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Abstract

Using the fixed point theorem we establish the Hyers-Ulam-Rassias stability of the generalized
Pexider functional equation

1

| K |
∑
k∈K

f(x+ k · y) = g(x) + h(y), x, y ∈ E

from a normed space E into a complete β-normed space F , where K is a finite abelian subgroup
of the automorphism group of the group (E,+).
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1 Introduction and preliminaries

Under what condition does there exist a group homomorphism near an approximate group homo-
morphism? This question concerning the stability of group homomorphisms was posed by S. M.
Ulam [58]. In 1941, the Ulam’s problem for the case of approximately additive mappings was solved
by D. H. Hyers [21] on Banach spaces. In 1950 T. Aoki [2] provided a generalization of the Hyers’
theorem for additive mappings and in 1978 Th. M. Rassias [47] generalized the Hyers’ theorem for
linear mappings by considering an unbounded Cauchy difference. The result of Rassias’ theorem
has been generalized by J.M. Rassias [44] and later by Gǎvruta [18] who permitted the Cauchy dif-
ference to be bounded by a general control function. Since then, the stability problems for several
functional equations have been extensively investigated (cf. [16], [19], [23], [24], [25], [26], [27], [32],
[41], [44], [45], [48], [49]).
Let E be a real vector space and F be a real Banach space. Let K be a finite abelian subgroup
of Aut(E) (the automorphism group of the group (E,+), |K| denotes the order of K. Writing the
action of k ∈ K on x ∈ E as k ·x, we will say that (f, g, h) : E → F is a solution of the generalized
Pexider functional equation, if

1

|K|
∑
k∈K

f(x+ k · y) = g(x) + h(y), x, y ∈ E (1.1)

The generalized quadratic functional equation

1

|K|
∑
k∈K

f(x+ k · y) = f(x) + f(y), x, y ∈ E (1.2)
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and the generalized Jensen functional equation

1

|K|
∑
k∈K

f(x+ k · y) = f(x), x, y ∈ E (1.3)

are particulars cases of equation (1.1).
The functional equations (1.1), (1.2) and (1.3) appeared in several works by H. Stetkær, see for
example [55], [56] and [57]. We refer also to the recent studies by  L. Rados law [50] and [51].
If we set K = {I, σ}, were I: E −→ E denotes the identity function and σ denote an additive
function of E, such that σ(σ(x)) = x, for all x ∈ E then equation (1.1) reduces to the Pexider
functionals equations

f(x+ y) + f(x+ σ(y)) = g(x) + h(y), x, y ∈ E, (1.4)

f(x+ y) = g(x) + h(y), x, y ∈ E, (σ = I) (1.5)

f(x+ y) + f(x− y) = g(x) + h(y), x, y ∈ E, (σ = −I) (1.6)

Y. H. Lee and K. W. Jung [33] obtained the Hyers-Ulam-Rassias of the Pexider functional equation
(1.5). Jung [27] and Jung and Sahoo [30] investigated the Hyers-Ulam-Rassias stability of equation
(1.6). Belaid et al. have proved the Hyers-Ulam stability of equation (1.1) and the Hyers-Ulam-
Rassias stability of the functional equations (1.2), (1.3), (see [1], [11], [12] and [34] ).
Recently, Rados law [50] obtained the Hyers-Ulam-Rassias stability of equation (1.1). In 2003 L.
Cǎdariu and V. Radu [9] notice that a fixed point alternative method is very important for the
solution of the Hyers-Ulam stability problem. Subsequently, this method was applied to investigate
the Hyers-Ulam-Rassias stability for Jensen functional equation, as well as for the additive Cauchy
functional equation [12] by considering a general control function ϕ(x, y), with suitable properties,
using such an elegant idea, several authors applied the method to investigate the stability of some
functional equations, see for example [3], [4], [5], [6], [31], [35], [43].
In this paper, we will apply the fixed point method as in [9] to prove the Hyers-Ulam-Rassias sta-
bility of the functional equations (1.1), for a large classe of functions from a vector space E into
complete β-normed space F .

