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Abstract

In this paper, we investigate the distribution of zeros as well as the uniqueness problems of
certain type of differential polynomials sharing a small function with finite weight. The result
obtained improves and generalizes the recent results.
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1 Introduction and main results

Let f(z) be a meromorphic function of finite order, we define difference operator as,

4cf = f(z + c)− f(z), and

4nc f = 4n−1
c (4cf), n ≥ 2

where c is a non zero constant. In particular, if c = 1, we use the usual difference notation
4cf = ∆f. For a non-constant meromorphic function h, we denote by T (r, h), the Nevanlinna
characteristic of h and by S(r, h) any quantity satisfying S(r, h) = o{T (r, h)}.

Let f and g be two non-constant meromorphic functions and a ∈ C∪{∞}. If the zeros of f − a
and g − a coincide in locations and multiplicity, we say f and g share the value a CM (counting
multiplicities). On the other hand, if the zeros of f − a and g − a coincide only in their locations
then we say that f and g share the value a IM (ignoring multiplicities). By S(r, f), we mean
any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞, possibly outside a set of finite logarithmic
measure. We say that α(z) is a small function of f , if T (r, α(z)) = S(r, f). For a positive integer p,
we denote by Np(r, a; f) the counting function of a−points of f , where an a−point of multiplicity
m is counting m times if m ≤ p and p times if m > p.

Let k be a non-negative integer or infinity. For a ∈ C ∪ {∞}, we denote by Ek(a; f) the set of
all a−points of f where an a−point of multiplicity m is counted m times if m ≤ k and k+ 1 times
if m > k. If Ek(a; f) = Ek(a; g) then we say that f, g share the value a with weight k. We write
f, g share (a, k) to mean that f, g share the value a with weight k. Clearly, if f, g share (a, k) then
f, g share (a, p) for any integer p, 0 ≤ p < k. Also, we note that f, g share the value a IM or CM
if and only if f, g share (a, 0) or (a,∞) respectively. If α is a small function of f and g, then f, g
share α with weight k means that f − α, g − α share the value 0 with weight k.
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In addition, we need following definitions:

Definition 1.[26] Let a ∈ C ∪ {∞}. We denote by N(r, a; f |= 1) the counting function of
simple a points of f . For a positive integer k we denote by N(r, a; f |≤ k) the counting function of
those a-points of f (counted with proper multiplicities) whose multiplicities are not greater than
k. By N(r, a; f |≤ k) we denote the corresponding reduced counting function. Analogously we can
define N(r, a; f |≥ k) and N(r, a; f |≥ k).

Definition 2.[10] Let k be a positive integer or infinity. We denote by Nk(r, a; f) the counting
function of a-points of f, where an a-point of multiplicity m is counted m times if m ≤ k and k
times if m > k. Then

Nk(r, a; f) = N(r, a; f) +N(r, a; f |≥ 2) + ...+N(r, a; f |≥ k).

Clearly N1(r, a; f) = N(r, a; f).

A handful of astonishing research works on entire and meromorphic functions whose differential
polynomials share certain value or fixed point have been done by many researchers in the world
(see [6], [17], [22], [23], [24], [25]). Recently, there has been an increasing interest in studying dif-
ference equations in the complex plane. In 2006, R.G.Halburd and R.J.Korhdnen [7] established a
version of Nevanlinna theory based on difference operators. The difference logarithmic derivative
lemma given in [4], [8], plays an important role in the difference analogue of Nevanlinna theory.
With this development many researchers paid their attention to the distribution of zeros of different
types of difference polynomials. In 2010, X. G. Qi, L. Z. Yang and K. Liu [14] proved the following
uniqueness result.

Theorem A. Let f , g be two transcendental entire functions of finite order and α(z)(6≡ 0) be
a small function with respect to both f and g. Suppose that c is a non zero complex constant and
n ≥ 7 is an integer. If fn(z)(f(z)−1)f(z+c) and gn(z)(g(z)−1)g(z+c) share α(z) CM, then f = g.

In 2013, S. S. Bhoosnrmath and S. R. Kabbur [2] considered the zeros of difference polynomials
of the form fn(z)(fm(z)− 1)f(z+ c), where n,m are positive integers and c is a non zero complex
constant and obtained the following theorems.

