on
general domains.

LEMMA 3 (Axler, Conway and McDonald [9]).For any domainG in C, the area mea-
sure of ∂rG is zero.

THEOREM 4. Suppose that M and N are bounded domains in C, and ρ : M → N is
a nonconstant analytic map such that both dA ◦ ρ−1 and dA ◦ ρ are Carleson-type measures.
Then Cρ is a Fredholm operator from L2

a(N) to L2
a(M) if and only if

(i) ρ is injective, and
(ii) N − ρ(M) ⊂ ∂r (ρM).
PROOF. By Theorem 2, we need only to prove the necessity. Assuming thatCρ is

Fredholm, we first prove thatρ is injective. Indeed, ifz1, z2 ∈ M with z1 �= z2 such that
ρ(z1) = ρ(z2), then there exist open subsetsU1, U2 of M such thatzi ∈ Ui, i = 1,2, and
U1 ∩U2 = ∅.Writew = ρ(zi). Sinceρ is an open map, bothρ(U1) andρ(U2) are open sets
which containw. Thusρ(U1) ∩ ρ(U2) is a non-empty open subset ofN . Choose a sequence
{wk} in ρ(U1) ∩ ρ(U2) with wk �= wk′ for k �= k′. Then there are sequences{z(1)k } ⊂ U1 and

{z(2)k } ⊂ U2 such thatρ(z(i)k ) = wk for i = 1,2. Setfk = Kz(1)k −Kz(2)k . Then{fk} is a linear

independent sequence inL2
a(M), sincez(i)k �= z(j)k′ for k �= k′ or i �= j. However we have

C∗ρfk = Kρ(z(1)k )
−K

ρ(z
(2)
k )
= 0 ,

which contradicts the Fredholmness ofCρ. Henceρ is injective. (i) is proved.
It is obvious that̃Cρ is a bounded operator fromL2

a(ρ(M)) to L2
a(M) by Proposition 1.

Sinceρ(M) ⊂ N, we haveL2
a(N) ⊂ L2

a(ρ(M)). We show thatN ⊂ ρ(M). Suppose not.
Then there existw ∈ N and an open subsetU(w) ⊂ N which satisfiesU(w) ∩ ρ(M) = ∅.
Set

fk(z) =
(

1

z−w
)k
.

Then{fk} ⊂ L2
a(ρ(M)), k ≥ 1, is a linear independent sequence, andfk /∈ L2

a(N). How-
ever,Cρ(L2

a(N)) is a closed subspace ofL2
a(M), and

dim
L2
a(M)

Cρ(L2
a(N))

<∞ ,
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sincedA ◦ ρ is a Carleson-type measure. Hence we may easily see thatC̃ρ is an invertible
operator fromL2

a(ρ(M)) ontoL2
a(M). Thus

dim
R(C̃ρ)

R(Cρ)
<∞ .

It is not difficult to check thatL2
a(N) is a closed subspace ofL2

a(ρ(M)). Hence we see that

dim
L2
a(ρ(M))

L2
a(N)

<∞

since dimR(C̃ρ)/R(Cρ) < ∞. Denote by[fi ] the class offi in L2
a(ρ(M))/L

2
a(N). If {[fi]}

is linearly dependent, then there existαi ∈ C, i = 1, . . . , k with αk �= 0 such that

g =
k∑
i=1

αifi ∈ L2
a(N) .

However, since|fi |(z) → ∞ asz → w, this implies that|g(z)| → ∞ asz → w. This
contradiction shows thatN ⊂ ρ(M).

Now we prove thatN − ρ(M) ⊂ ∂r (ρ(M)). Let f1, f2, . . . , fn be functions in
L2
a(ρ(M)) such that{[fi]}ni=1 is a basis ofL2

a(ρ(M))/L
2
a(N). For every 1≤ i ≤ n and

a non-negative integerm, fizm is in L2
a(ρ(M)), sinceN is a bounded domain and so is

ρ(M). SinceL2
a(ρ(M))/L

2
a(N) is of a finite dimension,{[fizm]}∞m=0 is linearly dependent

in L2
a(ρ(M))/L

2
a(N) for every 1≤ i ≤ n, that is, there existα(i)0 , α

(i)
1 , . . . , α

(i)
m(i) ∈ C with

α
(i)
m(i) �= 0 such that

∑m(i)
j=0 α

(i)
j [fizj ] = 0. Putgi = ∑m(i)

j=0 α
(i)
j fiz

j andhi = ∑m(i)
j=0 α

(i)
j z

j .

