Existence of solution for a coupled system of Urysohn-Stieltjes functional integral equations

A. M. A. El-Sayed ${ }^{1}$ and M. M. A. Al-Fadel ${ }^{2}$
${ }^{1}$ Faculty of Science, Alexandria University, Alexandria, Egypt
${ }^{2}$ Faculty of Science, Omar Al-Mukhtar University, Libya
E-mail: amasayed@alexu.edu.eg ${ }^{1}$, najemeoe1234@gmail.com ${ }^{2}$

Abstract

We present an existence theorem for at least one continuous solution for a coupled system of nonlinear functional (delay) integral equations of Urysohn-Stieltjes type.

2010 Mathematics Subject Classification. 74H10. 45G10, 47H30
Keywords. Coupled system, Urysohn-Stieltjes integral equations, continuous solution.

1 Introduction and preliminaries

Urysohn-Stieltjes integral operators and Urysohn-Stieltjes integral equations have been studied by some authors (see [1]-[8]). The coupled system of integral equations have been studied, recently, by some authors (see [10]-[12]). Our aim here is to study the existence of at least one solution for a coupled system of nonlinear functional (delay) integral equations of Urysohn-Stieltjes type in the space of continuous functions.

In what follows let $I=[0,1]$ be a fixed interval. Denote by $C(I)=C[0,1]$ the Banach space consisting of all continuous functions acting from the interval I into R with the standard norm

$$
\|x\|=\sup _{t \in I}|x(t)| .
$$

Consider the nonlinear Urysohn-Stieltjes integral equation

$$
\begin{equation*}
x(t)=p(t)+\int_{0}^{1} f(t, s, x(s)) d_{s} g(t, s), t \in I=[0,1] \tag{1}
\end{equation*}
$$

where $g: I \times I \rightarrow R$ and the symbol d_{s} indicates the integration with respect to s.
Equations of type (1) and some of their generalizations were considered in paper (see [3]), for the properties of the Urysohn-Stieltjes integral (see Banaś [1]).

In this paper, we generalize this result for the coupled system of Urysohn-Stieltjes functional (delay) integral equations

$$
\begin{align*}
x(t) & =p_{1}(t)+\int_{0}^{1} f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s), t \in I \\
y(t) & =p_{2}(t)+\int_{0}^{1} f_{2}\left(t, s, x\left(\psi_{2}(s)\right)\right) d_{s} g_{2}(t, s), t \in I \tag{2}
\end{align*}
$$

in the Banach space $C(I)$.

2 Existence of solutions

In this section we discuss the existence of solutions for the coupled system of nonlinear UrysohnStieltjes integral equations in $\mathrm{C}(\mathrm{I})$. In our further considerations, we shall assume that the following conditions are satisfied:
(i) $p_{i}: I \rightarrow R$ are continuous functions on $I, \quad p=\sup _{t}\left|p_{i}(t)\right|, \quad i=1,2$.
(ii) $\quad \psi_{i}: I \rightarrow I$ are continuous functions such that $\psi_{i}(t) \leq t, \quad i=1,2$.
(iii) $f_{i}: I \times I \times R \rightarrow R, i=1,2$ are continuous functions such that there exist continuous functions $a_{i}: I \times I \rightarrow I$ and continuous and nondecreasing functions $\varphi_{i}: R_{+} \rightarrow R_{+}$such that

$$
\left|f_{i}(t, s, x)\right| \leq a_{i}(t, s) \varphi_{i}(|x|)
$$

for $t, s \in I, x \in R, i=1,2$. Moreover, we put $k=\max \left\{a_{i}(t, s): t, s \in I, i=1,2\right\}$.
(iv) $g_{i}: I \times I \rightarrow R, i=1,2$ and for all $t_{1}, t_{2} \in I$ with $t_{1}<t_{2}$, and the function $s \rightarrow$ $g_{i}\left(t_{2}, s\right)-g_{i}\left(t_{1}, s\right)$ is nondecreasing on I.
(v) $g_{i}(0, s)=0$ for any $s \in I$.
(vi) The functions $t \rightarrow g_{i}(t, 1)$ and $t \rightarrow g_{i}(t, 0)$ are continuous on I. Put

$$
\mu=\max \left\{\sup \left|g_{i}(t, 1)\right|+\sup \left|g_{i}(t, 0)\right| \text { on } I\right\}, \quad i=1,2
$$