Theorem B. Let f be an entire function of finite order and α(z)( 6≡ 0) be a small function with
respect to f . Suppose that c a non zero complex constant and n,m are positive integers. If n ≥ 2,
then fn(z)(fm(z)− 1)f(z + c)− α(z) has infinitely many zeros.

Theorem C. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡ 0) be
a small function with respect to f and g. Suppose that c is a non zero complex constant and n,m
are positive integers such that n ≥ m+ 6. If fn(z)(fm(z)−1)f(z+ c) and gn(z)(gm(z)−1)g(z+ c)
share α(z) CM, then f = tg, where tm = 1.

Theorem D. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡ 0) be a
small function with respect to f and g. Suppose that c is a non zero complex constant and n,m are
positive integers such that n ≥ 4m+ 12. If fn(z)(fm(z)− 1)f(z + c) and gn(z)(gm(z)− 1)g(z + c)
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share α(z) IM, then f = tg, where tm = 1.

Recently, P. Sahoo and B. Saha [21] studied the zeros and uniqueness of certain type of differ-
ence polynomial sharing a small function with finite weight and obtained the following results.

Theorem E. Let f be a transcendental entire functions of finite order and α(z)( 6≡ 0) be a small
function with respect to f . Suppose that c is a non zero complex constant, n(≥ 1),m(≥ 1) and

k(≥ 0) are integers. If n ≥ k+2, then [fn(z)(fm(z)− 1)f(z + c)]
(k)−α(z) has infinitely many zeros.

Theorem F. Let f be a transcendental entire functions of finite order and α(z)( 6≡ 0) be a small
function with respect to f . Suppose that c is a non zero complex constant, n,m ≥ 1 and k(≥ 0)
are integers. If n ≥ k + 2, when m ≤ k + 1 and n ≥ 2k − m + 3 when m > k + 1, then

[fn(z)(f(z)− 1)mf(z + c)]
(k) − α(z) has infinitely many zeros.

Theorem G. Let f and g be two transcendental entire functions of finite order and α(z)(6≡ 0)
be a small function with respect to f and g. Suppose that c is a non zero complex constant,

n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 2k + m + 6. If [fn(z)(fm(z)− 1)f(z + c)]
(k)

and

[gn(z)(gm(z)− 1)g(z + c)]
(k)

share (α, 2) then f = tg, where tm = 1.

Theorem H. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡ 0) be
a small function with respect to f and g. Suppose that c is a non zero complex constant, n,m ≥ 1
and k(≥ 0) are integers satisfying n ≥ 2k + m + 6 when m ≤ k + 1 and n ≥ 4k −m + 10 when

m > k + 1. If [fn(z)(f(z)− 1)mf(z + c)]
(k)

and [gn(z)(g(z)− 1)mg(z + c)]
(k)

share (α, 2) then
either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn1 (ω1 − 1)mω1(z + c)− ωn2 (ω2 − 1)mω2(z + c).

Theorem I. Let f and g be two transcendental entire functions of finite order and α(z)(6≡ 0)
be a small function with respect to f and g. Suppose that c is a non zero complex constant,

n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥ 5k+ 4m+ 12. If [fn(z)(fm(z)− 1)f(z + c)]
(k)

and

[gn(z)(gm(z)− 1)g(z + c)]
(k)

share α(z) IM, then f = tg, where tm = 1.

Theorem J. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡ 0) be
a small function with respect to f and g. Suppose that c is a non zero complex constant, n,m ≥ 1
and k(≥ 0) are integers satisfying n ≥ 5k + 4m + 12 when m ≤ k + 1 and n ≥ 10k − m + 19

when m > k + 1. If [fn(z)(f(z)− 1)mf(z + c)]
(k)

and [gn(z)(g(z)− 1)mg(z + c)]
(k)

share α(z),
then conclusion of theorem H hold.

Regarding Theorems E-J, the following question is inevitable which is motivation of the present
paper.