Thengi = fihi , and sofi is extended analytically onN − h−1
i (0), sincegi is in L2

a(N),

where
h−1
i (0) = {z ∈ N − ρ(M) | hi(z) = 0} .

Note that
N − ρ(M) = N ∩ ∂(ρ(M))

holds, sinceρ(M) ⊂ N ⊂ ρ(M).Denote the extended function offi also byfi. SinceL2
a(N)

is generated byf1, . . . , fn andL2
a(ρ(M)), and since

⋃n
i=1 h

−1
i (0) is a finite set, we see by

the definition of the essential boundary that

N ∩ ∂e(ρ(M)) ⊂
n⋃
i=1

h−1
i (0) .

Next we show that
n⋃
i=1

h−1
i (0) ⊂ N ∩ ∂r (ρ(M)) .

Let p ∈ ⋃n
i=1 h

−1
i (0). We show that everyfi is extended analytically atp. Put and fix 1≤

i ≤ n. If hi(p) �= 0, thenfi is analytic atp, sincefi = gi/hi nearp. Suppose thathi(p) = 0.
Thenfi is analytic atp or p is a pole offi sincegi = fihi is analytic atp. We show that
p cannot be a pole offi . Suppose thatp is a pole offi . Thenp ∈ N ∩ ∂e(ρ(M)) by the
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definition of the essential boundary. SinceN ∩ ∂e(ρ(M)) ⊂ ⋃n
i=1 h

−1
i (0) and

⋃n
i=1 h

−1
i (0)

is a finite set, there exists anr > 0 such that

{z ∈ C | |z− p| < r} ⊂ N
and

{z ∈ C | |z− p| < r} ∩N ∩ ∂e(ρ(M)) = {p}.
Hence we have

{z ∈ ∂(ρ(M)) | |z− p| < r} = {p} ∪ {z ∈ ∂r (ρ(M)) | |z− p| < r} .
By Proposition 2 in [1],∂r(ρ(M)) has zero area measure, and hence we have that{z ∈
∂(ρ(M)) | |z− p| < r} has zero area measure. On the other hand, we see that

{z ∈ C | |z− p| < r} − {z ∈ ∂(ρ(M)) | |z− p| < r} ⊂ ρ(M) ,
sinceρ(M) ⊂ N ⊂ ρ(M). Sincefi ∈ L2

a(ρ(M)), we have

∞ >

∫
ρ(M)

|fi |2dm ≥
∫
{z∈C−∂(ρ(M)) | |z−p|<r}

|fi |2dm

=
∫
{z∈C | |z−p|<r}

|fi |2dm ,

for {z ∈ ∂(ρ(M)) | |z− p| < r} has zero area measure, which is a contradiction since∫
{z∈C | |z−p|<r}

|fi |2dm = ∞ ,

for p is a pole offi . Thus we see thatfi is extended analytically atp. It follows that every
f1, . . . , fn is extended analytically atp, and hence

n⋃
i=1

h−1
i (0) ⊂ N ∩ ∂r (ρ(M)) ,

sinceL2
a(ρ(M)) is generated byf1, . . . , fn andL2

a(N).

Thus we have

N ∩ ∂e(ρ(M)) ⊂
n⋃
i=1

h−1
i (0) ⊂ N ∩ ∂r (ρ(M)) .

Hence we see that

N ∩ ∂e(ρ(M)) = ∅ ,
and so that

N − ρ(M) ⊂ ∂r (ρ(M)) ,
sinceρ(M) ⊂ N ⊂ ρ(M). �
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4. Some discussions on Toeplitz algebras.

LEMMA 5 ([1] Theorem 9). Let M be a bounded, open, connected, non-empty subset
of C, and J (M) be the algebra generated by {Tϕ | ϕ ∈ C(M̄)}. Then the commutator ideal of
J (M) is K(M), the space of compact operators on L2

a(M). Furthermore J (M)/K(M) and
C(∂eM) are isometrically isomorphic C*-algebras with an isomorphism that maps Tϕ+K(M)
to ϕ|∂eM for each ϕ ∈ C(M̄), where ∂eM denotes the Bergman essential boundary of M,
consisting of all points of ∂M which are not removable with respect to L2

a(M).

DEFINITION 2. LetM be a bounded domain in the complex plane, whose boundary
∂M consists of a finitely many simple closed smooth analytic curvesΓi, i = 1, . . . , n, where
Γi are positively oriented with respect toM andΓi ∩ Γj = ∅ if i �= j. ThenM is said to be a
finitely connected domain.

