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Abstract

In this paper, a Lotka-Volterra functional differential equation is considered. By establishing
a nonlinear nonautonomous delay differential inequality and using a generalized Barbǎlat’s
lemma, we obtain some new sufficient conditions ensuring the dissipativity of the Lotka-Volterra
functional differential equation.
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1 Introduction

Let H be a real or complex Hilbert space with the inner product < ·, · > and the corresponding
norm ∥ ·∥, X be a dense continuously imbedded subspace of H. For any given closed interval I ⊂ R,
let the symbol CX(I) denote a Banach space consisting of all continuous mappings x : I → X,
on which the norm is defined by ∥x∥∞ = maxt∈I ∥x(t)∥. Consider the initial value problem in
Lotka-Volterra functional differential equations{

y′(t) = g(t, y(t), y(·)) = η(t, y(t))f(t, y(t), y(·)), t ≥ 0,
y(t) = φ(t), −τ ≤ t ≤ 0,

(1)

where τ is a positive constant, φ ∈ CX [−τ, 0] is a given intial function, η : [0,+∞) × X → H is
a nonnegative continuous function, f : [0,+∞) ×X × CX [−τ,+∞) → H, and g : [0,+∞) ×X ×
CX [−τ,+∞) → H is a given locally Lipschitz continuous mapping satisfying

2R < u, g(t, u, ψ(·)) >≤ η(t, u)[γ(t) + α(t)∥u∥2 + β(t) max
t−µ2(t)≤θ≤t−µ1(t)

∥ψ(θ)∥2],

u ∈ X,ψ ∈ CX [−τ,+∞), t ∈ [0,+∞), (2)

where the functions µ1(t) and µ2(t) are assumed to satisfy

0 ≤ µ1(t) ≤ µ2(t) ≤ t+ τ,∀t ∈ [0,+∞), (3)

α(t) and β(t) are continuous functions and γ(t) is a bounded continuous functions on the interval
[0,+∞).
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Recently, Wen, Yu and Wang [1] discussed the dissipativity of (1) with η(t, y(t)) ≡ 1. They
established the generalized Halanay inequality and obtained the dissipativity results of (1) with
η(t, y(t)) ≡ 1. In this paper, we will improve the inequality in [1] such that it is effective for (1).
By establishing a nonlinear nonautonomous delay differential inequality and using a generalized
Barbǎlat’s lemma, we obtain some new sufficient conditions ensuring the dissipativity of (1).

2 Nonlinear delay differential inequality

Theorem 2.1. If y(t) ≥ 0 is a differentiable function defined on (−∞,+∞), and{
u′(t) ≤ η(t, y(t))[γ(t) + α(t)u(t) + β(t) supt−τ(t)≤θ≤t u(θ)], t ≥ t0,

y(t) = ψ(t), t ≤ t0,
(4)

where u(t) = ∥y(t)∥2, and ψ(t) is bounded and continuous for t ≤ t0, continuous functions γ(t) ≥ 0,
β(t) ≥ 0 and α(t) ≤ 0 for t ∈ [t0,+∞), τ(t) ≥ 0, η : [0,+∞)×X → H is a nonnegative continuous
function, and if there exists σ > 0 such that

α(t) + β(t) ≤ −σ < 0 for t ≥ t0, (5)

then we have
(i)

u(t) ≤ γ∗

σ
+G, t ≥ t0. (6)

(ii)

u(t) ≤ γ∗

σ
+Ge

−µ∗ ∫ t
t0

η(s,y(s))ds
, t ≥ t0, (7)

where G = sup−∞<θ≤t0 ∥ψ(θ)∥
2, γ∗ = supt0≤t<+∞ γ(t), and µ∗ ≥ 0 is defined as

µ∗ = inf
t≥t0

{µ(t) : µ(t) + α(t) + β(t)ehµ(t)τ(t) = 0}, (8)

where

h = sup
t≥t0

max
(s,u)∈[t−τ,t]×[0, γ

∗
σ +G]

