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COMPOSITION AND TOEPLITZ
OPERATORS ON GENERAL DOMAINS
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Abstract. Characterizations of invertible and Fredholm composition operators are ob-
tained for Bergman spaces on connected domains in the complex plane. In addition, the iso-
morphism between Toeplitz algebras and their K-theory are discussed.

1. Introduction. Let M and N be two open, connected, non-empty subsets in the
complex plane, which are said simply to be domains./l%#/) denote the space of complex-
valued, measurable functions definedMrthat are square integrable with respect to the area
measure onV/. The Bergman space dff, denoted bng(M), is by definition the set of
analytic functions in the Hilbert spadeé(M).

Denoting bya M the topological boundary @7, a pointA € 9 M is said to be removable
with respect toLﬁ(M) if there exists an open neighborhobdof A such that each function in
L§(M) can be extended to an analytic function definedfnV. We denote by, M the set of
points ofd M which are removable with respectl@(M). The Bergman essential boundary
of M, denoted by, M, is defined to be the set of points@#/ which are not removable with
respect ta.2(M), so that

M =M — M.

If M is finitely connected, that is, there are finite holesvin then the Bergman removable
boundary ofM is nothing but the set of isolated points @M. The concept of essential
boundary is first introduced in Axler, Conway and McDonald [1], where they proved that the
essential spectrum of a Toeplitz operator watmtinuous symbol on a domain coincides with

the range of the symbol on its essential boundary. In the present paper, we are concerned with
two classes of operators on domains, namely, composition and Toeplitz operators.

In Sections 2 and 3 of this paper, we obtain characterizations of invertible and Fredholm
composition operators. In the last section, we discuss the isomorphism between two Toeplitz
algebras and their K-theory.

The author is very grateful to the referee for his many invaluable suggestions.

2. Invertibility of composition operators. The research on invertibility of composi-
tion operators on Hardy spaé#? (D) was initiated in [2]. Hatori [3] and Cao and Sun [4] then
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proved analogous results for the casé#i B,,), whereB, is the unit ball of the complex Eu-
clideann-spaceC”. For composition operators on other spaces, similar results were proved by
Bourdon [5] and Singh and Veluchamy [6]. Also, Takagi [7] studied the Fredholm weighted
composition operators afi(X), the algebra of complex-valued continuous functions defined
on a compact Hausdorff spa&e or L”(X), whereX is a set with some regular property like
intervals or balls in the EuclideanrspaceR". In [8], Mihaila discussed the invertibility of
composition operators on Riemann surfaces.

It is well-known that every composition operator on the Hardy space for one complex
variable is bounded. However, a composition operator may be unbounded for general do-
mains. For example, if

M={zeC||z]l>1, N={zeC|O0<]|z| <1},

andp(z) = 1/z is the map fromM to N, C, is the composition operator frorbg(N) to
L2(M) which is defined byC, f = f o p, thenC, is an unbounded operator. In fact, for
f € L2(N), C, f may not be even iiL2(M). For instance, iff (z) = z, then f € L2(N),
butC, f ¢ L2(M).
From the example above, we also see that eveisinvertible,C, may not be invertible.
DEFINITION 1. Letu be a positive measure on a domaifin C. p is said to be
a Carleson-type measure @i if there exists a constar@ > 0 such that for anyf €

LM, dpu),
/Iflzd/LSC/ f12dA
M M

It is obvious thatu is a Carlson-type measure if and only if there is a constant 0
such that for an arbitrary measurable suliseif M,

w(E) < CA(E),
whereA(E) is the Lebesgue measure Bf

PROPOSITION 1. Suppose that M and N are domainsinC, andp : M — N isan
analytic map such that dA o p— isa Carleson-type measure. Then C, isa bounded operator
from L2(N) to L2(M).

PrROOF. By the identity

/ fdAop_1:/ fopdA, feL3(N)
N M
and the definition of a Carlson-type measure, one can see easity timbounded. ]

THEOREM 2. Supposethat M and N aredomainsin C, and p : M — N isanoncon-
stant analytic map such that both dA o p~1 and dA o p are Carleson-type measures. Then C,
isan invertible operator from L2(N) onto L2(M) if and only if

(i) pisinjective, and
(i) N—pM)Cd(pM).