LEMMA 6 ([9]). Suppose that M is a domain obtained from the unit disc by removing
a finite number of disjoint discs. Then for ϕ ∈ C(M̄), if Tϕ is Fredholm, then

IndTϕ = −degree(ϕ,0) ,

where degree(ϕ,0) denotes the topological degree of ϕ with respect to 0.

LEMMA 7. Suppose that M is a finitely connected domain in the complex plane. Then
for ϕ ∈ C(M̄), if Tϕ is Fredholm, then

Ind Tϕ = −degree(ϕ,0) .

PROOF. This is a simple consequence of Lemma 6. �

The following Lemma 8 is a special case of a folklore theorem (see for instance, pp. 29
to 30 of [10]).

LEMMA 8. Suppose that M and N are two closed subsets of the complex plane. Then
C(M) and C(N) are algebraically isomorphic, denoted by C(M) ∼= C(N), if and only if M
and N are homeomorphic.

Now, letM be a finitely connected domain whose boundary∂M consists of simple closed
smooth analytic curvesΓi, i = 1, . . . , n, whereΓi are positively oriented with respect to
M andΓi ∩ Γj = ∅ if i �= j. Also, let N be another finitely connected domain whose
boundary∂N consists of simple closed smooth analytic curvesΓ̃j , j = 1, . . . ,m, whereΓ̃j
are positively oriented with respect toN andΓ̃ i ∩ Γ̃j = ∅ if i �= j. Thus∂M =⋃n

i=1Γi and
∂N =⋃m

j=1 Γ̃j . Furthermore, we have

C(∂M) ∼=
m⊕
i=1

C(Γi) , C(∂N) ∼=
m⊕
j=1

C(Γ̃j ) ,

and

C(∂M,T ) ∼=
m⊕
i=1

C(Γi,T ) , C(∂N,T ) ∼=
m⊕
j=1

C(Γ̃j ,T ) .
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It follows from these that

(1) π1(∂M) ∼=∑n
i=1π

1(Γi) =
n times︷ ︸︸ ︷

Z⊕ · · · ⊕ Z,

(2) π1(∂N) ∼=∑m
j=1π

1(Γ̃i) =
m times︷ ︸︸ ︷

Z⊕ · · · ⊕ Z,
whereπ1(∂M) denotes the first cohomotopy group of∂M which is defined by

π1(∂M) = {[f ] | f ∈ C(∂M,T ) and [f ] is the homotopy equivalent class off } ,
and

(3) K0(C(∂M)) ∼=⊕n
i=1K0(C(Γi)) ∼=

n times︷ ︸︸ ︷
Z⊕ · · · ⊕ Z,

(4) K0(C(∂N)) ∼=⊕m
j=1K0(C(Γj )) ∼=

m times︷ ︸︸ ︷
Z⊕ · · · ⊕ Z,

whereK0(C(∂M)) is theK0-group ofC(∂M) (see for instance, the definition of [11]). Hence
K0(C(∂M)) ∼= K0(C(∂N)) if and only ifπ1(∂M) ∼= π1(∂N), which holds if and only if∂M
and∂N are homeomorphic.

By Lemma 5, we have the following exact sequences:

0−→ K(M) i1−→ J (M) ρ1−→ C(∂M) −→ 0 ,

0−→ K(N) i1−→ J (N) ρ1−→ C(∂N) −→ 0 ,

from which we obtain the exact sequences:

K0(K(M))
i∗1−→ K0(J (M))

ρ∗1−→ K0(C(∂M)) ,

K0(K(N))
i∗1−→ K0(J (N))

ρ∗1−→ K0(C(∂N)) .

Thus, we may prove easily the following

THEOREM 9. Suppose that M and N are finitely connected domains. If

K0(J (M)) ∼= K0(J (N)) ,
then the following hold :

(1) π1(∂M) ∼= π1(∂N).

(2) C(∂M) ∼= C(∂N).
(3) ∂M and∂N are homeomorphic.