Now, we recall one of fundamental results of fixed point theory.
Let X be a set. A function d : X ×X → [0,+∞] is called a generalized metric on X if d satisfies
the following:
(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(2) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.

Theorem 1.1. [15] Suppose we are given a complete generalized metric space (X, d) and a strictly
contractive mapping J : X → X, white the Lipshitz constant L < 1. If there exists a nonnegative
integer k such that d(Jkx, Jk+1x) < +∞ for some x ∈ X, then the following are true:
(1) the sequence Jnx converges to a fixed point x∗ of J ;
(2) x∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jkx, y) < +∞};
(3) d(y, x∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .
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Throughout this paper, we fix a real number β with 0 < β ≤ 1 and let K denote either R or C.
Suppose E is a vector space over K. A function ‖.‖β : E −→ [0,∞) is called a β-norm if and only
if it satisfies
(1) ‖x‖β = 0, if and only if x = 0;
(2) ‖λx‖β = |λ|β‖x‖β for all λ ∈ K and all x ∈ E;
(3) ‖x+ y‖β ≤ ‖x‖β + ‖y‖β for all x, y ∈ E.

2 Main results

In the following theorem, by using an idea of Cǎdariu and Radu [9, 12], we prove the Hyers-Ulam-
Rassias stability of the generalized Pexider functional equation (1.1).

Theorem 2.1. Let E be a vector space over K and let F be a complete β-normed space over K.
Let K be a finite abelian subgroup of the automorphism group of (E,+). Let f : E −→ F be a
mapping for which there exists a function ϕ : E × F → [0,∞) and a constant L < 1, such that

‖ 1

|K|
∑
k∈K

f(x+ k · y)− g(x)− h(y)‖β ≤ ϕ(x, y) (2.1)

and ∑
k∈K

ϕ(x+ k · x, y + k · y) ≤ (|2K|)βLϕ(x, y) (2.2)

for all x, y ∈ E. Then, there exists a unique solution q: E −→ F of the generalierd quadratic
functional equation (1.2) and a unique solution j: E −→ F of the generalized Jensen functional
equation (1.3) such that

1

|K|
∑
k∈K

j(k · x) = 0, (2.3)

‖f(x)− q(x)− j(x)− g(0)− h(0)‖β ≤
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x), (2.4)

‖g(x)− q(x)− j(x)− g(0)‖β ≤ ϕ(x, 0) +
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x) (2.5)

and

‖h(x)− q(x)− h(0)‖β ≤
1

2β
1

1− L
ψ(x, x) + ϕ(0, x) (2.6)

for all x ∈ E, where

χ(x, y) =
|K|
|K|β

ϕ(0, y) + ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)

+
1

|K|β
∑
k∈K

[ϕ(k · x, y) + ϕ(k · x, 0)]

and

ψ(x, y) =
|K|
|K|β

ϕ(0, y) +
1

|K|β
∑
k∈K

[ϕ(k · x, y) + ϕ(k · x, 0)].
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Proof. Letting y = 0 in (2.1), to obtain

‖f(x)− g(x)− h(0)‖β ≤ ϕ(x, 0) (2.7)

for all x ∈ E. By using (2.7), (2.1) and the triangle inequality, we get

‖ 1

|K|
∑
k∈K

f(x+ k · y)− f(x)− (h(y)− h(0))‖β ≤ ‖
1

|K|
∑
k∈K

f(x+ k · y)− g(x)− h(y)‖β (2.8)

+‖g(x)− f(x) + h(0)‖β ≤ ϕ(x, y) + ϕ(x, 0)

for all x, y ∈ E. Replacing x by 0 in (2.1), we get

‖ 1

|K|
∑
k∈K

f(k · y)− g(0)− h(y)‖β ≤ ϕ(0, y) (2.9)

for all y ∈ E. So inequalities (2.8), (2.9) and the triangle inequality implies that