COMPOSITION AND TOEPLITZ OPERATORS 13

PROOF. Assuming that, is an invertible operator from?2(N) onto L2(M), we first
prove thato is injective. LetKZM(w) andKZN(w) denote respectively the reproducing kernels
of L2(M) andL?(N). Itis routine to check that for anye M, we have

C;KZ = Kp(z) .

If there arez1, z2 € M with z1 # z2 such thap(z1) = p(z2), thenCﬁ(Kzl - K,)=0.ltis
obvious thatk;, — K, # 0, and hence this contradicts the invertibility . Hencep must
be injective. (i) is proved.

Since p(M) C N, we see thatL2(N) C L2(p(M)). C, is also an operator from
L2(p(M)) to L2(M), which we write byC,. SincedA o p~1 is a Carlson-type measure
on N, so is also orp(M), it is verified thatgp is a bounded operator fromﬁ(p(M)) to
LZ(M) by Proposition 1. This shows that;* o C, is a bounded operator fro? (o (M)) to
LZ(N), so that for any; € L2(p(M)), we haveC; 1o C,g € LZ(N). Let

h=CytoChgeLi(N),
and7, = C,1 be the composition operator froR(@) to Lg(pM). Then
TpCph = Tp@g =g.

For anyw € p(M), it is easy to see tha(‘Cph)(pflw) = g(w), and further(w) = g(w).
Hence every function irlLfl(p(M)) may be extended to a functionlrf(N). This proves (ii).

Conversely, if (i) and (i) in the Theorem hold, th&n, : L2(p(M)) — L2(M) is
invertible with inverseC ,-1. SinceN — p(M) C 9, (p(M)), we see thaLZ(p(M)) = LZ(N).
This shows tha€,, is indeed invertible. o

REMARK. If we assume only thatA o p~—1 is a Carleson-type measurg, may not be
an invertible operator even ff is invertible. For instance, in the previous examglé o p is
a Carlson-type measure, bilf -1 is not invertible.

EXAMPLE. Suppose tha;}7°, is a Blaschke sequence in the unit disof the com-
plex plane,M = D — {o;}°;, N = D andp is the inclusion map frond/ into N. Then it
is obvious that/A o p anddA o p~1 are Carleson-type measurgssatisfies the assumption
of Theorem 2. Indeed, it is easy to see that:°; is the removable boundary @f(M) by
the uniqueness theorem of analytic functions. Furtherm@yés an invertible operator from
L?(N) onto L2(M).

COROLLARY. Supposethat M and N aredomainsinC, andp : M — N isananalytic
map such that 8, (p(M)) = . If both dA o p~1 and dA o p are Carlson-type measures, then
C, isaninvertible operator from L2(N) onto L2(M) if and only if p isinvertible.

REMARK. It is well-known that ifp is an analytic self-map of the unit dige in the
complex plane, thei@, is always a bounded linear operator on Bergman s;i%c(@) or
Hardy spaceH2(D) and C, is invertible if and only ifp is invertible. By Theorem 2, we
see that the invertibility of a composition operator is not equivalent to the invertibility of its
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symbol for general domains in the complex plane. However, if the topological boundary of
the domain does not contain any removable points, then the invertibility of the composition
operator does imply the invertibility of its symbol.

3. Fredholmness of composition operators. We know that on almost all spaces of
analytic functions, the invertibility of a composition operator is equivalent to the property that
being Fredholm. It is thus natural to study the Fredholmness of composition operators on
general domains.

LEmMA 3 (Axler, Conway and McDonald [9]).For any domain G in C, the area mea-
sure of 9, G is zero.

THEOREM 4. Supposethat M and N are bounded domainsinC,andp : M — N is
a nonconstant analytic map such that both dA o p=1 and dA o p are Carleson-type measures.
Then C, isa Frednolm operator from L2(N) to L2(M) if and only if

() pisinjective, and

(i) N —pM)Co(pM).

