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Abstract

This paper deals with the derivation of certain new Pólya–Szegő type inequalities by making
use of the Saigo fractional integral operator. The results obtained cover the same kind of
conclusions in the case of Riemann–Liouville and Erdélyi-Kober fractional integral operators.
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1 Introduction and results required

The authors of this research note realized recently a study [12] in which the cornerstone was the
Saigo-type fractional integral [11] applied to some suitably bounded and/or integrable functions.
Following the study on Saigo type fractional integral operator, firstly we shall derive certain new
integral inequalities related to Diaz–Metcalf and Pólya–Szegő inequalities in Saigo type fractional
integral setting together with related special cases which turn out to be the widely known classical
inequalities by Rennie and Schweitzer.

The main building–block in both stories is the integral mean of a suitable input function h on
a finite interval [a, b] defined by

M (h) =
1

b− a

∫ b

a

h(x)dx .

Its further specialized shapes adopted to the situations occur in the sequel.
The symbol χS(t) stands for the characteristic function of the set S, δλµ is the Kronecker symbol,

while under Lpϕ[A], p ∈ R we mean the function space {h |
∫
A
|h(t)|pϕ(t)dt <∞}.

1.1 Diaz - Metcalf weighted integral inequality.

The article [3] where the inequality initially appeared and e.g. the celebrated monograph [7] contain
this classical result, also see [8] for the probabilistic point of view and equality analysis.

Let f, g be Borel - functions, such that

m ≤ f(x) ≤M, 0 < n ≤ g(y) ≤ N, a.e. (x, y) ∈ [a, b]× [c, d]. (1.1)

Let w(x, y) be a nonnegative normalized weight function for which supp(w) = [a, b] × [c, d], i.e.∫ b
a

∫ d
c
w(x, y)dxdy = 1 and∫ d

c

w(x, y)dy = w1(x),

∫ b

a

w(x, y)dx = w2(y).
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Introducing the weighted integral mean with the weight p of the function h with a support being
either a 1-, or on 2-dimensional rectangle, as the functional

Mp(h) :=


∫ b

a

h(x)wj(x) dx, p ≡ wj , j = 1, 2 ,∫ b

a

∫ d

c

h(x, y)w(x, y) dxdy, p ≡ w ,
(1.2)

the weighted integral Diaz–Metcalf inequality reads

Mw1
(f2) +

mM

nN
Mw2

(g2) ≤
(
m

N
+
M

n

)
Mw(fg). (1.3)

Here the equality appears iff either (i) m/N = M/n or (ii) m/N < M/n and∫
Ix,y

w(x, y)dxdy = 1,

where Ix,y := {(x, y) : f(x)/g(y) ∈ {m/N,M/n}}.
However, the specification w(x, y) = (b− a)−1χ[a,b]2(x, y)δxy infers the classical Diaz - Metcalf

equal - weight integral inequality:

M (f2) +
mM

nN
M (g2) ≤

(
m

N
+
M

n

)
M (fg). (1.4)

as w1(x) = (b − a)−1χ[a,b](x) = w2(x). The equality in (1.4) holds iff either (i) m/N = M/n or
(ii) m/N < M/n and ∫

Ix
w1(x)dx = 1,

where Ix ≡ Ix,x, x ∈ [a, b], see also [3] and [7, p. 64].

1.2 Pólya - Szegő weighted integral inequality [7, 8].

Let f, g be positive Borel - functions which satisfy (1.1), that is

0 < m ≤ f(x) ≤M, 0 < n ≤ g(y) ≤ N, a.s. (x, y) ∈ [a, b]× [c, d],

and let w(x, y) be a nonnegative weight function with supp(w) = [a, b]× [c, d] for which∫ d

c

w(x, y)dy = w1(x),

∫ b

a

w(x, y)dx = w2(y).

