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Abstract

Some new inequalities of Ostrowski type for functions whose derivatives are h-convex in mod-
ulus are given. Applications for midpoint inequalities are provided as well.
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1 Introduction
1.1 Ostrowski Type Inequalities

Comparison between functions and integral means are incorporated in Ostrowski type inequalities
as follows.
The first result in this direction is due to Ostrowski [38].

Theorem 1.1. Let f : [a,b] — R be a differentiable function on (a,b) with the property that
|f'(t)] < M for all ¢ € (a,b). Then

b :C_a—&-b
‘f(x)b_lafa f@)dt| < i+<b_;> (b—a)M (1.1)

for all x € [a, b].
The constant % is the best possible in the sense that it cannot be replaced by a smaller quantity.

The following results for absolutely continuous functions hold (see [29] — [31]).

Theorem 1.2. Let f : [a,b] — R be absolutely continuous on [a,b]. Then, for all x € [a,b], we
have:
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‘f(x)—bia/ f(t)dt (1.2)
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where ||-[[( ;. (r € [1,00]) are the usual Lebesgue norms on L, [a, ], i.e., we recall that

[91l{4,0),00 == €55 sup g ()]
t€la,b]

b ¥
gl sy = ( / 9 <t>|rdt> ,rel,00).

and

and

1
(p+1)

respectively are sharp in the sense presented in Theorem 1.1.

The constants %, %

Sl

The above inequalities can also be obtained from the Fink result in [33] on choosing n = 1 and
performing some appropriate computations.

If one drops the condition of absolute continuity and assumes that f is Holder continuous, then
one may state the result (see for instance [21] and the references therein for earlier contributions):

Theorem 1.3. Let f : [a,b] — R be of r — H—H®older type, i.e.,
|f(x)_f(y)‘ §H|x—y|r, for all T,y € [a’vb]a (13)

where r € (0,1] and H > 0 are fixed. Then, for all 2 € [a,b], we have the inequality:

(=) ) oo

The constant ﬁ is also sharp in the above sense.

H
r+1

<

b
|f<a:>—b_1a/ ()t

Note that if r = 1, i.e., f is Lipschitz continuous, then we get the following version of Ostrowski’s
inequality for Lipschitzian functions (with L instead of H) (see for instance [13])

2
1 _ atb
< 4+<xb_2> (b—a)L, (1.5)

b
’f(:e)—bia/ (o) di
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where z € [a,b] . Here the constant 1 is also best.
Moreover, if one drops the condition of the continuity of the function, and assumes that it is of
bounded variation, then the following result may be stated (see [15]).

b
Theorem 1.4. Assume that f : [a,b] — R is of bounded variation and denote by \/ (f) its total

1 b
fa/a f(t)dt| <

b
] Vi (16)
for all z € [a,b]. The constant % is the best possible.

variation. Then
_ atb

2
b—a

2

If we assume more about f, i.e., f is monotonically increasing, then the inequality (1.6) may be
improved in the following manner [12] (see also the monograph [28]).

Theorem 1.5. Let f : [a,b] — R be monotonic nondecreasing. Then for all z € [a, b], we have the

inequality:
b
|f<a:> 5 [ foa

(1.7)

b
g {2x—<ﬁ+bf()+/’wnU—xU%ﬂﬁ}
< pog We—a)lf (@) = fl@]+ @ -2)[f(0) - f (@)}
a+b
< [f — ][f(b)—f(a)]

All the inequalities in (1.7) are sharp and the constant 3 is the best possible.
The case for the convex functions is as follows [18]:

Theorem 1.6. Let f : [a,b] C R — R be a convex function on [a,b]. Then for any = € (a,b) one
has the inequality

(b= 1 (@) = (@ = 0)” . (@)] (18)

DN | =

/f Dt~ (b—a) f (@)
<3 [o-02 ) - @0 @)

The constant % is sharp in both inequalities. The second inequality also holds for x = a or x = b.

For other Ostrowski’s type inequalities for the Lebesgue integral, see [3]-[13] and [19].

Inequalities for the Riemann-Stieltjes integral may be found in [14], [16] while the generalization
for isotonic functionals was provided in [17].