PROOF. By Lemma 8 and the discussions above, we need only to prove (3). LetK1(A)

be theK1-group of a C*-algebraA (see for instance, the definition of [11]). By the following
six-term exact sequences

K0(K(M)) −−→ K0(J (M)) −−→ K0(C(∂M))� �
K1(C(∂M)) ←−− K1(J (M)) ←−− K1(K(M))
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and
K0(K(N)) −−→ K0(J (N)) −−→ K0(C(∂N))� �
K1(C(∂N)) ←−− K1(J (N)) ←−− K1(K(N)) ,

we obtain two exact sequences:

Z
i∗1−→ K0(J (M))

ρ∗1−→ K0(C(∂M)) −→ 0 ,

Z
i∗2−→ K0(J (N))

ρ∗2−→ K0(C(∂N)) −→ 0 ,

sinceK0(K(M)) ∼= K0(K(N)) ∼= Z andK1(K(M)) = K1(K(N)) = 0.
Assume thatα is the isomorphism fromK0(J (M)) ontoK0(J (N)). Then there ex-

ists a homomorphismβ fromK0(C(∂M)) toK0(C(∂N)) such that the following diagram is
commutative

Z
i∗1−−→ K0(J (M))

ρ∗1−−→ K0(C(∂M)) −−→ 0� � �
Z

i∗2−−→ K0(J (N))
ρ∗2−−→ K0(C(∂N)) −−→ 0 .

It is now routine to check thatβ is an isomorphism, and henceK0(C(∂M)) ∼= K0(C(∂N)).

Thus∂M and∂N are homeomorphic. �

Theorem 9 implies that if the number of holes inM does not equal that inN, then
K0(J (M)) andK0(J (N)) are never isomorphic. This is different from the case of algebras
of continuous functions. For example,K0(C(D̄)) = K0(C(T)) = Z, whereT denotes the
topological boundary of the unit discD.

REMARK. If M andN are bounded connected domains, and

K0(J (M)) ∼= K0(J (N)) ,
then we obtain a commutative diagram

Z
i∗1−−→ K0(J (M))

ρ∗1−−→ K0(C(∂eM)) −−→ 0� � �
Z

i∗2−−→ K0(J (N))
ρ∗2−−→ K0(C(∂eN)) −−→ 0 .

Furthermore,K0(C(∂eM)) ∼= K0(C(∂eN)). However we do not know whether this implies
that∂eM and∂eN are homeomorphic.

Finally, we discuss the isomorphism between two Toeplitz algebras.



20 G. CAO

THEOREM 10. Suppose M and N are domains. If J (M)
α∼= J (N), then there is a

homeomorphism ρ from ∂eM onto ∂eN satisfying Ind Tλ = Ind Sλ for any λ /∈ ∂eN , Tλ ∈
ξ−1
M (ρ − λ) and Sλ ∈ ξ−1

N (ϕ0− λ) such that

(∗) ξN α̂ξ
−1
M (ϕ) = Cρ−1(ϕ) for each ϕ ∈ C(∂eM) ,

where α̂([T ]) = [α(T )] for [T ] ∈ J (M)/K(M), ϕ0(z) = z, ξM is the isomorphism from
J (M)/K(M) onto C(∂eM), and ξN is the isomorphism from J (N)/K(N) onto C(∂eN).

Conversely, if ρ is a homeomorphism from ∂eM onto ∂eN with Ind Tλ = Ind Sλ for any
λ /∈ ∂eN , Tλ ∈ ξ−1

M (ρ − λ) and Sλ ∈ ξ−1
N (ϕ0− λ), then there is an isomorphism from J (M)

onto J (N) such that (∗) holds.

PROOF. Suppose thatα : J (M) → J (N) is an isomorphism. Then there is a unitary
operatorU from L2

a(N) ontoL2
a(M) such thatα(T ) = U∗TU for T ∈ J (M), sinceK ⊂

J (M) (cf. Douglas [12]). Note thatJ (M)/K(M)
ξM∼= C(∂eM) andJ (N)/K(N)

ξN∼= C(∂eN).
We then see thatJ (M)/K(M) ∼= J (N)/K(N) if and only ifC(∂eM) ∼= C(∂eN). Thus there
is a homeomorphismρ from ∂eM onto∂eN such that

ξN(α̂([T ])) = ξM([T ]) ◦ ρ−1 .

Furthermore, we have

ξN α̂ξ
−1
M (ϕ) = Cρ−1(ϕ) for each ϕ ∈ C(∂eM) .

Setϕ(z) = ρ(z). Then we see that

ξN α̂ξ
−1
M (ρ) = ϕ0 .

Hence IndTλ = Ind Sλ for anyλ /∈ ∂eN , Tλ ∈ ξ−1
M (ρ − λ) andSλ ∈ ξ−1

N (ϕ0− λ) by Lemma
7.