ProOF. By Theorem 2, we need only to prove the necessity. AssumingGhés
Fredholm, we first prove that is injective. Indeed, it1,z2 € M with z1 # z2 such that
p(z1) = p(z2), then there exist open subséfs, U, of M such that; € U;,i = 1,2, and
Ui NUz = @. Writew = p(z;). Sincep is an open map, both(U1) andp (Uz) are open sets
which containw. Thusp(U1) N p(Us) is a non-empty open subset 8f Choose a sequence
{we} in p(Up) N p(Uz) with wy # wy for k # k’. Then there are sequenqeél)} C Uj and
{Z]EZ)} C Uz such thato(z,(j)) =uwy fori =12 Setf; = Kz}}) — Kzf(f)' Then{f} is alinear

independent sequencemﬁ(M), sincez,({i) #* z,(j) fork # k' ori # j. However we have

* j— —
Cpfk = Kp(zi,l)) K 0,

P =
which contradicts the Fredholmness@f. Hencep is injective. (i) is proved.

It is obvious thatC,, is a bounded operator froi? (o (M)) to L2(M) by Proposition 1.
Sincep(M) C N, we haveL2(N) C L2(p(M)). We show thatv C p(M). Suppose not.
Then there existv € N and an open subsét(w) C N which satisfied/(w) N p(M) = @.

Set
1\
fo-(25)
ZI—w

Then{fi} C Lg(p(M)), k > 1, is a linear independent sequence, ghdz Lg(N). How-
ever,C,(L2(N)) is a closed subspace bf (M), and

L2(M)
s <
Cp(L2(N))

3
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sincedA o p is a Carleson-type measure. Hence we may easily sefmm an invertible
operator fromi2(p(M)) onto L2(M). Thus

R(C,)
R(C)p)
Itis not difficult to check tha.2(N) is a closed subspace bf (p(M)). Hence we see that

L2(p(M))
L2(N)

since dimR(C,)/R(C,) < oc. Denote by f;] the class off; in L2(p(M))/L2(N). If {[£:1}
is linearly dependent, then there existe C,i = 1, ..., k with o # 0 such that

dim

< 00

dim

k
g=)Y aifie LZN).
i=1

However, sincd f;|(z) — oo asz — w, this implies thatjg(z)] — oo asz — w. This
contradiction shows that c p(M).

Now we prove thatN — p(M) C 9,(p(M)). Let fi1, fo,..., f» be functions in
L2(p(M)) such that{[ £;1}"_, is a basis ofL2(p(M))/L2(N). For every 1< i < n and
a non-negative integen, f;z™ is in Lg(,o(M)), sinceN is a bounded domain and so is
p(M). SinceL2(p(M))/L2(N) is of a finite dimension{[ f;z"1}>°_, is linearly dependent

in L2(p(M))/L2(N) for every 1< i < n, thatis, there exi&tg), af), ...,algﬁii) e Cwith

oty # 0 such tha " o'’ fiz/] = 0. Putg = 3" ' fizl andh; = Y1 a2/,
Theng;, = fih;, and sof; is extended analytically oV — hi‘l(O), sinceg; is in Lg(N),
where

hi10) = {z € N — p(M) | hi(z) = O}.
Note that

N —pM)=NnNa(p(M))

holds, since (M) C N C p(M). Denote the extended function gifalso by ;. SinceLﬁ(N)
is generated by, ..., f, and Lfl(p(M)), and since J;'_; h[l(O) is a finite set, we see by
the definition of the essential boundary that

NN de(o) < | Jh 10
i=1
Next we show that

n

Ur @ cNnaon).

i=1
Letp € U/_; hi‘l(O). We show that every; is extended analytically gi. Put and fix 1<
i <n.lfh;(p) # 0, theny; is analytic atp, sincef; = g;/ h; nearp. Suppose that; (p) = 0.
Then f; is analytic atp or p is a pole off; sinceg; = f;h; is analytic atp. We show that
p cannot be a pole of;. Suppose thap is a pole off;. Thenp € N N 9.(p(M)) by the
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definition of the essential boundary. Sin¥en d.(p(M)) C J/_; h[l(O) and{J!_; hl.*l(O)
is a finite set, there exists an> 0 such that

{zeCllz—pl<r}CN
and
{zeCllz—pl <r}NNNI(p(M)) ={p}.
Hence we have
{zed(pM) |lz—pl <r}={ptU{z€d-(p(M)) ||z — pl <r}.