(vii) There exists a positive number r satisfying the inequality

$$
p+\left(k \varphi_{i}(r)\right) \mu \leq r .
$$

Remark 2.1. Observe that Assumptions (iv) and (v) imply that the function $s \rightarrow g(t, s)$ is nondecreasing on the interval I, for any fixed $t \in I$ (Remark 1 in [4]). Indeed, putting $t_{2}=t, t_{1}=$ 0 in (iv) and keeping in mind (v), we obtain the desired conclusion. From this observation, it follows immediately that, for every $t \in I$, the function $s \rightarrow g(t, s)$ is of bounded variation on I.

Now, let X be the Banach space of all ordered pairs $(x, y), x, y \in C(I)$ with the norm

$$
\|(x, y)\|_{X}=\max \{\|x\|,\|y\|\}
$$

where

$$
\|x\|=\sup _{t \in I}|x(t)|, \quad\|y\|=\sup _{t \in I}|y(t)|
$$

It is clear that $\left(X,\|\cdot\| \|_{X}\right)$ is Banach space.

Theorem 2.2. Let the assumptions (i)-(vii) be satisfied, then the coupled system (2) has at least one solution in X.

Proof. Define the operator T by

$$
T(x, y)(t)=\left(T_{1} y(t), T_{2} x(t)\right)
$$

where

$$
\begin{aligned}
& T_{1} y(t)=x(t)=p_{1}(t)+\int_{0}^{1} f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s) \\
& T_{2} x(t)=y(t)=p_{2}(t)+\int_{0}^{1} f_{2}\left(t, s, x\left(\psi_{2}(s)\right)\right) d_{s} g_{2}(t, s)
\end{aligned}
$$

We prove a few results concerning the continuity and compactness of these operators in the space of continuous functions.
We define the set U by

$$
U=\left\{u=(x(t), y(t)) \mid(x(t), y(t)) \in X:\|(x, y)\|_{X} \leq r\right\}
$$

Let $(x, y) \in U$ and define
$\theta(\varepsilon)=\sup \left\{\left|f_{1}\left(t_{2}, s, y\right)-f_{1}\left(t_{1}, s, y\right)\right|,\left|f_{2}\left(t_{2}, s, x\right)-f_{2}\left(t_{1}, s, x\right)\right|: t_{1}, t_{2} \in I,\left|t_{2}-t_{1}\right| \leq \varepsilon, x \in R\right\}$.
Now, for $(x, y) \in U$, we have

$$
\begin{aligned}
&\left|T_{1} y(t)\right| \leq\left|p_{1}(t)\right|+\left|\int_{0}^{1} f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s)\right| \\
& \leq \sup _{t}\left|p_{1}(t)\right|+\int_{0}^{1}\left|f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{s} g_{1}(t, z)\right) \\
& \leq p+\int_{0}^{1}\left(a_{1}(t, s) \varphi_{1}\left(\left|y\left(\psi_{1}(s)\right)\right|\right)\right) d_{s}\left(\bigvee_{z=0}^{s} g_{1}(t, z)\right) \\
& \leq p+\left(k \varphi_{1}\left(\sup _{s}\left|y\left(\psi_{1}(s)\right)\right|\right)\right) \int_{0}^{1} d_{s} g_{1}(t, s) \\
& \leq p+\left(k \varphi_{1}(\|y\|)\right)\left[g_{1}(t, 1)-g_{1}(t, 0)\right] \\
& \leq p+\left(k \varphi_{1}(r)\right)\left[\left|g_{1}(t, 1)\right|+\left|g_{1}(t, 0)\right|\right] \\
& \leq p+\left(k \varphi_{1}(r)\right)\left[\sup _{t}\left|g_{1}(t, 1)\right|+\sup _{t}\left|g_{1}(t, 0)\right|\right] \\
& \leq p+\left(k \varphi_{1}(r)\right) \mu
\end{aligned}
$$

then

$$
\left\|T_{1} y\right\| \leq p+\left(k \varphi_{1}(r)\right) \mu
$$

By a similar way can deduce that

$$
\left\|T_{2} x\right\| \leq p+\left(k \varphi_{2}(r)\right) \mu
$$

Therefore,

$$
\|T u\|_{X}=\|T(x, y)\|_{X}=\left\|\left(T_{1} y, T_{2} x\right)\right\|_{X}=\max \left\{\left\|T_{1} y\right\|,\left\|T_{2} x\right\|\right\} \leq r
$$

Thus for every $u=(x, y) \in U$, we have $T u \in U$ and hence $T U \subset U$, (i.e $T: U \rightarrow U)$.
This means that the functions of $T U$ are uniformly bounded on I, it is clear that the set U is nonempty, bounded, closed and convex.