Then it holds

Mw1
(f2)Mw2

(g2)

Mw(fg)
≤ 1

4

(√
mn

MN
+

√
MN

mn

)2

. (1.5)

The equality in (1.5) holds iff the following conditions are satisfied: [a, b] ≡ [c, d] and

f(x) = mχS(x) +Mχ[a,b]\S(x), g(y) = Nχ[a,b]\S(y) + nχS(y),
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for a Borel set S ⊆ [a, b] of Lebesgue measure

|S| = Mn(b− a)

mN +Mn
, (1.6)

moreover
w(x, y) = 0, (x, y) ∈ S2 ∪ ([a, b] \ S)2. (1.7)

When [a, b] = [c, d] and w(x, y) = (b− a)−1χ[a,b]2(x, y)δxy, we get

M (f2)M (g2)[
M (fg)

]2 ≤ 1

4

(√
mn

MN
+

√
MN

mn

)2

. (1.8)

When f, g satisfy (1.6) and (1.7), then (1.8) becomes equality and vice versa. The inequality (1.8)
originates back to Pólya and Szegő [9, p.81 & pp.251-252, Problem 93] where, however, no equality
analysis was performed.

We point out that Anber and Dahmani [1] obtained certain Pólya-Szegő–type inequalities by
making use of Riemann-Liouville fractional integral operator.

Remark 1.1. According to the observation by Diaz and Metcalf [3, p. 417] it is clear that because
(1.4) and since (

M 1/2(f2)−
√
mN

nM
M 1/2(f2)

)2

≥ 0 (1.9)

we immediately arrive at the Pólya–Szegő inequality (1.8). Modest adoptions of the same arguments
lead from the weighted variant (1.3) and the previous relation (1.9) to the weighted Pólya–Szegő
inequality (1.5) as well.

1.3 Fractional integration.

Following Saigo [11] we recall the definition of a fractional integration operator in the form consid-
ered by Saxena et al. [12].

Definition 1.2. Let <{α}, η > 0, β ∈ R. The Saigo fractional integral of the function f on R+ is
defined as

Iα,β,η0,t [f ] =


t−β

Γ(α)

∫ 1

0

(1− x)α−1
2F1

[ α+ β, −η
α

; 1− x
]
f(tx) dx

dn

dtn
Iα+n,β−n,η−n

0,t

[
f
]

0 < <{α}+ n ≤ 1, n ∈ N ,

(1.10)

where 2F1 stands for the Gaussian hypergeometric function.

The Riemann–Liouville and Erdélyi–Kober fractional integral operators follow as special cases
of (1.10), viz.

I α0,t[f ] := Iα,−α,η0,t [f ] =
tα

Γ(α)

∫ 1

0

(1− x)α−1 f(tx) dx <{α} > 0,

Iα,η0,t [f ] := Iα,0,η0,t [f ] =
1

Γ(α)

∫ 1

0

(1− x)α−1xη f(tx) dx <{α}, η > 0 .
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For further details of Saigo fractional integral operator related with inequalities one can refer to
the papers by Saxena et al. [12] and Jankov and Pogány [6].

It is worth mentioning the following result is given by Saxena et al. [12, p. 672, Theorem 2.1].
Let η − β > 0, µ > 0, κ+ α > 0. Then there holds the formula

Iα,β,η0,t

[
xµ−1(t− x)κ

]
=
tκ+µ−β−1B(µ, κ+ α)

Γ(α)
· 3F2

[ α+ β, κ+ α, −η
α, κ+ α+ µ

; 1
]
,

where B(·, ·) denotes the familiar Beta–function. When µ = 1, κ = 0, employing [4, p. 806, Eq.
7.5124] for <(α), η > 0, β < 1, we get

Iα,β,η0,t [1] =
t−β

Γ(α+ 1)
2F1

[ α+ β, −η
α+ 1

; 1
]

=
Γ(η + 1− β) t−β

Γ(1− β)Γ(α+ 1 + η)

also see [12, p. 673, Remark 2.2].

1.4 On the Saigo–type weighted integral mean.

The Čebyšev functional for the Saigo type kernel contaning the Gaussian hypergeometric term 2F1

has been introduced by Saxena et al. [12]. Comparing the weight function w(x, y) (introduced
in the section 1.1) to be a multiplicative separable function w(x, y) = wS(x)wS(y), (x, y) ∈ [0, 1]2,
where

wS(x) :=
t−β

Γ(α) Iα,β,η0,t [1]
(1− x)α−1

2F1

[
α+ β, −η
α+ 1

; 1
]
, (1.11)

the marginal weight becomes t–free:

wS(x) =
α (1− x)α−1

2F1

[
α+ β, −η
α+ 1

; 1
] 2F1

[ α+ β, −η
α

; 1− x
]
.