By Proposition 2 in [1],d,(p(M)) has zero area measure, and hence we have{that
a(p(M)) ||z — p| < r} has zero area measure. On the other hand, we see that

{zeCllz—pl<r}—{zed(pM)|lz—pl <r} CpM),

sincep(M) C N C p(M). Sincef; € L2(p(M)), we have

w>/ mﬁMz/ (i Pdm
p(M) {zeC=d(p(M)) | lz—p|<r}

=t/ | fi1%dm
{zeCllz—pl<r}

for{z € 3(p(M)) | |z — p| < r} has zero area measure, which is a contradiction since

/ | fil2dm = oo,
{zeCl|z—pl<r}

for p is a pole of f;. Thus we see thaf; is extended analytically at. It follows that every
f1, ..., fa is extended analytically at, and hence

Ur @ cNna(pm),
i=1

sinceL2(p(M)) is generated by, . .., f, andL2(N).
Thus we have

NNa(p) [ JrH 0 c NN a (o).
i=1

Hence we see that
NNd(p(M) =0,
and so that
N —p(M) C 3-(p(M)),
sincep(M) C N C p(M). O
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4. Somediscussionson Toeplitz algebras.

LEMMA 5 ([1] Theorem 9). Let M be a bounded, open, connected, non-empty subset
of C, and J (M) bethe algebra generated by {7, | ¢ € C(M)}. Then the commutator ideal of
J (M) is K(M), the space of compact operators on LE(M). Furthermore 7 (M) /K (M) and
C (9. M) areisometrically isomorphic C*-algebraswith an isomor phismthat maps 7, 4K (M)
to ¢ls,m for each ¢ € C(M), where 3, M denotes the Bergman essential boundary of M,
consisting of all points of 8 M which are not removable with respect to L2(M).

DEFINITION 2. LetM be a bounded domain in the complex plane, whose boundary
dM consists of a finitely many simple closed smooth analytic cufyes = 1, ..., n, where
I'; are positively oriented with respectdd andl; N I'; = @ if i # j. ThenM is said to be a
finitely connected domain.

LEMMA 6 ([9]). Supposethat M isa domain obtained from the unit disc by removing
afinite number of digjoint discs. Then for ¢ € C(M), if T, is Fredholm, then

Ind7, = —degregp, 0),
where degreép, 0) denotes the topological degree of ¢ with respect to 0.

LEMMA 7. Supposethat M is afinitely connected domain in the complex plane. Then
for ¢ € C(M), if T, is Fredholm, then

Ind T, = —degregy, 0) .
PrROOF This is a simple consequence of Lemma 6. |

The following Lemma 8 is a special case of ékfore theorem (see for instance, pp. 29
to 30 of [10]).

LEMMA 8. Supposethat M and N are two closed subsets of the complex plane. Then
C(M) and C(N) are algebraically isomorphic, denoted by C(M) = C(N), if and only if M
and N are homeomorphic.

Now, letM be afinitely connected domain whose boundaVy consists of simple closed
smooth analytic curve$;, i = 1,...,n, wherel; are positively oriented with respect to
MandI; NI = @ifi # j. Also, let N be another finitely connected domain whose
boundaryd N consists of simple closed smooth analytic curf?sj =1,...,m, wheref;
are positively oriented with respectdandl’; N T; = @ if i # j. ThusaM = | J!_, I} and
N = JI_, T;. Furthermore, we have

com=cun. CONn=PHaT).
i=1 j=1

and

m m
coM.T)y=@cui.T), CON.TY=HCd;.T).
i=1 j=1
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It follows from these that _
n times

e e
D e =Yr At =2®---02Z,

m i
1 . L~ Imes
@ #tom =Yl 0y =2 --6Z
wheresr1(d M) denotes the first cohomotopy groupa¥ which is defined by
7t @M) =([f1] f € C(dM, T) and [f] is the homotopy equivalent class 6f,

and
n times

———
3) Ko(COM) =@, Ko(CIN =2 &2,

m times
(4 Ko(CON) =@ Ko(CI) =ZD---DZ,

whereKo(C(dM)) is theKo-group ofC(d M) (see for instance, the definition of [11]). Hence
Ko(C(dM)) = Ko(C(dN)) if and only if 72(d M) = 71(dN), which holds if and only ib M
andd N are homeomorphic.