‖ 1

|K|
∑
k∈K

f(x+k·y)−f(x)− 1

|K|
∑
k∈K

f(k·y)+g(0)+h(0)‖β ≤
1

|K|
∑
k∈K

f(x+k·y)−f(x)−(h(y)−h(0))‖β

(2.10)

+‖ 1

|K|
∑
k∈K

f(k · y)− h(y)− g(0)‖β ≤ ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)

for all x, y ∈ E. Now, let

ϕ(x) =
1

|K|
∑
k∈K

f(k · x) (2.11)

for all x ∈ E. Then, ϕ satisfies
1

|K|
∑
k∈K

ϕ(k · x) = ϕ(x) (2.12)

for all x ∈ E. Furthermore, in view of (2.10), (2.12) and the triangle inequality, we have

‖ 1

|K|
∑
k′∈K

ϕ(x+ k′ · y)− ϕ(x)− ϕ(y) + g(0) + h(0)‖β (2.13)

= ‖ 1

|K|
∑
k′∈K

1

|K|
∑
k∈K

f(k · x+ kk′ · y)− 1

|K|
∑
k∈K

f(k · x)− 1

|K|2
∑

k,k′∈K

f(kk′ · y) + g(0) + h(0)‖β

≤ 1

|K|β
∑
k∈K

‖ 1

|K|
∑
k′∈K

f(k · x+ k′ · y)− f(k · x)− 1

|K|
∑
k′∈K

f(k′ · y) + g(0) + h(0)‖β

≤ 1

|K|β
∑
k∈K

[ϕ(k · x, y) + ϕ(k · x, 0)] +
|K|
|K|β

ϕ(0, y) = ψ(x, y).

Since K is an abelian subgroup, so by using (2.2), we get∑
k∈K

ψ(x+ k · x, y + k · y) ≤ (2|K|)βLψ(x, y) (2.14)
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for all x, y ∈ E. Let us consider the set X := {g : E −→ F} and introduce the generalized metric
on X as follows:

d(g, h) = inf{C ∈ [0,∞] : ‖g(x)− h(x)‖β ≤ Cψ(x, x), ∀x ∈ E}. (2.15)

Let fn be a Cauchy sequence in (X, d). According to the definition of the Cauchy sequence, for any
given ε > 0, there exists a positive integer N such that

d(fn, fm) ≤ ε (2.16)

for all integer m,n such that m ≥ N and n ≥ N . That is, by considering the definition of the
generalized metric d

‖fm(x)− fn(x)‖β ≤ εψ(x, x) (2.17)

for all integer m,n such that m ≥ N and n ≥ N , which implies that fn(x) is a Cauchy sequence in
F , for any fixed x ∈ E. Since F is complete, fn(x) converges in F for each x in E. Hence, we can
define a function f : E −→ F by

f(x) = lim
n−→∞

fn(x). (2.18)

As a similar proof to [34], we consider the linear operator J : X → X such that

(Jh)(x) =
1

2|K|
∑
k∈K

h(x+ k · x) (2.19)

for all x ∈ E. By induction, we can easily show that

(Jnh)(x) =
1

(2|K|)n
∑

k1,...,kn∈K

h

x+
∑

ij<ij+1,kij∈{k1,...,kn}

(ki1 ...kip) · x

 (2.20)

for all integer n.
First, we assert that J is strictly contractive on X. Given g and h in X, let C ∈ [0,∞) be an
arbitrary constant with d(g, h) ≤ C, that is,