Conversely, assume thatρ is a homeomorphism from∂eM onto ∂eN with Ind Tλ =
Ind Sλ for anyλ /∈ ∂eN , Tλ ∈ ξ−1

M (ρ − λ) andSλ ∈ ξ−1
N (ϕ0 − λ). Noting thatσe(Tλ) =

(ρ − λ)(∂eM) = ∂eN − λ = σe(Sλ), by BDF theorem, we see thatTλ andSλ are essential
unitary equivalent. Namely, there exists a unitary operatorU : L2

a(M)→ L2
a(N) such that

Tλ − U∗SλU ∈ K(L2
a(M)) .

Denote byAρ the subalgebra ofC(∂eM) which is generated by 1, ρ and ρ̄. By Stone-
Weierstrass theorem, we know thatAρ = C(∂eM). SinceTϕTψ − Tϕψ is compact for any
ϕ,ψ ∈ C(∂eM) or ϕ,ψ ∈ C(∂eN), it follows that for arbitraryϕ ∈ C(∂eN), T ∈ ξ−1

M (ϕ ◦ ρ)
andS ∈ ξ−1

N (ϕ), we haveT − U∗SU ∈ K(L2
a(M)). It is clear thatα(S) = U∗SU ∈ J (M),

S ∈ J (N), is an isomorphism and(∗) holds. �

LEMMA 11 ([1], Proposition 3). If M is a bounded domain in the complex plane C.
Then M ∪ ∂rM is an open subset of C.

LEMMA 12. If M is a bounded domain in C, then

∂(M ∪ ∂rM) = ∂eM .
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PROOF. First, we prove that∂r(M ∪ ∂rM) = ∅. Indeed, ifz ∈ ∂r(M ∪ ∂rM), then
there exists a neighborhoodV (z) of z such that eachf ∈ L2

a(M ∪ ∂rM) may be extended
to an analytic function defined onM ∪ ∂rM ∪ V (z). Since∂(M ∪ ∂rM) ⊂ ∂M, we see that
z ∈ ∂rM ⊂M ∪ ∂rM. This contradiction shows that∂r (M ∪ ∂rM) = ∅. Thus∂(M ∪ ∂eM) =
∂e(M ∪ ∂rM). Furthermore,∂e(M ∪ ∂rM) ⊂ ∂eM.

Now, if z ∈ ∂eM, then for any neighborhoodU(z) of z, (U(z) − {z}) ∩ M �= ∅ and
U(z) ∩ (C −M) �= ∅, so that(U(z)− {z}) ∩ (M ∪ ∂rM) �= ∅. Sincez /∈ ∂rM, we see that
z /∈ M ∪ ∂rM. Consequently,z ∈ ∂(M ∪ ∂rM). �

By Lemma 12, ifρ : ∂eM → ∂eN is a homeomorphism andλ /∈ ∂eN, then we may
define the degree ofρ with respect toλ to be

degree(ρ, λ) = degree(ρ̂,M ∪ ∂rM, λ) ,
whereρ̂ is an any continuous extension ofρ onM ∪ ∂rM. Since degree(ρ̂,M ∪ ∂rM, λ)
depends only on the boundary values ofρ̂, we see that the definition is well-defined.

However, we do not know whether IndTλ = −degree(ρ, λ) for anyλ /∈ ∂eN andTλ ∈
ξ−1
M (ρ − λ). If M andN are finitely connected domains, then the index formula holds by

Lemma 7. Thus we have the following

COROLLARY. Suppose thatM andN are finitely connected domains such that ∂M and

∂N have no isolated points. If J (M)
α∼= J (N), then there is a homeomorphism ρ from ∂M

onto ∂N satisfying degree(ρ, λ) = degree(ϕ0, λ) for any λ /∈ ∂N such that

(∗∗) ξN α̂ξ
−1
M (ϕ) = Cρ−1(ϕ) for each ϕ ∈ C(∂M) ,

where α̂([T ]) = [α(T )] for [T ] ∈ J (M)/K(M), ϕ0(z) = z, ξM is the isomorphism from
J (M)/K(M) onto C(∂M), and ξN is the isomorphism from J (N)/K(N) onto C(∂N).

Conversely, if ρ is a homeomorphism from ∂M onto ∂N with degree(ρ, λ) =
degree(ϕ0, λ) for any λ /∈ ∂N , then there is an isomorphism from J (M) onto J (N) such
that (∗∗) holds.

PROOF. By the assumption, we see that∂rM = ∅ and ∂rN = ∅. The Corollary is
proved by Theorem 10. �
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