The Saigo-type weighted integral mean (compare with (1.2)) of a suitably choosen input function f
has been introduced by Saxena et al. [12, p. 673, Definition 2.3] in the form

M η
S (f) = M α,β,η

0,t (f) =
Iα,β,η0,t [f ]

Iα,β,η0,t [1]
=

∫ 1

0

wS(x) f(tx) dx, t > 0,

for all α, η > 0, β < 1.
Further obvious reductions imply for β = −α the Riemann–Liouville fractional integral operator

variant of the Diaz–Metcalf inequality, similarly β = 0 gives the Erdélyi–Kober case. In these cases,
the associated fractional integral means become

MRL(f) = M α,−α,η
0,t (f), MEK(f) = M α,0,η

0,t (f),

in which the defining weights are:

wRL(x) = α(1− x)α−1, wEK(x) =
Γ(1 + α+ η)

Γ(α)Γ(1 + η)
xη(1− x)α−1.

In the RL and EK cases α, η > 0.
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2 Diaz–Metcalf inequality for Saigo type operator

Now we present the Diaz–Metcalf type inequality for Saigo fractional integral.

Theorem 2.1. Let f, g ∈ L1
wS

[0, t] and

0 < m ≤ f(x) ≤M <∞, 0 < n ≤ g(x) ≤ N <∞; x ∈ [0, t].

Then for all <{α} > 0, β < 1, η > β − 1, and for all t > 0 we have

MS(f2) +
mM

nN
MS(g2) ≤

(
m

N
+
M

n

)
MS(fg) <(t) > 0. (2.1)

The equality in (2.1) holds iff m/N = M/n.

Proof. By the assumptions

m

N
≤ f(tx)

g(tx)
≤ M

n
t > 0, x ∈ [0, 1] ,

which implies (
M

n
g(tx)− f(tx)

)(
f(tx)− m

N
g(tx)

)
≥ 0.

In turn, the expanded inequality(M
n

+
m

N

)
f(tx)g(tx) ≥ f2(tx) +

mM

nN
g2(tx)

multiplied by the Saigo’s hypergeometric kernel

Kη(x) =
t−β

Γ(α)
(1− x)α−1

2F1

[ α+ β, −η
α

; 1− x
]
,

and integrated with respect to x ∈ [0, 1] becomes

Iα,β,η0,t [f2] +
mM

nN
Iα,β,η0,t [g2] ≤

(M
n

+
m

N

)
Iα,β,η0,t [fg] . (2.2)

Dividing it by the normalizing factor Iα,β,η0,t [1] we get the asserted inequality (2.1).
It is not difficult to see that (2.2) is equivalent to

Iα,β,η0,t

[(
f −

√
mM

nN
g

)2

+ 2

{√
mM

nN
− 1

2

(
m

N
+

n

M

)}
fg

]
≤ 0 .

Now, having in mind the Arithmetic mean–Geometric mean inequality, the equality analysis follows;
see the end of the subsection 1.2. and also [3] and [7, p. 64]. q.e.d.

Now, to obtain related Diaz–Metcalf like inequalities it is enough in (2.1) to specify β = −α
and β = 0 respectively. However, we skip to expose these special cases.

Now, we give a modest extension of the Diaz–Metcalf inequality (2.1) considering two different
weighted Saigo integral means which contain arbitrary independent scale parameters η and ξ. In
the sequel we will denote

M η
S (f) := M α,β,η

0,t (f).
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Theorem 2.2. Let f, g be integrable functions on R+ which satisfy (1.1). Then for all <{α} >
0, β < 1; η, ξ ∈ R satisfying min{η, ξ} > β − 1 we have

M η
S (f2) +

mM

nN
M ξ

S (g2) ≤
(
m

N
+
M

n

)
M η

S (f)M ξ
S (g) <(t) > 0. (2.3)

Proof. By the assumption (1.1) we obtain(
M

n
g(ty)− f(tx)

)(
f(tx)− m

N
g(ty)

)
≥ 0, t > 0; x, y ∈ [0, 1].