‖g(x)− h(x)‖β ≤ Cψ(x, x) (2.21)

for all x ∈ E. So, it follows from (2.19), (2.14) and ( 2.21) we get

‖(Jg)(x)− (Jh)(x)‖β = ‖ 1

2|K|
∑
k∈K

g(x+ k · x)− 1

2|K|
∑
k∈K

h(x+ k · x)‖β

=
1

(2|K|)β
‖
∑
k∈K

g(x+ k · x)− h(x+ k · x)‖β

≤ 1

(2|K|)β
∑
k∈K

‖g(x+ k · x)− h(x+ k · x))‖β

≤ 1

(2|K|)β
C

∑
k∈K

ψ(x+ k · x, x+ k · x)

≤ CLψ(x, x)
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for all x ∈ E, that is, d(Jg, Jh) ≤ LC. Hence, we conclude that

d(Jg, Jh) ≤ Ld(g, h)

for any g, h ∈ X. Now, we claim that

d(J(ϕ− g(0)− h(0), ϕ− g(0)− h(0)) <∞. (2.22)

By letting y = x in (2.13), we obtain

‖(J(ϕ−g(0)−h(0)))(x)−(ϕ−g(0)−h(0))(x)‖β =
1

2β
‖ 1

|K|
∑
k∈K

ϕ(x+k·x)−2ϕ(x)+g(0)+h(0)‖β ≤
1

2β
ψ(x, x)

(2.23)
for all x ∈ E, that is

d(J(ϕ− g(0)− h(0)), ϕ− g(0)− h(0)) ≤ 1

2β
<∞ (2.24)

From Theorem 1.1, there exists a fixed point of J which is a function q : E → F such that
limn−→∞ d(Jn(ϕ− g(0)−h(0)), q) = 0. Since d(Jn(ϕ− g(0)−h(0)), q)→ 0 as n→∞, there exists
a sequence {Cn} such that limn−→∞ Cn = 0 and d(Jnϕ − g(0) − h(0), q) ≤ Cn for every n ∈ N.
Hence, from the definition of d, we get

‖(Jn(ϕ− g(0)− h(0)(x)− q(x)‖β ≤ Cnψ(x, x) (2.25)

for all x ∈ E. Therefore,

lim
n→∞

‖(Jn(ϕ− g(0)− h(0))(x)− q(x)‖β = 0, (2.26)

for all x ∈ E.
Now, if we put κ(x) = ϕ(x)−g(0)−h(0), by using induction on n we prove the validity of following
inequality

‖ 1

|K|
∑
k∈K

Jnκ(x+ k · y)− Jnκ(x)− Jnκ(y)‖β ≤ Lnψ(x, y). (2.27)

In view of the commutativity of K the inequalities (2.13), (2.14) we have

‖ 1

|K|
∑
k∈K

Jf(x+ k · y)− Jκ(x)− Jκ(y)‖β

= ‖ 1

|K|
∑
k∈K

1

2|K|
∑
k1∈K

κ(x+k ·y+k1 ·x+k1k ·y)− 1

2|K|
∑
k1∈K

κ(x+k1 ·x)− 1

2|K|
∑
k1∈K

κ(y+k1 ·y)‖β

≤ 1

(2|K|β)

∑
k1∈K

‖ 1

|K|
∑
k∈K

κ(x+ k1 · x+ k · (y + k1 · y))− κ(x+ k1 · x)− κ(y + k1 · y)‖β

≤ 1

(2|K|β)

∑
k1∈K

ψ(x+ k1 · x, y + k1 · y) ≤ 1

(2|K|)β
(2|K|)βLψ(x, y) = Lψ(x, y).
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This proves (2.27) for n = 1. Now, we assume that (2.27) is true for n. By using the commutativity
of K, the inequalities (2.13), (2.14), we get

‖ 1

|K|
∑
k∈K

Jn+1κ(x+ k · y)− Jn+1κ(x)− Jn+1κ(y) + g(0) + h(0)‖β

= ‖ 1

|K|
∑
k∈K

1

2|K|
∑
k′∈K

Jnκ(x+ k · y + k
′
· x+ k

′
k · y)