By Lemma 5, we have the following exact sequences:

0 — K(M) -5 7(M) 2 c(oM) —> 0,

0— K(N) -2 J(N) 2 C(9N) — 0,
from which we obtain the exact sequences:

Ko(K(M)) 5 Ko(T(M)) 25 Ko(C(OM)) .

Ko(K(N) -2 Ko(T(N)) 2> Ko(C@N)).
Thus, we may prove easily the following

THEOREM 9. Supposethat M and N arefinitely connected domains. If
Ko(J(M)) = Ko(J(N)) ,
then the following hold :
1) #iom) = xloON).
(2) C(OM)=C@N).
(3) 9M andaN are homeomorphic.
PrROOF. By Lemma 8 and the discussions above, we need only to prove (3K (et

be theK1-group of a C*-algebra (see for instance, the definition of [11]). By the following
six-term exact sequences

Ko(K(M)) —> Ko(J(M)) —> Ko(C(dM))

I l

K1(C(OM)) «— Ku(T(M)) «— K1(K(M))
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and
Ko(K(N)) —— Ko(J(N)) —> Ko(C(IN))

I !

K1(C(ON)) «— K1(J(N)) «<— K1(K(N)),
we obtain two exact sequences:

z 4, Ko(J (M) LR Ko(C(0M)) — 0,

z 2, Ko(J(N)) 2, Ko(C(dN)) — 0,

sinceKo(K(M)) = Ko(K(N)) = ZandK1(K(M)) = K1(K(N)) = 0.

Assume thatr is the isomorphism fronKo(J (M)) onto Ko(J (N)). Then there ex-
ists a homomorphism from Ko(C(dM)) to Ko(C(dN)) such that the following diagram is
commutative

7z ko T L Ke(COM)) —s 0

l l !

Z 20 Ke(T(N) 2 Ko(C(ON)) — 0.

It is now routine to check that is an isomorphism, and hend&(C(0M)) = Ko(C(dN)).
ThusdaM andd N are homeomorphic. O

Theorem 9 implies that if the number of holes M does not equal that iV, then
Ko(J(M)) andKo(J (N)) are never isomorphic. This is different from the case of algebras
of continuous functions. For exampl&p(C (D)) = Ko(C(T)) = Z, whereT denotes the
topological boundary of the unit difz.

REMARK. If M andN are bounded connected domains, and
Ko(J(M)) = Ko(J (N)),
then we obtain a commutative diagram

1

z L ko) L Ko(C@.M) — 0

l l l

2

Z 20 Ke(T(N) 2 Ko(C@N)) — 0.

Furthermore Ko(C (9. M)) = Ko(C(3.N)). However we do not know whether this implies
thatd, M ando, N are homeomorphic.

Finally, we discuss the isomorphism between two Toeplitz algebras.
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THEOREM 10. Suppose M and N are domains. If 7 (M) é J(N), then thereis a
homeomorphism p from 9, M onto 3, N satisfying Ind 7, = Ind S, for any » ¢ 9.N, T), €
£1,5(p — 2) and S, € &y (po — 1) such that
() Evay () = C,1(p) foreach ¢ e C3.M),
where @([T]) = [a(T)] for [T] € T(M)/K(M), po(z) = z, Eu is the isomorphism from
J(M)/K(M) onto C (3. M), and &y istheisomorphism from 7 (N)/IC(N) onto C (9. N).

Conversely, if p isa homeomorphism fromd, M onto 3, N with Ind 7; = Ind S, for any
A ¢ 0N, Ty €&, (o —2) and S, € £y (g0 — 1), then thereis an isomorphism from 7 (M)
onto 7 (N) such that (x) holds.