Question. What would happen if one replaces the difference polynomials [fn(z)(fm(z)− 1)f(z +

c)](k) by fn(z)(f(z)− 1)m
∏d
j=1 f(z + cj)

vj in Theorems E-J, where k is any positive integer?
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In this paper, we study the zero and uniqueness of difference polynomial of the form fn(z)(f(z)−
1)m

∏d
j=1 f(z + cj)

vj and fn(z)(fm(z)− 1)
∏d
j=1 f(z + cj)

vj where cj(j = 1, 2, · · · , d) are complex

constants, vj(j = 1, 2, · · · , d) are non-negative integers and σ = v1 + v2 + · · · + vd =
∑d
j=1 vj and

hence obtain the following results.

Theorem 1. Let f be a transcendental entire function of finite order and α(z)( 6≡ 0) be a small
function with respect to f . Suppose that cj(j = 1, 2, · · · , d) are non zero complex constants,
vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers. If n ≥ k + 2, then[
fn(z)(fm(z)− 1)

∏d
j=1 f(z + cj)

vj
](k)

− α(z) has infinitely many zeros.

Theorem 2. Let f be a transcendental entire functions of finite order and α(z)( 6≡ 0) be a small
function with respect to f . Suppose that cj(j = 1, 2, · · · , d) is a non zero complex constants,
vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers. If n ≥ k + 2 when

m ≤ k+1 and n ≥ 2k−m+3 when m > k+1, then
[
fn(z)(f(z)− 1)m

∏d
j=1 f(z + cj)

vj
](k)

−α(z)

has infinitely many zeros.

Theorem 3. Let f and g be two transcendental entire functions of finite order and α(z)(6≡ 0) be a
small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d) are non zero complex con-
stants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfying n ≥

2k+m+σ+5. If
[
fn(z)(fm(z)− 1)

∏d
j=1 f(z + cj)

vj
](k)

and
[
gn(z)(gm(z)− 1)

∏d
j=1 g(z + cj)

vj
](k)

share (α, 2), then f = tg where tm = 1.

Theorem 4. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡
0) be a small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d) are non zero
complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers
satisfying n ≥ 2k + m + σ + 5 when m ≤ k + 1 and n ≥ 4k − m + σ + 9 when m > k + 1.

If
[
fn(z)(f(z)− 1)m

∏d
j=1 f(z + cj)

vj
](k)

and
[
gn(z)(g(z)− 1)m

∏d
j=1 g(z + cj)

vj
](k)

share (α, 2),

then either f = g or f and g satisfy the algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn1 (ω1 − 1)m
d∏
j=1

ω1(z + cj)
vj − ωn2 (ω2 − 1)m

d∏
j=1

ω2(z + cj)
vj .

Theorem 5. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡
0) be a small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d) are non-
negative complex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0)

are integers satisfying n ≥ 5k + 4m + 4σ + 8. If
[
fn(z)(fm(z)− 1)

∏d
j=1 f(z + cj)

vj
](k)

and[
gn(z)(gm(z)− 1)

∏d
j=1 g(z + cj)

vj
](k)

share α(z) IM, then f = tg where tm = 1.

Theorem 6. Let f and g be two transcendental entire functions of finite order and α(z)( 6≡ 0) be
a small function with respect to f and g. Suppose that cj(j = 1, 2, · · · , d) are non zero complex
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constants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers satisfy-
ing n ≥ 5k + 4m + 4σ + 8 when m ≤ k + 1 and n ≥ 10k − m + 4σ + 15 when m > k + 1. If[
fn(z)(f(z)− 1)m

∏d
j=1 f(z + cj)

vj
](k)

and
[
gn(z)(g(z)− 1)m

∏d
j=1 g(z + cj)

vj
](k)

share α(z) IM,

then the conclusion of theorem 4 hold.

Remark. For σ = 1 in Theorems 1 to 6, we get Theorems E to J. Hence Theorems 1 to 6 generalizes
Theorems E to J.

2 Preliminary Lemmas

Let F and G be two non-constant meromorphic functions defined in the complex plane C. We

denote by H the following functions. H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
Lemma 2.1 (see [13]). Let f be a meromorphic function of finite order ρ and let c( 6= 0) be a fixed
non zero complex constant. Then

N(r,∞; f(z + c)) ≤ N(r,∞; f) + S(r, f)

outside a possible exceptional set of finite logarithmic measure.