Now, we prove that the set $T U$ is relatively compact.
For $u=(x, y) \in U$, for all $\varepsilon>0, \quad \delta>0$ and for each $t_{1}, t_{2} \in I$, and $t_{1}<t_{2}$ such that $\left|t_{2}-t_{1}\right|<\delta$, then

$$
\begin{aligned}
\left|T_{1} y\left(t_{2}\right)-T_{1} y\left(t_{1}\right)\right| & \leq\left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right| \\
& +\left|\int_{0}^{1} f_{1}\left(t_{2}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{2}, s\right)-\int_{0}^{1} f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{1}, s\right)\right| \\
& \leq\left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right| \\
& +\left|\int_{0}^{1} f_{1}\left(t_{2}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{2}, s\right)-\int_{0}^{1} f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{2}, s\right)\right| \\
& +\left|\int_{0}^{1} f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{2}, s\right)-\int_{0}^{1} f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}\left(t_{1}, s\right)\right| \\
& \leq\left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right| \\
& +\left|\int_{0}^{1}\left[f_{1}\left(t_{2}, s, y\left(\psi_{1}(s)\right)\right)-f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right)\right] d_{s} g_{1}\left(t_{2}, s\right)\right| \\
& +\left|\int_{0}^{1} f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right) d_{s}\left(g_{1}\left(t_{2}, s\right)-g_{1}\left(t_{1}, s\right)\right)\right| \\
& \leq\left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right| \\
& +\int_{0}^{1}\left|f_{1}\left(t_{2}, s, y\left(\psi_{1}(s)\right)\right)-f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{s} g_{1}\left(t_{2}, z\right)\right) \\
& +\int_{0}^{1}\left|f_{1}\left(t_{1}, s, y\left(\psi_{1}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{s}\left[g_{1}\left(t_{2}, z\right)-g_{1}\left(t_{1}, z\right)\right]\right) \\
& \leq\left|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right|+\int_{0}^{1} \theta(\varepsilon) d_{s}\left(\bigvee_{z=0}^{s} g_{1}\left(t_{2}, z\right)\right) \\
& +\int_{0}^{1}\left(a_{1}\left(t_{1}, s\right) \varphi_{1}\left(\left|y\left(\psi_{1}(s)\right)\right|\right)\right) d_{s}\left(\bigvee_{z=0}^{s}\left[g_{1}\left(t_{2}, z\right)-g_{1}\left(t_{1}, z\right)\right]\right) \\
& \leq\left\|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right\|+\theta(\varepsilon) \int_{0}^{1} d_{s}\left(g_{1}\left(t_{2}, s\right)\right) \\
& +\left(k \varphi_{1}(\|y\|)\right) \int_{0}^{1} d_{s}\left[g_{1}\left(t_{2}, s\right)-g_{1}\left(t_{1}, s\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \leq \quad\left\|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{1}\left(t_{2}, 1\right)-g_{1}\left(t_{2}, 0\right)\right] \\
& +\quad\left(k \varphi_{1}(r)\right)\left\{\left[g_{1}\left(t_{2}, 1\right)-g_{1}\left(t_{1}, 1\right)\right]-\left[g_{1}\left(t_{2}, 0\right)-g_{1}\left(t_{1}, 0\right)\right]\right\} \\
& \leq \quad\left\|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{1}(1,1)-g_{1}(1,0)\right] \\
& \left.+\quad\left(k \varphi_{1}(r)\right)\left\{\left|g_{1}\left(t_{2}, 1\right)-g_{1}\left(t_{1}, 1\right)\right|+\left|g_{1}\left(t_{2}, 0\right)-g_{1}\left(t_{1}, 0\right)\right|\right]\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left\|T_{1} y\left(t_{2}\right)-T_{1} y\left(t_{1}\right)\right\| & \leq\left\|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{1}(1,1)-g_{1}(1,0)\right] \\
& +\left(k \varphi_{1}(r)\right)\left[\left|g_{1}\left(t_{2}, 1\right)-g_{1}\left(t_{1}, 1\right)\right|+\left|g_{1}\left(t_{2}, 0\right)-g_{1}\left(t_{1}, 0\right)\right|\right] .
\end{aligned}
$$