The expanded inequality (M
n

+
m

N

)
f(tx)g(ty) ≥ f2(tx) +

mM

nN
g2(ty)

when multiplied by the product of two different–parameter Saigo’s hypergeometric kernels

t−2β[
Γ(α)

]2 [(1− x)(1− y)
]α−1

2F1

[
α+ β, −η

α
; 1− x

]
2F1

[
α+ β, −ξ

α
; 1− y

]
,

and integrated with respect to x and y on the square [0, 1]2, becomes

Iα,β,η0,t [f2] Iα,β,ξ0,t [1] +
mM

nN
Iα,β,η0,t [1] Iα,β,ξ0,t [g2] ≤

(M
n

+
m

N

)
Iα,β,η0,t [f ] Iα,β,ξ0,t [g] .

It is enough to renormalize the last display by Iα,β,η0,t [1] · Iα,β,ξ0,t [1] to obtain (2.3). q.e.d.

For the allied RL and EK special cases of the Saigo–type Diaz–Metcalf inequality (2.3) we
deduce the following forms:

M η
RL(f2) +

mM

nN
M ξ

RL(g2) ≤
(
m

N
+
M

n

)
M η

RL(f) M ξ
RL(g),

M η
EK(f2) +

mM

nN
M ξ

EK(g2) ≤
(
m

N
+
M

n

)
M η

EK(f) M ξ
EK(g),

for all <(α), η > 0 and t > 0.
Comparing the inequalities’ right–hand–side expressions in Theorems 1 and 2 we see that the

terms MS(fg) ≡M η
S (fg) and M η

S (f)M ξ
S (g) differ even in the case η = ξ. To discuss this question

we recall the Čebyšev integral inequality [7, p. 40]: If f, g : [a, b]→ R are integrable functions, both
increasing or both decreasing, and p : [a, b]→ R+ is an integrable function, then∫ b

a

p(x)f(x)dx

∫ b

a

p(x)g(x)dx ≤
∫ b

a

p(x)dx

∫ b

a

p(x)f(x)g(x)dx .

Assume that η = ξ and both functions f, g increase (decrease) simultaneously on [0, t], t > 0, then
choosing p(x) = wS(x) (compare (1.11)), by the above listed Čebyšev integral inequality, we arrive
at the classical Diaz–Metcalf inequality:

MS(f2) +
mM

nN
MS(g2) ≤

(
m

N
+
M

n

)
MS(fg) ,

where, we transform the upper bound in (2.3). The same conclusions follow for the related Riemann–
Liouville and Erdélyi–Kober integral means.
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3 On Pólya-Szegő inequality for Saigo type operator

The present topic is strongly connected in view of the Remark 1 to Diaz–Metcalf inequality chapter’s
matter.

Theorem 3.1. Let f, g be bounded functions on R+ which satisfy (1.1). Then for all <(α) >
0, β < 1, η > β − 1, and for all t > 0 we have

MS(f2) MS(g2)

[MS(fg)]
2 ≤ 1

4

(√
MN

mn
+

√
mn

MN

)2

. (3.1)

Proof. Following the standard proof of the Pólya-Szegő inequality, applying the Arithmetic mean–
Geometric mean inequality to the left–hand–side expression of (2.1) yields(

m

N
+
M

n

)
MS(fg) ≥MS(f2) +

mM

nN
MS(g2) ≥ 2

√
mM

nN
MS(f2) MS(g2) ;

obvious transformations of two utmost terms lead to the asserted inequality (3.1). q.e.d.

For the equality analysis in this and similar cases we refer to [8, p. 117].
The related Pólya-Szegő type inequalities are valid as well for the Riemann–Liouville and

Erdélyi–Kober integral operators. Actually, we get these special cases of Theorem 3 choosing
β = −α, and β = 0 respectively.

The corresponding counterpart of the Pólya-Szegő inequalities (1.5) and (1.8) considering two
different weighted Saigo integral means which contain arbitrary independent scale parameters η
and ξ, reads as follows.

Theorem 3.2. Let f, g be positive integrable functions on R+. When f, g satisfy (1.1) then for all
<(α) > 0, β < 1,min{η, ξ} > β − 1 we have

M η
S (f2) M ξ

S (g2)[
M η

S (f) M ξ
S (g)

]2 ≤ 1

4

(√
MN

mn
+

√
mn

MN

)2

. (3.2)

Proof. By virtue of the Arithmetic mean–Geometric mean inequality we transform the extended
two parameter variant Diaz–Metcalf inequality (2.3) into(

m

N
+
M

n

)
M η

S (f) M ξ
S (g) ≥ 2

√
mM

nN
M η

S (f2) M ξ
S (g2) .