Lemma 2.2 (see [3]). Let f be an entire function of finite order and F = fn(z)(fm(z)−1)f(z+c).
Then T (r, F ) = (n+m+ 1)T (r, f) + S(r, f).

Arguing in a similar manner as in Lemma 2.6[3] we obtain the following Lemma.

Lemma 2.3. Let f be an entire function of finite order and F = fn(z)(f(z)− 1)m
∏d
j=1 f(z+ cj).

Then T (r, F ) = (n+m+ σ)T (r, f) + S(r, f).

Lemma 2.4(see [20]). Let f be a non-constant meromorphic functions and p, k be two positive
integers. Then

Np(r, 0; f (k)) ≤ T (r, f (k))− T (r, f) +Np+k(r, 0; f) + S(r, f) (2.1)

Np(r, 0; f (k)) ≤ kN(r,∞, f) +Np+k(r, 0; f) + S(r, f) (2.2)

Lemma 2.5 (see [10]). Let f and g be two non-constant meromorphic functions sharing (1,2).
Then one of the following cases holds.

(i) T (r) ≤ N2(r, 0; f) +N2(r, 0; g) +N2(r,∞; f) +N2(r,∞; g) + S(r),

(ii) f = g,

(iii) fg = 1, when T (r) = max{T (r, f), T (r, g)} and S(r) = o{T (r)}.

Lemma 2.6 (see [1]). Let F and G be two non-constant meromorphic functions sharing the value
1 IM and H 6≡ 0. Then

T (r, F ) ≤N2(r, 0;F ) +N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F ) +N(r, 0;G)

+ 2N(r,∞;F ) +N(r,∞;G) + S(r, F ) + S(r,G)
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and the same inequality holds for T (r,G).
Lemma 2.7. Let f and g be two entire functions, suppose that cj(j = 1, 2, · · · , d) are non zero com-
plex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers and

let F =
[
fn(z)(fm(z)− 1)

∏d
j=1 f(z + cj)

vj
](k)

and G =
[
gn(z)(gm(z)− 1)

∏d
j=1 g(z + cj)

vj
](k)

.

If there exists non zero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) =
N(r, 0;F ), then n ≤ 2k +m+ σ + 2.

Proof. We put F1 = fn(z)(fm(z)−1)
∏d
j=1 f(z+cj)

vj and G1 = gn(z)(gm(z)−1)
∏d
j=1 g(z+cj)

vj ,
by the second fundamental theorem of Nevanlinna, we have

T (r, F ) ≤ N(r, 0;F ) +N(r, c1;F ) + S(r, F )

≤ N(r, 0;F ) +N(r, 0;G) + S(r, F )
(2.3)

Using equation (2.3), in Lemmas 2.2 and 2.4, we obtain

(n+m+ σ)T (r, f) ≤ T (r, F )−N(r, 0;F ) +Nk+1(r, 0;F1) + S(r, f)

≤ N(r, 0;G) +Nk+1(r, 0;F1) + S(r, f)

≤ Nk+1(r, 0;F1) +Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g).

(2.4)

Similarly,

(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1)(T (r, f) + T (r, g)) + S(r, f) + S(r, g). (2.5)

Combining (2.4) and (2.5), we obtain

(n− 2k −m− σ − 2)(T (r, f) + T (r, g)) ≤ S(r, f) + S(r, g).

Which gives n ≤ 2k +m+ σ + 2.
This proves the lemma.

Lemma 2.8. Let f and g be two entire functions, suppose that cj(j = 1, 2, · · · , d) are non zero com-
plex constants, vj(j = 1, 2, · · · , d) are non-negative integers, n,m ≥ 1 and k(≥ 0) are integers and

let F =
[
fn(z)(f(z)− 1)m

∏d
j=1 f(z + cj)

vj
](k)

and G =
[
gn(z)(g(z)− 1)m

∏d
j=1 g(z + cj)

vj
](k)

.