As done above we can obtain

$$
\begin{aligned}
\left\|T_{2} x\left(t_{2}\right)-T_{2} x\left(t_{1}\right)\right\| & \leq\left\|p_{2}\left(t_{2}\right)-p_{2}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{2}(1,1)-g_{2}(1,0)\right] \\
& +\left(k \varphi_{2}(r)\right)\left[\left|g_{2}\left(t_{2}, 1\right)-g_{2}\left(t_{1}, 1\right)\right|+\left|g_{2}\left(t_{2}, 0\right)-g_{2}\left(t_{1}, 0\right)\right|\right] .
\end{aligned}
$$

Now, from the definition of the operator T we get

$$
\begin{aligned}
T u\left(t_{2}\right)-T u\left(t_{1}\right) & =T(x, y)\left(t_{2}\right)-T(x, y)\left(t_{1}\right) \\
& =\left(T_{1} y\left(t_{2}\right), T_{2} x\left(t_{2}\right)\right)-\left(T_{1} y\left(t_{1}\right), T_{2} x\left(t_{1}\right)\right) \\
& =\left(T_{1} y\left(t_{2}\right)-T_{1} y\left(t_{1}\right), T_{2} x\left(t_{2}\right)-T_{2} x\left(t_{1}\right)\right)
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left\|T u\left(t_{2}\right)-T u\left(t_{1}\right)\right\|_{X} & =\left\|\left(T_{1} y\left(t_{2}\right)-T_{1} y\left(t_{1}\right), T_{2} x\left(t_{2}\right)-T_{2} x\left(t_{1}\right)\right)\right\|_{X} \\
& =\max \left\{\left\|T_{1} y\left(t_{2}\right)-T_{1} y\left(t_{1}\right)\right\|,\left\|T_{2} x\left(t_{2}\right)-T_{2} x\left(t_{1}\right)\right\|\right\} \\
& \leq \max \left\{\left\|p_{1}\left(t_{2}\right)-p_{1}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{1}(1,1)-g_{1}(1,0)\right]\right. \\
& +(k+r b)\left[\left|g_{1}\left(t_{2}, 1\right)-g_{1}\left(t_{1}, 1\right)\right|+\mid g_{1}\left(t_{2}, 0\right)-g_{1}\left(t_{1}, 0\right) \|\right] \\
& ,\left\|p_{2}\left(t_{2}\right)-p_{2}\left(t_{1}\right)\right\|+\theta(\varepsilon)\left[g_{2}(1,1)-g_{2}(1,0)\right] \\
& \left.+(k+r b)\left[\left|g_{2}\left(t_{2}, 1\right)-g_{2}\left(t_{1}, 1\right)\right|+\mid g_{2}\left(t_{2}, 0\right)-g_{2}\left(t_{1}, 0\right) \|\right]\right\} .
\end{aligned}
$$

This means that the class of $\{T u(t)\}$ is equi-continuous on I, then by Arzéla-Ascoil theorem $T U$ is relatively compact.

Now, we will show that the operator $T: U \rightarrow U$ is continuous.
Firstly, we prove that T_{1} is continuous, for all $\varepsilon>0$ and $\delta>0$, let $y_{1}(t)$ and $y_{2}(t) \in C[0,1]$ and $\left|y_{1}(t)-y_{2}(t)\right|<\delta$, then