For the case of functions of self-adjoint operators on complex Hilbert spaces, see the recent
monograph [20]
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1.2 The Case of Derivatives that are Convex in Modulus

In [17], the author pointed out the following identity in representing an absolutely continuous
function. Due to the fact that we use it throughout the paper we give here a short proof.

Lemma 1.7. Let f : [a,b] — R be an absolutely continuous function on [a,b]. Then for any
x € [a,b], one has the equality:

b 1
/ f(t dt—i—— (m—t)(/ f’[(l—)\)x—i—/\t]d)\)dt. (1.9)
0
Proof. For any t,x € [a,b], x # t, one has

f(x;:t 7x_t/f du—/f [(1—\)z+ A dA,

showing that )
@) :f(t)—i—(x—t)/o P11 = A) 4+ A dA (1.10)

for any ¢,z € [a,b].
If we integrate (1.10) over ¢ on [a,b] and divide by (b—a), we deduce the desired identity
(1.9). Q.E.D.

Using the above lemma the following result can be pointed out improving Ostrowski’s inequality
[4].
Theorem 1.8. Let f : [a,b] — C be an absolutely continuous function on [a,b] so that |f’| is
convex on (a,b).

(i) If f' € Loo[a,b], then for any x € [a,b],

1 b
— t)dt 1.11
‘f(o:) = | 1 (1.11)
101 x — atb
< |z 2 _ / / )
<i i+ ( — ) (b= ) 1 @) +11f].
The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
(i) If f' € Lpla,b], p > 1, % + % =1, then for any x € [a, b],

1 b

fla) - / F(t)d (1.12)
—al,

1 b2\ g\ i . /
- 2(q+1)7 [(b_a) Jr(b—a> ] (o —=a) I[f (@) + Il -

The constant % is sharp in the sense that it cannot be replaced by a smaller quantity.
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(iii) If f € Ly]a, b], then for any = € [a, b],

(1.13)

b
f@) - [ s

_ atb
x 2

b—

Ly
2

1
< =
-2

] [(b—a) £ @)+ 1f1]

In order to extend this result for other classes of functions, we need the following preparatory
section.
2 h-Convex Functions

2.1 Some Definitions

We recall here some concepts of convexities that are well known in the literature. Let I be an
interval in R.

Definition 2.1 ([32]). We say that f : I — R is a Godunova-Levin function or that f belongs to
the class @ (I) if f is non-negative and for all z,y € I and ¢ € (0,1) we have

Pl (=09 < 17+ )

Some further properties of this class of functions can be found in [24], [25], [27], [37], [40] and [41].
Among others, its has been noted that non-negative monotone and non-negative convex functions
belong to this class of functions.

Definition 2.2 ([27]). We say that a function f : I — R belongs to the class P (I) if it is
nonnegative and for all x,y € I and ¢ € [0, 1] we have

fltz+ A =t)y) < fx)+f(y).

Obviously @ (I) contains P (I) and for applications it is important to note that also P (1)
contain all nonnegative monotone, convex and quasi conver functions, i. e. nonnegative functions
satisfying

ftr+(1—1t)y) <max{f(2),f(y)}

for all z,y € I and ¢ € [0,1].
For some results on P-functions see [27] and [39] while for quasi convex functions, the reader
can consult [26].

Definition 2.3 ([6]). Let s be a real number, s € (0,1]. A function f : [0,00) — [0, 00) is said to
be s-convex (in the second sense) or Breckner s-convex if

flz+Q =ty <t°f(x)+(1—0)°f(y)

for all 2,y € [0,00) and t € [0,1].
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For some properties of this class of functions see [1], [2], [6], [7], [22], [23], [34], [35] and [43].

In order to unify the above concepts, S. Varosanec introduced the concept of h-convex functions
as follows.

Assume that I and J are intervals in R, (0,1) C J and functions h and f are real non-negative
functions defined in J and I, respectively.

Definition 2.4 ([46]). Let h: J — [0, 00) with h not identical to 0. We say that f : I — [0,00) is
an h-convex function if for all z,y € I we have

flzt+ (A =t)y) <h(@)f(x)+h(1-1t)f(y)
for all t € (0,1).