If there exists non zero constants c1 and c2 such that N(r, c1;F ) = N(r, 0;G) and N(r, c2;G) =
N(r, 0;F ), then n ≤ 2k +m+ σ + 2 when m ≤ k + 1 and n ≤ 4k −m+ σ + 4 when m > k + 1.
Proof. By the same reasoning as in proof of Lemma 2.7, we can easily deduce the result. Hence
we omit the details.
Arguing in a similar manner as in lemma 5([2]), we obtain the following lemma.

Lemma 2.9. Suppose that f and g are two transcendental entire function of finite order. Suppose
that cj(j = 1, 2, · · · , d) are non zero complex constants, vj(j = 1, 2, · · · , d) are non-negative integers,

n,m ≥ 1 and k(≥ 0) are integers. If n ≥ m + 5 and
[
fn(z)(fm(z)− 1)

∏d
j=1 f(z + cj)

vj
](k)

=[
gn(z)(gm(z)− 1)

∏d
j=1 g(z + cj)

vj
](k)

then f = tg where tm = 1.
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3 Proof of the Theorem

Proof of Theorem 1. Let F1 = fn(z)(fm(z)− 1)
∏d
j=1 f(z + cj)

vj . Then F1 is a transcendental
entire function.
If possible, we assume F

(k)
1 − α(z) has only finitely many zeros. Then, we have

N(r, α, F
(k)
1 ) = o{log r} = S(r, f). (3.1)

Using (2.1), (3.1) and Nevanlinna’s three small function theorem, we obtain

T (r, F
(k)
1 ) ≤ N(r, 0, F

(k)
1 ) +N(r, α;F

(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+1(r, 0;F1) + S(r, f)

(3.2)

Applying lemma 2.2, we obtain from (3.2),

(n+m+ σ)T (r, f) ≤ Nk+1(r, 0;F1) + S(r, f)

≤ (k +m+ σ + 1)T (r, f) + S(r, f)

This gives
(n− k − 1)T (r, f) ≤ S(r, f),

a contradiction with the assumption that n ≥ k + 2. This proves the theorem.

Proof of Theorem 2. Let F2 = fn(z)(f(z)−1)m
∏d
j=1 f(z+cj)

vj . Then F2 is a transcendental
entire function.
If possible, suppose that F

(k)
2 − α(z) has only finitely many zeros. Then, we have

N(r, α, F
(k)
2 ) = o{log r} = S(r, f) (3.3)

Now, using (2.1), (3.3) and Nevanlinna’s three small function theorem, we obtain

T (r, F
(k)
2 ) ≤ N(r, 0, F

(k)
2 ) +N(r, α;F

(k)
2 ) + S(r, f)

≤ T (r, F
(k)
2 )− T (r, F2) +Nk+1(r, 0;F2) + S(r, f)

(3.4)

Applying lemma 2.3, we obtain from (3.4)

(n+m+ σ)T (r, f) ≤ Nk+1(r, 0;F2) + S(r, f)

≤ (k +m+ σ + 1)T (r, f) + S(r, f)
(3.5)

If m ≤ k + 1, we deduce from (3.5) that

(n− k − 1)T (r, f) ≤ S(r, f),

a contradiction to the assumption that n ≥ k + 2.
If m < k + 1, by (3.5) we get,

(n+m− 2k − 2)T (r, f) ≤ S(r, f)
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a contradiction with the assumption that n ≥ 2k −m+ 3. This proves the theorem.

Proof of Theorem 3. Let F1 = fn(z)(fm(z) − 1)
∏d
j=1 f(z + cj)

vj and G1 = gn(z)(gm(z) −
1)
∏d
j=1 g(z + cj)

vj

F =
F

(k)
1

α(z)
and G =

G
(k)
1

α(z)
. Then F and G are transcendental meromorphic functions that share

(1,2) except the zeros and poles of α(z). Using (2.1) and lemma 2.2, we get

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

≤ T (r, F )− (n+m+ σ)T (r, f) +Nk+2(r, 0;F1) + S(r, f)

From this we get,

(n+m+ σ)T (r, f) ≤ T (r, F ) +Nk+2(r, 0;F1)−N2(r, 0;F ) + S(r, f) (3.6)

Again by (2.2), we have

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ Nk+2(r, 0;F1) + S(r, f)
(3.7)

Suppose, if possible that (i) of Lemma 2.5 holds, Then, using (3.7), we obtain from (3.6)

