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Abstract

In this paper, a Lotka-Volterra functional differential equation is considered. By establishing
a nonlinear nonautonomous delay differential inequality and using a generalized Barbalat’s
lemma, we obtain some new sufficient conditions ensuring the dissipativity of the Lotka-Volterra
functional differential equation.
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1 Introduction

Let H be a real or complex Hilbert space with the inner product < -,- > and the corresponding
norm || - ||, X be a dense continuously imbedded subspace of H. For any given closed interval I C R,
let the symbol Cx (I) denote a Banach space consisting of all continuous mappings = : I — X,
on which the norm is defined by ||z]lcc = maxicy ||z(¢)||. Consider the initial value problem in
Lotka-Volterra functional differential equations

{ y'(t) = g(t,y),y(-) = nt,y(t) f(t,y(t),y(-), t >0, (1)
t

where 7 is a positive constant, ¢ € Cx[—7,0] is a given intial function, 7 : [0, +00) x X — H is
a nonnegative continuous function, f : [0,400) x X x Cx[-7,+00) = H, and g : [0,+00) X X x
Cx[—T,4+00) — H is a given locally Lipschitz continuous mapping satisfying

2R t ) ><n(t t tllull® + B(t 0)|?
< gl v () >t wb®) +aOul® +50), max @)
ue X, € Cx[—7,+00),t € [0, +00), (2)
where the functions uq(t) and pe(t) are assumed to satisfy
Oﬁﬂl(t) S,uQ(t) St+T7VtE [0,+OO), (3)

a(t) and S(t) are continuous functions and ~(¢) is a bounded continuous functions on the interval
[0, 4-00).
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Recently, Wen, Yu and Wang [1] discussed the dissipativity of (1) with n(t,y(¢t)) = 1. They
established the generalized Halanay inequality and obtained the dissipativity results of (1) with
n(t,y(t)) = 1. In this paper, we will improve the inequality in [1] such that it is effective for (1).
By establishing a nonlinear nonautonomous delay differential inequality and using a generalized
Barbalat’s lemma, we obtain some new sufficient conditions ensuring the dissipativity of (1).

2 Nonlinear delay differential inequality
Theorem 2.1. If y(t) > 0 is a differentiable function defined on (—o0, 4+00), and

{1NUSHQWQM%®+QMM0+5@HW%T@qquWﬁth,
y(

0= v(t).t < to, @

where u(t) = |ly(t)||?, and ¥ (t) is bounded and continuous fort < to, continuous functions y(t) > 0,
B(t) >0 and a(t) <0 fort € [ty, +00), 7(t) >0, : [0,400) x X — H is a nonnegative continuous
function, and if there exists o > 0 such that

a(t) + B(t) < —o < 0 fort > to, (5)
then we have
()
A

(t) < ;+Gt>to (6)

(ii)
ut) < Ly ge Jiyn(su()ds 4 1)

o

[

where G = sup_ ., cg<t, [V(O)||I7, 7* = SUPy <t< 00 V(t), and p* > 0 is defined as

pt = inf {pu(t) : p(t) + at) + B(t)e" D70 = 0}, (8)

t>to

where

h = sup max n(t,y) < 0. (9)
t>to (s,u)€[t—T,t]%[0,L 243

Proof. (i): We at first shall prove that for any positive constant ¢,

u(ty < 12

If (10) does not hold, then there exists t; > to such that

+ Gt > to. (10)

¥ +e ¥ +e

u(t) = + G, u' (1) > 0,u(t) < + Gt € (—o0,t1]. (11)
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Using (4), (5) and (11), we obtain that
u'(t1) < nlte, y(0))[y(t1) + a(tr)u(ty) + 5(t1)t S u(6)]
6+ B (S

a g

<t y(t)) [ (o + alty) + B(tr)) + Glalty) + (1))
< —n(t1,y(t1))oG < 0. (12)

*

y

<t y(0)" + alt)( +G)]

*

+ e

This contradicts the inequality in (11), and so (10) holds. Since € > 0 is arbitrary, we let € — 0
and obtain (6).
(ii): By (6), one can know that the definition of h for (9) is reasonable. Denote

H(p) = p+ aft) + B(t)e . (13)
For any fixed t > ¢y, we see that
H(0)=a(t)+8(t) < —0 <0, lirf H(p) =400 (14)
pn——+oo
and
H' (1) =1+ 7(t)B(t)het™® > 0, (15)

Therefore for any given ¢ > ¢y there is a unique positive p such that
+ aft) + B(t)e ™ =, 16
I

that means the (16) define an implicit function p(t) for ¢t > ¢y. From that definition, one has pu* > 0.
Next, we at first shall prove that for any positive constant ¢,

() < T8 4 et fanlovtDds &gy s g (17)
g

If (17) is not true, then there exists a constant & > to such that
u(§) = v(€),u'(§) > v'(€), u(t) < v(t),t € [to,£). (18)
Let w(t) = v(t) — u(t), then we have
w'(§) =v'(§) — u'(§)

> = Gl () T gl Y O)(E) + a©u©) + 5O _sup _ u(b)

> = Guen(€, (&) S OB e w(@))y* e+ a(€)u(©) + BE)  sup  u(O)].
E—T(£)<0LE

(19)
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If £ — 7(&) > to, it follows from (19) that

*

w/(€) 2 = Guon(€, (@)™ o THDE (e y(€)ly" + e+ al€) (T

+ 86 (LS f e IO miswn sy,
o

—u* & n(s,y(s))ds
+ Ge " Sy, n(s:u( ))d)

—n(&, y(€)[-

o+ a()+8(E) G VO (1t @)+ flg)e finrio 1N,
(20)