$$
\begin{aligned}
\left|T_{1} y_{1}(t)-T_{1} y_{2}(t)\right| & \leq\left|\int_{0}^{1} f_{1}\left(t, s, y_{1}\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s)-\int_{0}^{1} f_{1}\left(t, s, y_{2}\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s)\right| \\
& \leq \int_{0}^{1}\left|f_{1}\left(t, s, y_{1}\left(\psi_{1}(s)\right)\right)-f_{1}\left(t, s, y_{2}\left(\psi_{1}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{s} g_{1}(t, z)\right) \\
& \leq \varepsilon^{*} \int_{0}^{1} d_{s}\left(\bigvee_{z=0}^{s} g_{1}(t, z)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \varepsilon^{*} \int_{0}^{1} d_{s} g_{1}(t, s) \\
& \leq \varepsilon^{*}\left[g_{1}(t, 1)-g_{1}(t, 0)\right] \\
& \leq \varepsilon^{*}\left[\left|g_{1}(t, 1)\right|+\left|g_{1}(t, 0)\right|\right] \\
& \leq \varepsilon^{*} \mu=\varepsilon
\end{aligned}
$$

Therefore,

$$
\left|T_{1} y_{1}(t)-T_{1} y_{2}(t)\right| \leq \varepsilon .
$$

This means that the operator T_{1} is continuous.
By a similar way as done above we can prove that for any $x_{1}(t), x_{2}(t) \in C[0,1]$ and $\left|x_{1}(t)-x_{2}(t)\right|<\delta$, we have

$$
\left|T_{2} x_{1}(t)-T_{2} x_{2}(t)\right| \leq \varepsilon .
$$

Hence T_{2} is continuous operator.
The operators T_{1} and T_{2} are continuous operators imply that T is continuous operator.
Since all conditions of Schauder fixed point theorem are satisfied, then T has at least one fixed point $u=(x, y) \in U$, which completes the proof.

Corollary 2.3. Under the assumptions of Theorem 2.2 (with $g_{i}(t, s)=g_{i}(s)$), the coupled system of Urysohn-Stieltjes integral equations

$$
\begin{aligned}
& x(t)=p_{1}(t)+\int_{0}^{1} f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(s), t \in I \\
& y(t)=p_{2}(t)+\int_{0}^{1} f_{2}\left(t, s, x\left(\psi_{2}(s)\right)\right) d_{s} g_{2}(s), t \in I
\end{aligned}
$$

has a solution $u=(x, y) \in U$.
In what follows, we provide some examples illustrating the above obtained results.
Example 1. Consider the functions $g_{i}: I \times I \rightarrow R$ defined by the formula

$$
\begin{aligned}
& g_{1}(t, s)= \begin{cases}t \ln \frac{t+s}{t}, & \text { for } t \in[0,1], s \in I, \\
0, & \text { for } t=0, s \in I .\end{cases} \\
& g_{2}(t, s)=t(t+s-1), \quad t \in I .
\end{aligned}
$$

It can be easily seen that the functions $g_{1}(t, s)$ and $g_{2}(t, s)$ satisfies assumptions (iv)-(vi) given in Theorem 1. In this case, the coupled system of Urysohn-Stieltjes integral equations (2) has the form

$$
\begin{align*}
& x(t)=p_{1}(t)+\int_{0}^{1} \frac{t}{t+s} f_{1}\left(t, s, y\left(\psi_{1}(s)\right)\right) d s, \quad t \in I \\
& y(t)=p_{2}(t)+\int_{0}^{1} t f_{2}\left(t, s, x\left(\psi_{2}(s)\right)\right) d s, \quad t \in I \tag{3}
\end{align*}
$$

Therefore, the coupled system (3) has at least one solution $x, y \in C[0,1]$.
Example 2. Assume that the functions $\varphi_{i}: R_{+} \rightarrow R_{+}$have the form $\varphi_{i}(r)=1+r$ and the functions $a_{i} \in C(I)$. Denote by $b_{i}=\left\|a_{i}\right\|=\max \left[\left|a_{i}(t, s)\right|: t, s \in I\right]$. Then,

$$
\left|f_{i}(t, s, x)\right| \leq a_{i}(t, s)(1+|x|) \leq a_{i}(t, s)+b_{i}|x| .
$$