Now, obvious transformations result in the statement (3.2). q.e.d.

We can also state the related Riemann–Liouville and Erdélyi–Kober variants of the last theorem,
by taking β = −α, and β = 0 respectively in Theorem 4, leaving these routine moves to the
interested reader.

Moreover using f ≡ g on the whole range of the functions, we deduce the following interesting
result.
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Corollary 3.3. Let f be integrable functions on R+ which satisfies (1.1). Then for all <(α) >
0, β < 1,min{η, ξ} > β − 1 we have

M η
S (f2) M ξ

S (f2)[
M η

S (f) M ξ
S (f)

]2 ≤ 1

4

(
M

m
+
m

M

)2

.

Finally, by n = N (or by the equivalent specification g ≡ 1), we get

Corollary 3.4. Let f be integrable functions on R+ which satisfies (1.1). Then for all <(α) >
0, β < 1, η > β − 1 we have

M η
S (f2) ≤ 1

4

(
M

m
+
m

M

)2 [
M η

S (f)
]2
.

4 On Rennie and Schweitzer-type inequalities

The derived results have a set of consequent inequalities known under different names, like Kan-
torovič, Greub-Rheinboldt, Renie, Cassels, Schweitzer etc. inequalities, see e.g. [3, 5, 7, 8, 10, 13].
We presnt some of them in our Saigo integral operator setting.

Firstly, we present Rennie–type single–input–function inequalities whose origins can be found
in [10], also see [7, 8]. The resulting inequalities are of the Rennie–type, see

Theorem 4.1. Let F ∈ L1
wS

[0, t] and 0 < m ≤ F (x) ≤ M < ∞, x ∈ [0, t]. Then for all
<{α} > 0, β < 1, η > β − 1, and for all t > 0 we have

MS(F ) +mM MS(1/F ) ≤ m+M <(t) > 0. (4.1)

Moreover, for all <{α} > 0, β < 1; η, ξ ∈ R such that min{η, ξ} > β − 1, and for all t > 0 we have

M η
S (F ) +mM M ξ

S (1/F ) ≤ m+MM η
S (F )M ξ

S (1/F ) <(t) > 0. (4.2)

Proof. As F obeys 0 < m ≤ F (x) ≤M <∞, we can write(
M

F (tx)
− 1

)
(F (tx)−m) ≥ 0.

The resulting expression

F (tx) +mM
1

F (tx)
≤ m+M

multiplied by the Saigo’s hypergeometric kernel Kη(x) and integrated with respect to x ∈ [0, 1]

gives via the normalization by Iα,β,η0,t [1] the inequality (4.1).
Moreover, considering (

M

F (ty)
− 1

)
(F (tx)−m) ≥ 0,

we get

F (tx) +mM
1

F (ty)
≤ m+M

F (tx)

F (ty)
.

The desired inequality (4.2) we obtain by multiplying the last display with Kη(x)Kξ(y), then

integrating it on (x, y) ∈ [0, 1]2 and normalizing by Iα,β,η0,t [1] Iα,β,ξ0,t [1]. q.e.d.
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Finally, applying the Arithmetic mean–Geometric mean inequality to the left-hand side expres-
sion in (4.1), we easily complete the proof of the so–called Schweitzer–type inequality; the origins
of which have been reported in [13], consult also [7, 8].

Theorem 4.2. Let F ∈ L1
wS

[0, t] and 0 < m ≤ F (x) ≤ M < ∞, x ∈ [0, t]. Then for all
<{α} > 0, β < 1, η > β − 1, and for all t > 0 we have

MS(F ) MS(1/F ) ≤ 1

4

(√
M

m
+

√
m

M

)2

<(t) > 0.

Remark 4.3. Let us remark that the same kind of procedure applied to the left–hand–side terms
in (4.2) yields [√

M
(
MS(F ) MS(1/F )

)1/2 −√m]2 ≥ 0,

which is obviously not of any further interest.
Also it is worth to mention that a comprehensive equality analysis for Diaz–Metcalf inequality

can be found in [2, 3], while further equivalence results have been established between Rennie’s and
the celebrated Diaz–Metcalf inequalities in [2].
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