− 1

2|K|
∑
k′∈K

Jnκ(x+ k
′
· x)− 1

2|K|
∑
k′∈K

Jnκ(y + k
′
· y)‖β

≤ 1

(2|K|)β
∑
k′∈K

‖ 1

|K|
∑
k∈K

Jnκ(x+ k
′
· x+ k · (y + k

′
· y)− Jnκ(x+ k′ · x)− Jnκ(y + k′ · y)‖β

≤ 1

(2|K|)β
∑
k′∈K

Lnψ(x+ k
′
· x, y + k

′
· y) ≤ Ln+1ψ(x, y),

which proves (2.27) for n+ 1. Now, by letting n →∞, in (2.27), we obtain that q is a solution of
equation (1.2). According to the fixed point theorem (Theorem 1.1, (3)) and inequality (2.24), we
get

d(ϕ− g(0)− h(0), q) ≤ 1

1− L
d(J(ϕ− g(0)− h(0)), ϕ− g(0)− h(0)) ≤ 1

2β(1− L)
(2.28)

and so we have

‖ϕ(x)− q(x)− g(0)− h(0))‖ ≤ 1

2β(1− L)
ψ(x, x) (2.29)

for all x ∈ E. On the other hand if we put

ω(x) = f(x)− ϕ(x) = f(x)− 1

|K|
∑
k∈K

f(k · x) (2.30)

for all x ∈ E, it follows from inequalities (2.10), (2.13) and the triangle inequality that

‖ 1

|K|
∑
k′∈K

ω(x+ k′ · y)− ω(x)‖β (2.31)

= ‖ 1

|K|
∑
k′∈K

f(x+ k′ · y)− 1

|K|
∑
k∈K

ϕ(x+ k · y)− f(x) + ϕ(x)‖β

≤ ‖ − 1

|K|
∑
k∈K

ϕ(x+ k · y) + ϕ(x) + ϕ(y)− g(0)− h(0)‖β

+‖ 1

|K|
∑
k′∈K

f(x+ k′ · y)− f(x)− 1

|K|
∑
k′∈K

f(k′ · y) + g(0) + h(0)‖β
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≤ 1

|K|β
∑
k∈K

[ϕ(k · x, y) + ϕ(k · x, 0)] +
|K|
|K|β

ϕ(0, y) + ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) = χ(x, y)

for all x, y ∈ E. By using the same definition for X as in the above proof, the generalized metric
on X

d(g, h) = inf{C ∈ [0,∞] : ‖g(x)− h(x)‖β ≤ Cχ(x, x), ∀x ∈ E}. (2.32)

and some ideas of [34], we will prove that there exists a unique solution j of equation (1.3) such
that

‖ω(x)− j(x)‖β ≤
1

1− L
χ(x, x) (2.33)

for all x ∈ E.
First, from (2.2) we can easily verify that χ(x, y) satisfies∑

k∈K

χ(x+ k · x, y + k · y) ≤ (2|K|)βLχ(x, y) (2.34)

Let us consider the function T : X → X defined by

(Th)(x) =
1

|2K|
∑
k∈K

h(x+ k · x) (2.35)

for all x ∈ E. Given g, h ∈ X and C ∈ [0,∞] such that d(g, h) ≤ C, so we get

‖(Tg)(x)− (Th)(x)‖β = ‖ 1

|2K|
∑
k∈K

g(x+ k · x)− 1

|2K|
∑
k∈K

h(x+ k · x)‖β

=
1

|2K|β
‖
∑
k∈K

[g(x+ k · x)− h(x+ k · x)]‖β

≤ 1

|2K|β
∑
k∈K

‖g(x+ k · x)− h(x+ k · x)‖β ≤ CLχ(x, x)

for all x ∈ E. Hence, we see that d(Tg, Th) ≤ Ld(g, h) for all g, h ∈ X. So T is a strictly contractive
operator.
Putting y = x in (2.31), we have