η(t, y) <∞. (9)

Proof. (i): We at first shall prove that for any positive constant ε,

u(t) ≤ γ∗ + ε

σ
+G, t ≥ t0. (10)

If (10) does not hold, then there exists t1 > t0 such that

u(t1) =
γ∗ + ε

σ
+G, u′(t1) > 0, u(t) ≤ γ∗ + ε

σ
+G, t ∈ (−∞, t1]. (11)
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Using (4), (5) and (11), we obtain that

u′(t1) ≤ η(t1, y(t1))[γ(t1) + α(t1)u(t1) + β(t1) sup
t1−τ(t1)≤θ≤t1

u(θ)]

≤ η(t1, y(t1))[γ
∗ + α(t1)(

γ∗ + ε

σ
+G) + β(t1)(

γ∗ + ε

σ
+G)]

≤ η(t1, y(t1))[
γ∗ + ε

σ
(σ + α(t1) + β(t1)) +G(α(t1) + β(t1)]

≤ −η(t1, y(t1))σG ≤ 0. (12)

This contradicts the inequality in (11), and so (10) holds. Since ε > 0 is arbitrary, we let ε → 0
and obtain (6).
(ii): By (6), one can know that the definition of h for (9) is reasonable. Denote

H(µ) = µ+ α(t) + β(t)ehµτ(t). (13)

For any fixed t ≥ t0, we see that

H(0) = α(t) + β(t) ≤ −σ < 0, lim
µ→+∞

H(µ) = +∞ (14)

and

H ′(µ) = 1 + τ(t)β(t)heµhτ(t) > 0. (15)

Therefore for any given t ≥ t0 there is a unique positive µ such that

µ+ α(t) + β(t)ehµτ(t) = 0, (16)

that means the (16) define an implicit function µ(t) for t ≥ t0. From that definition, one has µ∗ ≥ 0.
Next, we at first shall prove that for any positive constant ε,

u(t) ≤ γ∗ + ε

σ
+Ge

−µ∗ ∫ t
t0

η(s,y(s))ds ∆
= v(t), t ≥ t0. (17)

If (17) is not true, then there exists a constant ξ > t0 such that

u(ξ) = v(ξ), u′(ξ) > v′(ξ), u(t) ≤ v(t), t ∈ [t0, ξ). (18)

Let w(t) = v(t)− u(t), then we have

w′(ξ) =v′(ξ)− u′(ξ)

≥−Gµ∗η(ξ, y(ξ))e
−µ∗ ∫ ξ

t0
η(s,y(s))ds − η(ξ, y(ξ))[γ(ξ) + α(ξ)u(ξ) + β(ξ) sup

ξ−τ(ξ)≤θ≤ξ

u(θ)]

>−Gµ∗η(ξ, y(ξ))e
−µ∗ ∫ ξ

t0
η(s,y(s))ds − η(ξ, y(ξ))[γ∗ + ε+ α(ξ)u(ξ) + β(ξ) sup

ξ−τ(ξ)≤θ≤ξ

u(θ)].

(19)
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If ξ − τ(ξ) ≥ t0, it follows from (19) that

w′(ξ) ≥−Gµ∗η(ξ, y(ξ))e
−µ∗ ∫ ξ

t0
η(s,y(s))ds − η(ξ, y(ξ))[γ∗ + ε+ α(ξ)(

γ∗ + ε

σ
+Ge

−µ∗ ∫ ξ
t0

η(s,y(s))ds
)

+ β(ξ)(
γ∗ + ε

σ
+Ge

−µ∗ ∫ ξ−τ(ξ)
t0

η(s,y(s))ds
)]

=η(ξ, y(ξ))[−γ ∗+ε
σ

(σ+α(ξ)+β(ξ))−Ge−µ∗ ∫ ξ
t0

η(s,y(s))ds
(µ∗+α(ξ)+β(ξ)e

µ∗ ∫ ξ
ξ−τ(ξ)

η(s,y(s))ds
).