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) +Nk+2(r, 0;F1) + S(r, f) + S(r, g)

≤ Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + S(r, f) + S(r, g)

≤ (k + 2 +m+ σ){T (r, f) + T (r, g)}+ S(r, f) + S(r, g)

(3.8)

In a similar manner we obtain,

(n+m+ σ)T (r, g) ≤ (k + 2 +m+ σ){T (r, f) + T (r, g)}+ S(r, f) + S(r, g). (3.9)

From (3.8) and (3.9) together gives,

(n− 2k −m− σ − 4){T (r, f) + T (r, g)} ≤ S(r, f) + S(r, g),

contradicting with the fact that n ≥ 2k + m + σ + 5. Therefore, by Lemma 2.5 we have either
FG = 1 or F = G

Let FG = 1. Then,

[
fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj
](k)

·
[
gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj
](k)

= α2
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[
fn(z)(f(z) − 1)(fm−1(z) + fm−2(z) + · · · + 1)

∏d
j=1 f(z + cj)

vj
](k)

·
[
gn(z)(g(z) − 1)(gm−1(z) +

gm−2(z) + · · ·+ 1)
∏d
j=1 g(z + cj)

vj
](k)

= α2

It can be easily viewed from above that

N(r, 0; f) = S(r, f) and N(r, 1; f) = S(r, f)

Thus,
δ(0, f) + δ(1, f) + δ(∞, f) = 3,

Which is not possible. Therefore, we must have F = G, and then

[
fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj
](k)

=
[
gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj
](k)

Integrating above, we get,

[
fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj
](k−1)

=
[
gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj
](k−1)

+ Ck−1

Where Ck−1 is a constant. If Ck−1 6= 0, using Lemma 2.7, it follows that n ≤ 2k + m + σ a
contradiction. Hence Ck−1 = 0, repeating k times, we deduce that,

fn(z)(fm(z)− 1)

d∏
j=1

f(z + cj)
vj = gn(z)(gm(z)− 1)

d∏
j=1

g(z + cj)
vj

which by Lemma 2.9, gives f = tg where t is a constant satisfying tm = 1. This proves Theorem 3.

Proof of Theorem 4. Let F1 = fn(z)(f(z) − 1)m
∏d
j=1 f(z + cj)

vj and G1 = gn(z)(g(z) −
1)m

∏d
j=1 g(z + cj)

vj

F =
F

(k)
1

α(z)
and G =

G
(k)
1

α(z)
. Then F and G are transcendental meromorphic functions that share

(1,2) except possibly the zeros and poles of α(z).
Arguing in a manner similar to the proof of Theorem 3, we obtain either FG = 1 or F = G.

If F = G, then applying the same techniques as in the proof of Theorem 3 and using Lemma 2.8,
we obtain.

fn(z)(f(z)− 1)m
d∏
j=1

f(z + cj)
vj = gn(z)(g(z)− 1)m

d∏
j=1

g(z + cj)
vj (3.10)

Set h =
f

g
. If h is a constant, then substituting f = gh in equation (3.10), we duduce that

gn
d∏
j=1

g(z + cj)
vj
[
gm(hn+m+σ − 1)− mc1g

m−1(hn+m+σ−1 − 1) + · · ·+ (−1)m(hn+σ − 1)
]

= 0



10 H. P. Waghamore

Since g is a transcendental entire function, we have gn
∏d
j=1 g(z + cj)

vj 6= 0. So from above we
obtain,

gm(hn+m+σ − 1)− mc1g
m−1(hn+m+σ−1 − 1) + · · ·+ (−1)m(hn+σ − 1) = 0

which implies h = 1
Hence f = g. If h is not a constant, then it follows from equation (3.10) that f and g satisfy the
algebraic equation R(f, g) = 0 where R(f, g) is given by

R(ω1, ω2) = ωn1 (ω1 − 1)m
d∏
j=1

ω1(z + cj)
vj − ωn2 (ω2 − 1)m

d∏
j=1

ω2(z + cj)
vj

If FG = 1, proceeding in a like manner as in the proof of Theorem 3 we arrive at a contradiction.
This completes the proof of Theorem 4.