‖ 1

|2K|
∑
k∈K

ω(x+ k · x)− 1

2
ω(x)‖β ≤

1

2β
χ(x, x) (2.36)

for all x ∈ E, so by the triangle inequality, we get

d(Tω, ω) ≤ 2

2β
. (2.37)

From the fixed point theorem (Theorem 1.1), it follows that there exits a fixed point j of T in X
such that

j(x) = lim
n→∞

1

|2K|n
∑

k1,...,kn∈K

ω

x+
∑

ij<ij+1,kij∈{k1,...,kn}

[(ki1) · · · (kip)] · x

 (2.38)



A fixed points approach to stability of the Pexider equation 103

for all x ∈ E and

d(ω, j) ≤ 1

1− L
d(Tω, ω). (2.39)

So, it follows from (2.37) and (2.39) that

‖ω(x)− j(x)‖β ≤
2

2β
1

1− L
χ(x, x) (2.40)

for all x ∈ E.
By the same reasoning as in the above proof, one can show by induction that

‖ 1

|K|
∑
k∈K

Tnω(x+ k · y)− Tnω(x)‖β ≤ Lnχ(x, y) (2.41)

for all x, y ∈ E and for all n ∈ N. Letting n → ∞ in (2.41), we get that j is a solution of the
generalized Jensen functional equation (1.3).
From (2.11), (2.29) (2.30), (2.40) and the triangle inequality, we obtain

‖f(x)− q(x)− j(x)− g(0)− h(0)‖β ≤
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x), (2.42)

‖g(x)− q(x)− j(x)− g(0)‖β ≤ ϕ(x, 0) +
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x) (2.43)

and

‖h(x)− q(x)− h(0)‖β ≤
1

2β
1

1− L
ψ(x, x) + ϕ(0, x) (2.44)

for all x ∈ E.
Finally, in the following we will verify that the solution j satisfies the condition

1

|K|
∑
k∈K

j(k · x) = 0 (2.45)

for all x ∈ E and we will prove the uniqueness of the solutions q and j which satisfy the inequalities
(2.42) (2.43) and (2.44).
Due to definition of ω, we get 1

|K|
∑
k∈K ω(k ·x) = 0 for all x ∈ E, so we get 1

|K|
∑
k∈K Tω(k ·x) = 0,

1
|K|

∑
k∈K T

2ω(k · x) = 0, ..., 1
|K|

∑
k∈K T

nω(k · x) = 0. So, by letting n −→ ∞, we obtain the

ralation (2.45).
Now, according to (2.44) and (2.2) we get by induction that

‖Jn(h− h(0))(x)− q(x)‖β ≤ Ln[
1

2β
1

1− L
ψ(x, x) + ϕ(0, x)] (2.46)

for all x ∈ E and for all n ∈ N. So, by letting n −→∞, we get

lim
n−→∞

Jn(h− h(0))(x) = q(x) (2.47)
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for all x ∈ E, which proves uniqueness of q.
In a similar way, by induction we obtain

‖Λn(f − q − h(0)− g(0))(x)− j(x)‖β ≤ Ln[
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x)] (2.48)

for all x ∈ E and for all n ∈ N, where

Λl(x) =
1

|K|
∑
k∈K

l(x+ k · x).

Consequently, we have
lim

n−→∞
Λn(f − q − h(0)− g(0))(x) = j(x) (2.49)

for all x ∈ E. This proves the uniqueness of the function j and this completes the proof of theorem.

In the following, we will investigate some special cases of Theorem 2.1, with the new weaker con-
ditions. q.e.d.