Notice that this assumption is a special case of assumption (iii).
Consider now the assumptions $(i i i)^{*}$ and (vii)* having the form $(i i i)^{*} f_{i}: I \times R \rightarrow R$ are continuous and satisfy the Lipschitz condition

$$
\left|f_{i}(t, s, x)-f_{i}(t, s, y)\right| \leq b_{i}|x-y|, \quad i=1,2
$$

From this assumption we can deduce that

$$
\left|f_{i}(t, s, x)\right|-\left|f_{i}(t, s, 0)\right| \leq\left|f_{i}(t, s, x)-f_{i}(t, s, 0)\right| \leq b_{i}|x|
$$

which implies that

$$
\left|f_{i}(t, s, x)\right| \leq\left|f_{i}(t, s, 0)\right|+b_{i}|x|=\left|a_{i}(t, s)\right|+b_{i}|x|
$$

$\left(\right.$ vii) ${ }^{*} \mu b<1$.
Corollary 2.4. Let the assumptions $(i)-(i i),(i i i)^{*},(i v)-(v i)$ and $(v i i)^{*}$ be satisfied, then the coupled system (2) has an unique solution $(x, y) \in X$.

Proof. Let $u_{1}=\left(x_{1}, y_{1}\right)$ and $u_{2}=\left(x_{2}, y_{2}\right)$ be two solutions of the coupled system (2), we have

$$
\begin{aligned}
\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{X} & =\left\|\left(x_{1}-x_{2}, y_{1}-y_{2}\right)\right\|_{X} \\
& =\max \left\{\left\|x_{1}-x_{2}\right\|,\left\|y_{1}-y_{2}\right\|\right\}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\left|x_{1}-x_{2}\right| & =\left|p_{1}(t)+\int_{0}^{1} f_{1}\left(t, s, y_{1}\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s)-p_{1}(t)+\int_{0}^{1} f_{1}\left(t, s, y_{2}\left(\psi_{1}(s)\right)\right) d_{s} g_{1}(t, s)\right| \\
& \leq \int_{0}^{1}\left|f_{1}\left(t, s, y_{1}\left(\psi_{1}(s)\right)\right)-f_{1}\left(t, s, y_{2}\left(\psi_{1}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{1} g_{1}(t, z)\right) \\
& \leq \int_{0}^{1} b_{1}\left|y_{1}\left(\psi_{1}(s)\right)-y_{2}\left(\psi_{1}(s)\right)\right| d_{s} g_{1}(t, s) \\
& \leq b\left\|y_{1}-y_{2}\right\| \int_{0}^{1} d_{s} g_{1}(t, s) \\
& \leq b\left\|y_{1}-y_{2}\right\|\left[g_{1}(t, 1)-g_{1}(t, 0)\right] \\
& \leq b\left\|y_{1}-y_{2}\right\|\left[\left|g_{1}(t, 1)\right|+\left|g_{1}(t, 0)\right|\right] \\
& \leq \mu b\left\|y_{1}-y_{2}\right\|
\end{aligned}
$$

Therefore,

$$
\left\|x_{1}-x_{2}\right\| \leq \mu b\left\|y_{1}-y_{2}\right\| .
$$

Also

$$
\begin{aligned}
\left|y_{1}-y_{2}\right| & =\left|p_{2}(t)+\int_{0}^{1} f_{2}\left(s, x_{1}\left(\psi_{2}(s)\right)\right) d_{s} g_{2}(t, s)-p_{2}(t)+\int_{0}^{1} f_{2}\left(s, x_{2}\left(\psi_{2}(s)\right)\right) d_{s} g_{2}(t, s)\right| \\
& \leq \int_{0}^{1}\left|f_{2}\left(s, x_{1}\left(\psi_{2}(s)\right)\right)-f_{2}\left(s, x_{2}\left(\psi_{2}(s)\right)\right)\right| d_{s}\left(\bigvee_{z=0}^{s} g_{2}(t, z)\right) \\
& \leq \int_{0}^{1} b_{2}\left|x_{1}\left(\psi_{2}(s)\right)-x_{2}\left(\psi_{2}(s)\right)\right| d_{s} g_{2}(t, s) \\
& \leq b\left\|x_{1}-x_{2}\right\| \int_{0}^{t} d_{s} g_{2}(t, s) \\
& \leq b\left\|x_{1}-x_{2}\right\|\left[g_{2}(t, 1)-g_{2}(t, 0)\right] \\
& \leq b\left\|x_{1}-x_{2}\right\|\left[\left|g_{2}(t, 1)\right|+\left|g_{2}(t, 0)\right|\right] \\
& \leq \mu b\left\|x_{1}-x_{2}\right\|
\end{aligned}
$$