Proof of Theorem 5. Let F,G, F1 and G1 be defined as in the proof of Theorem 3. Then, F
and G are transcendental meromorphic functions that share the value 1 IM except the zeros and
poles of α(z). We assume, if possible, that H 6≡ 0. Using Lemma 2.6 and (3.7), we obtain from
(3.6).

(n+m+ σ)T (r, f) ≤ N2(r, 0;G) +N2(r,∞;F ) +N2(r,∞;G) + 2N(r, 0;F ) +N(r, 0;G)

+Nk+2(r, 0;F1) + 2N(r,∞;F ) +N(r,∞;G) + S(r, f) + S(r, g)

≤Nk+2(r, 0;F1) +Nk+2(r, 0;G1) + 2Nk+1(r, 0;F1) + 2Nk+1(r, 0;G1) + S(r, f) + S(r, g)

≤(3k + 4 + 3m+ 3σ)T (r, f) + (2k + 3 + 2m+ 2σ)T (r, g) + S(r, f) + S(r, g)

≤(5k + 5m+ 5σ + 7)T (r) + S(r)

(3.11)

Similarly,
(n+m+ σ)T (r, f) ≤ (5k + 5m+ 12)T (r) + S(r). (3.12)

From equations (3.11) and (3.12), together yields

(n− 4m− 4σ − 5k − 7)T (r) ≤ S(r),

which is a contradiction with the assumption that n ≥ 5k + 4m + 4σ + 8. We now assume that
H ≡ 0. Then (

F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
= 0

Integrating both sides of above equality twice, we get

1

F − 1
=

A

G− 1
+B. (3.13)

Where A( 6= 0) and B are constants.
From (3.13) it is obvious that F,G share value 1 CM and hence they share (1,2). Therefore
n ≥ 2k +m+ σ + 5.
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We now discuss the following three cases separately.
case i. Suppose that B 6= 0 and A = B, then from (3.13) we obtain.

1

F − 1
=

BG

G− 1
. (3.14)

If B = −1, then from (3.14), we obtain FG = 1, which is a contradiction as in the proof of Theorem
3.

If B 6= −1, from (3.14), we have,

1

F
=

BG

(1 +B)G− 1

and so N

(
r,

1

1 +B
;G

)
= N(r, 0;F ).

Using (2.1), (2.2) and Second Fundamental Theorem of Nevanlinna, we deduce that

T (r,G) ≤ N(r, 0;G) +N

(
r,

1

1 +B
;G

)
+N(r,∞;G) + S(r,G)

≤ N(r, 0;F ) +N(r, 0;G) +N(r,∞;G) + S(r,G)

≤ Nk+1(r, 0;F1) + T (r,G) +Nk+1(r, 0;G1)− (n+m+ σ)T (r, g) + S(r, g)

This gives,
(n+m+ σ)T (r, g) ≤ (k +m+ σ + 1){T (r, g) + T (r, g)}+ S(r, g)

Thus we obtain

(n− 2k −m− σ − 2){T (r, g) + T (r, g)} ≤ S(r, f) + S(r, g),

which is a contradiction as n ≥ 2k +m+ σ + 5.
case ii. Let B 6= 0 and A 6= B. Then From (3.13), we get

F =
(B + 1)G− (B −A+ 1)

BG+ (A−B)
,

and so N

(
r,
B −A+ 1

B + 1
;G

)
= N(r, 0;F ),

Proceeding in a manner similar to case i we can arrive at a contradiction.
case iii. Let B = 0 and A 6= 0. Then from (3.13) we get

F =
G+A− 1

A
and G = AF − (A− 1)

If A 6= 1, it follows that N

(
r,
A− 1

A
;F

)
= N(r, 0;G) and N (r, 1−A;G) = N(r, 0;F ) Now

applying Lemma 2.7, it can be shown that n ≤ 2k +m+ σ + 2, which is a contradiction.
Thus, A = 1 and then F = G. Now the result follows from the proof of Theorem 3.

This completes the proof of Theorem 5.
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Proof of Theorem 6. Proceeding as in the proof of Theorem 5, the conclusion of Theorem 6
follows. Here we omit the details.
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