PROOF. Suppose that : 7(M) — J(N) is an isomorphism. Then there is a unitary
operatorU from L2(N) onto L2(M) such thaw(T) = U*TU for T € J(M), sincek C

Em &N
J (M) (cf. Douglas [12]). Note thay (M)/K(M) = C(3,M) andJ(N)/IC(N) = C(3,N).
We then see that (M) /K (M) = J(N)/KC(N) ifand only if C(8, M) = C(3.N). Thus there
is a homeomorphism from 9, M ontod, N such that
EN@ITD) =En((TDHopt.
Furthermore, we have
Enagy (@) = C,1(p) foreach ¢ e C(@.M).
Setp(z) = p(z). Then we see that
Enagy (o) = ¢o.

Hence IndT; = Ind S; forany ¢ 8, N, Ty € &, (0 — ») and$; € &5 (po — 1) by Lemma
7.

Conversely, assume thatis a homeomorphism fro, M onto 9, N with Ind 7, =
Ind S, for anyx ¢ 3.N, T, € &, (p — ») and$; € &y (9o — 2). Noting thato, (T3) =
(0 — M) (0.M) = 9,N — A = 0.(S)), by BDF theorem, we see th@} andsS, are essential
unitary equivalent. Namely, there exists a unitary operHtorLg(M) — Lﬁ(N) such that

Ty — U*S,U € K(L2(M)).

Denote by.A, the subalgebra o€ (d.M) which is generated by, and 5. By Stone-
Weierstrass theorem, we know thd}, = C(3.M). SinceT,Ty — T,y is compact for any
0,y € C(0.M)ore, ¥ € C(9.N), it follows that for arbitraryy € C(0.N), T € éﬂjll((pop)
ands € slgl(w), we havel — U*SU € IC(Lﬁ(M)). Itis clear thatu(S) = U*SU € J (M),
S € J(N), is an isomorphism an¢k) holds. O

LeEmmMA 11 ([1], Proposition 3).If M is a bounded domain in the complex plane C.
Then M U 9, M isan open subset of C.

LEMMA 12. If M isabounded domainin C, then
AMUIM) = 0.M .
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PrROOF. First, we prove thad, (M U 9, M) = @. Indeed, ifz € 9,(M U 9, M), then
there exists a neighborhodd(z) of z such that eaclf e Lg(M U d,M) may be extended
to an analytic function defined oW U 9, M U V (z). Sinced(M U 3, M) C aM, we see that
z € 09,M C MUJ,.M. This contradiction shows that(M U9, M) = @. Thusda(M U9, M) =
0.(M U 9, M). Furthermoreg.(M U 9, M) C 9.M.

Now, if z € 3. M, then for any neighborhood (z) of z, (U(z) — {z}) " M # ¥ and
U(z) N (C— M) # ¥, sothat(U(z) — {z}) N (M U 3, M) # . Sincez ¢ 9,M, we see that
z¢ MU3.M.Consequently; € 9(M U 9, M). O

By Lemma 12, ifp : .M — 9,N is a homeomorphism and ¢ d,N, then we may
define the degree @f with respect to. to be

degre€p, ») = degre€o, M U 3, M, 1),

where g is an any continuous extension pfon M U 9, M. Since degre@, M U 0, M, i)
depends only on the boundary valuegofve see that the definition is well-defined.
However, we do not know whether Irifi = —degreép, 1) foranyi ¢ 9.N andT, €

sﬁ;l(p —A). If M andN are finitely connected domains, then the index formula holds by

Lemma 7. Thus we have the following
COROLLARY. Supposethat M and N arefinitely connected domains such that 9 M and
o

dN have no isolated points. If 7(M) = [J(N), then there is a homeomorphism p from o M
onto N satisfying degre€p, A) = degreéypo, 1) for any A ¢ d N such that

(%) ENGEy (@) = C)pa(p) foreach ¢ e C(OM),

where @([T]) = [a(T)] for [T] € T(M)/K(M), po(z) = z, &y is the isomorphism from
J(M)/K(M) onto C(aM), and &y istheisomorphismfrom 7(N)/K(N) onto C(ON).

Conversely, if p is a homeomorphism from M onto dN with degre€p, ) =
degreépp, 1) for any 1 ¢ 9N, then there is an isomorphism from 7 (M) onto 7 (N) such
that (x*) holds.

PROOF. By the assumption, we see thatM = ¢ andd,N = @. The Corollary is
proved by Theorem 10. O
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