From the define of function p(t), we have

1+ al€) + B(e)e Jrio nlsuleNds
= "+ al§) + B o 1T _ () — a(g) - p(g)eM OO
= (1" = p(©)) + B(E) (" it MmN _ hi©)7(©)) < g, (21)

Noting (5), therefore (20) yields

w'(§) = v'(§) —u'(§) 20, (22)

which contradicts the first inequality in (18).
If € — 7(&) < to, it follows from (19) that

W) 2~ Gl u©)e T e @) et gL 4 Genn Sy

+ B(§) max{sup u(0), sup u(6)}
0<to  to<0<e

Z _ G,u*n(f,y(ﬁ))@_u* ftgo n(s,y(s))ds _ T](E, y(ﬁ))h* tet O[(f)(’y ;_E + Ge_ﬂ* ffo W(S,y(s))ds)
*+e
=)

(0-+a(§) +8(6)) =G i TV (11 o () +f(g)er” S oD

+ BE)(G +
(e y(e)- T E

(e, (€))L=

(r+a(€) +3(6)) G T (i a() 4 p(e)e! e rio merN),
(23)
Here we also obtain that (22) holds, which contradicts the first inequality in (18). Hence the in-

equality (17) must hold. Since € > 0 is arbitrary, we let ¢ — 0 and obtain (7). The proof of
Theorem 2.1 is completed. O

Remark 2.2. Suppose that 7(¢,y(¢)) = 1 in Theorem 2.1, then we get Theorem 2.4 in [1].

3 Dissipativity of Lotka-Volterra functional differential equations

Definition 3.1. (See [1]) System (1) is said to be dissipative in H if there exists a bounded set
B C H, such that for any given bounded set ® C H, there is a time t* = ¢t*(®), such that for
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any given initial function ¢ € Cx|[—7, 0] with ¢ contained in ® for all ¢t € [—7,0], the values of the
corresponding solution y(t) of the problem are contained in B for all ¢ > ¢*. Here B is called an
absorbing set of the problem.

Lemma 3.2. (Generalized Barbalat’s lemma [2]) If
(H1) u: Ry — R™ is uniformly continuous;
(Hz2) g : R™ — R is continuous and g( ) =0iff x = 0;

(H3) h: Ry — Ry satisfies K(0 fft+ h(s)ds > 0, for any ¢ > 0;
(Hy) limys 0o fg h(s)g(u(s))ds exists and is finite;
then tlim u(t) = 0.

(o)

Theorem 3.3. Suppose that y(t) is a solution of the problem (1) satisfying the condition (2), and
there exists a constant o > 0 such that

alt) +p(t) < —o <0 fort >0. (24)
Then
(i)
lyeP < T+ 6620 (25)
(i)
Iy@)? < T+ Gemr Somenonts 5 g (26)
where G = sup_ o, g<o l0(0) |1, 7* = SUDg<;< 100 ¥(t), and i* > 0 is defined as
a* = inf {u(t) : p(t) + alt) + (1) 70 = 0}, (27)
where
h = sup max n(t,y) < oo. (28)

20 (s,]lylI?)€lt—7,1]x[0, - +G]

Proof. To apply the result of Theorem 2.1, we have to extend the define of initial function in (1)
as y(t) = p(—7) for —oo <t < 7.
Let

ult) = lly@)II* =< y(1), y(t) > . (29)

From (2), we have

u'(t) = % <y(t),y(t) >=2R <y(t), g, y(t), y(-)) >
) max u(0)]

y
< a(t,y(t)y () + alt)ult) + 5(E) i (1) <0<ty (1)

<ty (@) + a()u(t) + 6()  max _ u(6)]. (30)

t—pa(t)<O<t
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Application of Theorem 2.1 to the above inequality yields (25) and (26). The proof is completed.
O

Corollary 3.4. In addition to the conditions of Theorem 3.3 hold, further assume that n(s,y(s)) >
6 > 0. Then,
(i) for any given € > 0, there exists a positive number t*(||¢||so,€), such that

[ (t)||2<i*+ Vit > t*
Yy = g, > .

(i) For any given € > 0, the problem (1) is dissipative with an absorbing set B = B(0, % +e).

Theorem 3.5: In addition to the conditions of Theorem 3.3 hold, further assume that n(s,y(s)) =
h(s)g(y(s)), where g and h satisfy (H2) and (Hs) of Lemma 3.2, respectively. Then, for any given

e > 0, the problem (1) is dissipative with an absorbing set B = B(0, \/% +e).

Proof: We only need to consider the following two possible cases:

(i) If [;° n(s,y(s))ds = oo, then from (26) we have lim;, [ly(t)[| < 1/ L.
(i) If [y n(s, y(s))ds < oo, then h(s)g(y(s)) € L[0,00). From (25) and (30), we know that g(t)
is bounded. So y(t) is a uniformly continuous function. By Lemma 3.2, we have lim;_,, y(t) =0 <
*
From above (i) and (ii), we know the problem (1) is dissipative with an absorbing set B =

B(0, \/ﬁ) The proof is completed. O

Corollary 3.6. In addition to the conditions of Theorem 3.3 hold. If n(s,y(s)) = g(y(s)), where
g(+) is a continuous, positive definite function, then for any given € > 0, system (1) is dissipative

with an absorbing set B = B(0, /L +¢).

Remark 3.7. In the recent years, various generalized Halanay inequalities have been established
and successfully applied to the problem of investigating the dissipativity of differential systems,
[1,3-6]. However, the generalized Halanay inequalities in [1,3-6] are ineffective for studying the
dissipativity of (1) due to the existence of the term “n(t,y(t))” of (1), unless one resorts to the
rather restrictive condition that 7(¢,y(¢)) > § > 0 (0 is a constant).
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