(20)

From the define of function µ(t), we have

µ∗ + α(ξ) + β(ξ)e
µ∗ ∫ ξ

ξ−τ(ξ)
η(s,y(s))ds

= µ∗ + α(ξ) + β(ξ)e
µ∗ ∫ ξ

ξ−τ(ξ)
η(s,y(s))ds − µ(ξ)− α(ξ)− β(ξ)ehµ(ξ)τ(ξ)

= (µ∗ − µ(ξ)) + β(ξ)(e
µ∗ ∫ ξ

ξ−τ(ξ)
η(s,y(s))ds − ehµ(ξ)τ(ξ)) ≤ 0. (21)

Noting (5), therefore (20) yields

w′(ξ) = v′(ξ)− u′(ξ) ≥ 0, (22)

which contradicts the first inequality in (18).
If ξ − τ(ξ) < t0, it follows from (19) that

w′(ξ) ≥−Gµ∗η(ξ, y(ξ))e
−µ∗ ∫ ξ

t0
η(s,y(s))ds − η(ξ, y(ξ))[γ∗ + ε+ α(ξ)(

γ∗ + ε

σ
+Ge

−µ∗ ∫ ξ
t0

η(s,y(s))ds
)

+ β(ξ)max{sup
θ≤t0

u(θ), sup
t0≤θ≤ξ

u(θ)}]

≥−Gµ∗η(ξ, y(ξ))e
−µ∗ ∫ ξ

t0
η(s,y(s))ds − η(ξ, y(ξ))[γ∗ + ε+ α(ξ)(

γ∗ + ε

σ
+Ge

−µ∗ ∫ ξ
t0

η(s,y(s))ds
)

+ β(ξ)(G+
γ∗ + ε

σ
)]

=η(ξ, y(ξ))[−γ
∗+ε

σ
(σ+α(ξ)+β(ξ))−Ge−µ∗ ∫ ξ

t0
η(s,y(s))ds

(µ∗+α(ξ)+β(ξ)e
µ∗ ∫ ξ

t0
η(s,y(s))ds

)

≥η(ξ, y(ξ))[−γ
∗+ε

σ
(σ+α(ξ)+β(ξ))−Ge−µ∗ ∫ ξ

t0
η(s,y(s))ds

(µ∗+α(ξ)+β(ξ)e
µ∗ ∫ ξ

ξ−τ(ξ)
η(s,y(s))ds

).

(23)

Here we also obtain that (22) holds, which contradicts the first inequality in (18). Hence the in-
equality (17) must hold. Since ε > 0 is arbitrary, we let ε → 0 and obtain (7). The proof of
Theorem 2.1 is completed. 2

Remark 2.2. Suppose that η(t, y(t)) ≡ 1 in Theorem 2.1, then we get Theorem 2.4 in [1].

3 Dissipativity of Lotka-Volterra functional differential equations

Definition 3.1. (See [1]) System (1) is said to be dissipative in H if there exists a bounded set
B ⊂ H, such that for any given bounded set Φ ⊂ H, there is a time t∗ = t∗(Φ), such that for
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any given initial function φ ∈ CX [−τ, 0] with φ contained in Φ for all t ∈ [−τ, 0], the values of the
corresponding solution y(t) of the problem are contained in B for all t ≥ t∗. Here B is called an
absorbing set of the problem.

Lemma 3.2. (Generalized Barbǎlat’s lemma [2]) If
(H1) u : R+ → Rn is uniformly continuous;
(H2) g : Rn → R is continuous and g(x) = 0 iff x = 0;

(H3) h : R+ → R+ satisfies K(δ)
∆
= inf

t≥0

∫ t+δ

t
h(s)ds > 0, for any δ > 0;

(H4) limt→∞
∫ t

0
h(s)g(u(s))ds exists and is finite;

then lim
t→∞

u(t) = 0.