Corollary 2.2. Let E be a vector space over K. Let K be a finite abelian subgroup of the

automorphism group of (E,+), Let α = log(|K|)
log(2) . Fix a nonnegative real number β such that

α
α+1 < β < 1 and choose a number p with 0 < p < β + (β − 1)α and let F be a complete β-normed
space over K. If a function f : E −→ F satisfies

‖ 1

|K|
∑
k∈K

f(x+ k · y)− g(x)− h(y)‖β ≤ θ(‖x‖p + ‖y‖p) (2.50)

and ‖x+k ·x‖ ≤ 2‖x‖, for all k ∈ K, for all x, y ∈ E and for some θ > 0, then there exists a unique
solution q: E −→ F of the generalierd quadratic functional equation (1.2) and a unique solution j:
E −→ F of the generalized Jensen functional equation (1.3) such that

1

|K|
∑
k∈K

j(k · x) = 0, (2.51)

‖f(x)− q(x)− j(x)− g(0)− h(0)‖β ≤
θ

2β
(2|K|)β

(2|K|)β − 2p|K|
‖x‖p[ |K|

|K|β
(4 + 4.3p) + 2 + 2.3p] (2.52)

‖g(x)− q(x)− j(x)− g(0)‖β ≤
θ

2β
(2|K|)β

(2|K|)β − 2p|K|
‖x‖p[ |K|

|K|β
(4 + 43p) + 2 + 2.3p] + θ‖x‖p (2.53)

and

‖h(x)− q(x)− h(0)‖β ≤
θ

2β
(2|K|)β

(2|K|)β − 2p|K|
‖x‖p[ |K|

|K|β
(2 + 2.3p)] + θ‖x‖p (2.54)

for all x ∈ E.
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Corollary 2.3. Let E be a vector space over K. Fix a nonnegative real number β less than 1 and
choose a number p with 0 < p < 1 and let F be a complete β-normed space over K. If a function
(f, g, h): E −→ F satisfies

‖f(x+ y)− g(x)− h(y)‖β ≤ θ(‖x‖p + ‖y‖p) (2.55)

for all x, y ∈ E and for some θ > 0, then there exists an unique additive function a: E −→ F such
that

‖f(x)− a(x)− g(0)− h(0)‖β ≤
θ

2β
2β

2β − 2p
‖x‖p[6 + 6.3p], (2.56)

‖g(x)− a(x)− g(0)‖β ≤
θ

2β
2β

2β − 2p
‖x‖p[6 + 6.3p] + θ‖x‖p (2.57)

and

‖h(x)− a(x)− h(0)‖β ≤
θ

2β
2β

2β − 2p
‖x‖p[2 + 2.3p] + θ‖x‖p (2.58)

for all x ∈ E.

Corollary 2.4. Let E be a vector space over K. Let K = {I, σ} where σ is an volution of E
(σ(x+ y) = σ(x) + σ(y) and σ(σ(x)) = x for all x, y ∈ E). Fix a nonnegative real number β such
that 1

2 < β < 1 and choose a number p with 0 < p < 2β − 1 and let F be a complete β-normed
space over K. If a function (f, g, h): E −→ F satisfies

‖f(x+ y) + f(x+ σ(y))− g(x)− h(y)‖β ≤ θ(‖x‖p + ‖y‖p) (2.59)

and ‖x+ σ(x)‖ ≤ 2‖x‖, for all x, y ∈ E and for some θ > 0, then there exists a unique solution q:
E −→ F of the generalierd quadratic functional equation

f(x+ y) + f(x+ σ(y)) = 2f(x) + 2f(y), x, y ∈ E (2.60)

and a unique solution j: E −→ F of the generalized Jensen functional equation

f(x+ y) + f(x+ σ(y)) = 2f(x), x, y ∈ E (2.61)

such that
j(σ(x)) = −j(x), (2.62)

‖f(x)− q(x)− j(x)− g(0)− h(0)‖β ≤
θ

2β
4β

4β − 2.2p
‖x‖p[ 2

2β
(4 + 4.3p) + 2 + 2.3p] (2.63)

‖g(x)− q(x)− j(x)− g(0)‖β ≤
θ

2β
4β

4β − 2p.2
‖x‖p[ 2

2β
(4 + 43p) + 2 + 2.3p] + θ‖x‖p (2.64)

and

‖h(x)− q(x)− h(0)‖β ≤
θ

2β
4β

4β − 2p.2
‖x‖p[ 2

2β
(2 + 2.3p)] + θ‖x‖p (2.65)

for all x ∈ E.