Hence

$$
\left\|y_{1}-y_{2}\right\| \leq \mu b\left\|x_{1}-x_{2}\right\| .
$$

Then

$$
\begin{aligned}
\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{X} & =\max \left\{\left\|x_{1}-x_{2}\right\|,\left\|y_{1}-y_{2}\right\|\right\} \\
& \leq \max \left\{\mu b\left\|y_{1}-y_{2}\right\|, \mu b\left\|x_{1}-x_{2}\right\|\right\} \\
& \leq \mu b \max \left\{\left\|y_{1}-y_{2}\right\|,\left\|x_{1}-x_{2}\right\|\right\} \\
& =\mu b\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{X}
\end{aligned}
$$

which implies that

$$
(1-\mu b)\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{X} \leq 0
$$

therefore,

$$
\left\|\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right)\right\|_{X}=0
$$

This means that

$$
\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right) \quad \Rightarrow \quad x_{1}=x_{2}, \quad y_{1}=y_{2} .
$$

Thus, the solution of the coupled system (2) is unique.
Example 3. Similarly as above, take the functions $a_{i}(t, s) \in C(I)$. Let us take the functions $\varphi_{i}: R_{+} \rightarrow R_{+}$having the form $\varphi_{i}(r)=1+r^{\alpha}$, where $\alpha>0$ is a fixed number. Then

$$
\left|f_{i}(t, s, x)\right| \leq a_{i}(t, s)\left(1+|x|^{\alpha}\right) \leq a_{i}(t, s)+b_{i}|x|^{\alpha}
$$

where $b_{i}=\left\|a_{i}\right\|$.

References

[1] J. Banaś, Some properties of Urysohn-Stieltjes integral operators, Intern. J. Math. and Math. Sci. 21(1998) 78-88.
[2] J. Banaś and J. Dronka, Integral operators of Volterra-Stieltjes type, their properties and applications, Math. Comput. Modelling. 32(2000) 1321-1331.
[3] J. Banaś, J.C. Mena, Some properties of nonlinear Volterra-Stieltjes integral operators, Comput Math. Appl. 49(2005) 1565-1573.
[4] J. Banaś, D. O'Regan, Volterra-Stieltjes integral operators, Math. Comput. Modelling. 41(2005) 335-344.
[5] J. Banaś, J.R. Rodriguez and K. Sadarangani, On a class of Urysohn-Stieltjes quadratic integral equations and their applications, J. Comput. Appl. Math. I13(2000) 35-50.
[6] J. Banaś and K. Sadarangani, Solvability of Volterra-Stieltjes operator-integral equations and their applications, Comput Math. Appl. 41(12)(2001) 1535-1544.
[7] C.W. Bitzer, Stieltjes-Volterra integral equations, Illinois J. Math. 14(1970) 434-451.
[8] S. Chen, Q. Huang and L.H. Erbe, Bounded and zero-convergent solutions of a class of Stieltjes integro-differential equations, Proc. Amer. Math. Soc. 113(1991) 999-1008.
[9] R.F. Curtain, A.J. Pritchard,: Functional analysis in modern applied mathematics. Academic press, London (1977).
[10] A.M.A. El-Sayed, H.H.G. Hashem, Existence results for coupled systems of quadratic integral equations of fractional orders, Optimization Letters, 7(2013) 1251-1260.
[11] A.M.A. El-Sayed, H.H.G. Hashem, Solvability of coupled systems of fractional order integrodifferential equations, J. Indones. Math. Soc. 19(2)(2013) 111-121.
[12] H.H.G. Hashem, On successive approximation method for coupled systems of Chandrasekhar quadratic integral equations, Journal of the Egyptian Mathematical Society. 23(2015) 108-112.
[13] J.S. Macnerney, Integral equations and semigroups, Illinois J. Math. 7(1963) 148-173.
[14] A.B. Mingarelli, Volterra-Stieltjes integral equations and generalized ordinary differential expressions, Lecture Notes in Math., 989, Springer (1983).
[15] I.P. Natanson, Theory of functions of a real variable, Ungar, New York. (1960).