Theorem 3.3. Suppose that y(t) is a solution of the problem (1) satisfying the condition (2), and
there exists a constant σ > 0 such that

α(t) + β(t) ≤ −σ < 0 for t ≥ 0. (24)

Then
(i)

∥y(t)∥2 ≤ γ̄∗

σ
+ Ḡ, t ≥ 0. (25)

(ii)

∥y(t)∥2 ≤ γ̄∗

σ
+ Ḡe

−µ∗ ∫ t
t0

η(s,y(s))ds
, t ≥ 0, (26)

where Ḡ = sup−∞<θ≤0 ∥φ(θ)∥2, γ̄∗ = sup0≤t<+∞ γ(t), and µ̄∗ ≥ 0 is defined as

µ̄∗ = inf
t≥0

{µ(t) : µ(t) + α(t) + β(t)ehµ(t)τ(t) = 0}, (27)

where

h̄ = sup
t≥0

max
(s,∥y∥2)∈[t−τ,t]×[0, γ̄

∗
σ +Ḡ]

η(t, y) <∞. (28)

Proof. To apply the result of Theorem 2.1, we have to extend the define of initial function in (1)
as y(t) = φ(−τ) for −∞ < t ≤ τ .

Let

u(t) = ∥y(t)∥2 =< y(t), y(t) > . (29)

From (2), we have

u′(t) =
d

dt
< y(t), y(t) >= 2R < y(t), g(t, y(t), y(·)) >

≤ η(t, y(t))[γ(t) + α(t)u(t) + β(t) max
t−µ2(t)≤θ≤t−µ1(t)

u(θ)]

≤ η(t, y(t))[γ(t) + α(t)u(t) + β(t) max
t−µ2(t)≤θ≤t

u(θ)]. (30)
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Application of Theorem 2.1 to the above inequality yields (25) and (26). The proof is completed.
2

Corollary 3.4. In addition to the conditions of Theorem 3.3 hold, further assume that η(s, y(s)) ≥
δ > 0. Then,

(i) for any given ε > 0, there exists a positive number t∗(∥φ∥∞, ε), such that

∥y(t)∥2 ≤ γ̄∗

σ
+ ε, ∀t > t∗.

(ii) For any given ε > 0, the problem (1) is dissipative with an absorbing set B = B(0,
√

γ̄∗

σ + ε).

Theorem 3.5: In addition to the conditions of Theorem 3.3 hold, further assume that η(s, y(s)) =
h(s)g(y(s)), where g and h satisfy (H2) and (H3) of Lemma 3.2, respectively. Then, for any given

ε > 0, the problem (1) is dissipative with an absorbing set B = B(0,
√

γ̄∗

σ + ε).

Proof: We only need to consider the following two possible cases:

(i) If
∫∞
0
η(s, y(s))ds = ∞, then from (26) we have limt→∞ ∥y(t)∥ ≤

√
γ̄∗

σ .

(ii) If
∫∞
0
η(s, y(s))ds <∞, then h(s)g(y(s)) ∈ L[0,∞). From (25) and (30), we know that ẏ(t)

is bounded. So y(t) is a uniformly continuous function. By Lemma 3.2, we have limt→∞ y(t) = 0 ≤√
γ̄∗

σ .

From above (i) and (ii), we know the problem (1) is dissipative with an absorbing set B =

B(0,
√

γ̄∗

σ + ε). The proof is completed. 2

Corollary 3.6. In addition to the conditions of Theorem 3.3 hold. If η(s, y(s)) = g(y(s)), where
g(·) is a continuous, positive definite function, then for any given ε > 0, system (1) is dissipative

with an absorbing set B = B(0,
√

γ̄∗

σ + ε).

Remark 3.7. In the recent years, various generalized Halanay inequalities have been established
and successfully applied to the problem of investigating the dissipativity of differential systems,
[1,3-6]. However, the generalized Halanay inequalities in [1,3-6] are ineffective for studying the
dissipativity of (1) due to the existence of the term “η(t, y(t))” of (1), unless one resorts to the
rather restrictive condition that η(t, y(t)) ≥ δ > 0 (δ is a constant).
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