106 B. Bouikhalene, E. Elqorachi, J. M. Rassias

Corollary 2.5. Let E be a vector space over K and let F be a complete β-normed space over K.
Let f : E −→ F be a mapping for which there exists a function ϕ : E × F → [0,∞) and a constant
L < 1, such that

‖f(x+ y) + f(x+ σ(y))− g(x)− h(y)‖β ≤ ϕ(x, y) (2.66)

and
ϕ(2x, 2y) + ϕ(x+ σ(x), y + σ(y)) ≤ 4βLϕ(x, y) (2.67)

for all x, y ∈ E. Then, there exists a unique solution q: E −→ F of the generalierd quadratic
functional equation (2.62) and a unique solution j: E −→ F of the generalized Jensen functional
equation (2.63) such that

j(σ(x)) = −j(x), (2.68)

‖f(x)− q(x)− j(x)− g(0)− h(0)‖β ≤
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x), (2.69)

‖g(x)− q(x)− j(x)− g(0)‖β ≤ ϕ(x, 0) +
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x) (2.70)

and

‖h(x)− q(x)− h(0)‖β ≤
1

2β
1

1− L
ψ(x, x) + ϕ(0, x) (2.71)

for all x ∈ E, where

χ(x, y) =
2

2β
ϕ(0, y) + ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)

+
1

2β
[ϕ(x, y) + ϕ(σ(x), y) + ϕ(x, 0) + ϕ(σ(x), 0)]

and

ψ(x, y) =
2

2β
ϕ(0, y) +

1

2β
[ϕ(x, y) + ϕ(σ(x), y) + ϕ(x, 0) + ϕ(σ(x), 0)].

Corollary 2.6. Let E be a vector space over K and let F be a complete β-normed space over K.
Let f : E −→ F be a mapping for which there exists a function ϕ : E × F → [0,∞) and a constant
L < 1, such that

‖f(x+ y)− g(x)− h(y)‖β ≤ ϕ(x, y) (2.72)

and
ϕ(2x, 2y) ≤ 2βLϕ(x, y) (2.73)

for all x, y ∈ E. Then, there exists an unique additive function a: E −→ F such that

‖f(x)− a(x)− g(0)− h(0)‖β ≤
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x), (2.74)

‖g(x)− a(x)− g(0)‖β ≤ ϕ(x, 0) +
2

2β
1

1− L
χ(x, x) +

1

2β
1

1− L
ψ(x, x) (2.75)

and

‖h(x)− a(x)− h(0)‖β ≤
1

2β
1

1− L
ψ(x, x) + ϕ(0, x) (2.76)

for all x ∈ E, where

χ(x, y) = ϕ(0, y) + ϕ(x, y) + ϕ(x, 0) + ϕ(0, y) + [ϕ(x, y) + ϕ(x, 0)]

and
ψ(x, y) = ϕ(0, y) + [ϕ(x, y) + ϕ(x, 0)].
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[18] P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive
mappings. J. Math. Anal. Appl., 184 (1994), 431-436.

[19] Z. Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci., 14 (1991), 431-434.

[20] M. E. Gordji, J. M. Rassias, M. B. Savadkouhi, Approximation of the Quadratic and Cubic
Functional Equations in RN-spaces, EUROPEAN J. PURE, APPL. MATH., 2 (2009), 494-
507.

[21] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A.,
27 (1941), 222-224.

[22] D. H. Hyers, G. Isac and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability
of mappings, Proc. Amer. Math. Soc., 126 (1998), 425-430.

[23] D. H. Hyers, G. I. Isac and Th. M. Rassias, Stability of Functional Equations in Several
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