For some results concerning this class of functions see [46], [5], [36], [44], [42] and [45].

2.2 Inequalities of Hermite-Hadamard Type

In [42] the authors proved the following Hermite-Hadamard type inequality for integrable h-convex
functions.

Theorem 2.5. Assume that f : I — [0,00) is an h-convex function, h € L[0,1] and f € L |a, b
where a,b € I with a < b. Then

1 a+b I !
< t)dt < +f(b h(t)dt. HH
! (7)< 5 [ 0@ @ son [ no (1)
If we write (HH) for h (t) = ¢, then we get the classical Hermite-Hadamard inequality for convex
functions.
If we write it for the case of P-type functions, i.e., h(t) = 1, then we get the inequality

a b
3 () <52 [ fod<r@ s, (2.1)

provided f € L [a,b], that has been obtained in [27].
If f is integrable on [a, b] and Breckner s-convex on [a, ], for s € (0,1), then by taking h (t) = t*°

in (HH) we get
b
271 f (“;b> < [ a0 (2:2)

that was obtained in [22].

Since for the case of Godunova-Levin class of function we have h (t) = %, which is not Lebesgue
integrable on (0,1), we cannot apply the left inequality in (HH).

We can introduce now another class of functions.

Definition 2.6. We say that the function f : I — [0,00) is of s-Godunova-Levin type, with
s €[0,1], if
1

a—o ), (2.3)

Flim+(=0)y) < o f (@) +

forallt € (0,1) and z,y € I.
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We observe that for s = 0 we obtain the class of P-functions while for s = 1 we obtain the class
of Godunova-Levin. If we denote by Qs (I) the class of s-Godunova-Levin functions defined on I,
then we obviously have

PI)=Qo(I) S Qs (1) CQs, (1) S (1) =Q ()

for 0 < s1 <359 < 1.
We have the following Hermite-Hadamard type inequality.

Theorem 2.7. Assume that the function f : I — [0,00) is of s-Godunova-Levin type, with s €
[0,1). If f € L[a,b] where a,b € I and a < b, then

a b a

We notice that for s = 1 the first inequality in (2.4) still holds and was obtained for the first
time in [27].

3 Inequalities for Functions Whose Derivatives are h-Convex in
Modulus

3.1 The Case of |f’| is h-Convex

The following result holds:

Theorem 3.1. Let f : [a,b] — C be an absolutely continuous function on [a,b] so that |f’| is

h-convex on (a,b) with h € L[0,1].

(i) If f' € Lo[a,b], then for any z € [a,b],

e WL (31)
<|ts (wb‘_afbf - I@ I [
(i) If f' € Lyla,b], p > 1,1 + 7 =1, then for any z € [a, b],
‘f(x) [ o (32)

<G G Z)HT <= @I+ 171, [ hean

(iii) If f' € Li[a,b], then for any z € [a,b],

1
] x [(b—a)lf’(ﬂ«“)lJr||f’||1]/O h(t)dt.  (3.3)
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Proof. (i). Using (1.9) and taking the modulus, we have

’f(x)—bia/abf(t)dt // z—1t) A) z + At] dAdt

)&+ M| dAdt == K

b—a

Utilizing the h-convexity of |f’| we have

[ (1= X) [ (@)] + 2 (M) £ ()] dAdt

—aJa Jo
—/b|x—t| [|f’x /lh - d)\+|f’(t)|/1h(>\)d>\} it
/h dA/ o =t [ (@) + 17/t /h

<t h(A) Wess sup [/ +17C / @ — ) dt

[“"‘“ ][If( >|+||f’||oo1/0 B (A dA

1 JJ—L-H) , 1
—{ﬂ( — )](ba)[f( >\+|\f\|w]/0 B\ d,

for any x € [a, ], and the inequality (3.1) is proved.
(ii). As above, we have

b
‘f(fv) | rwa

Using Holder’s integral inequality for p > 1, % + % =1, we get that

b . :
sbi< / x—tth> ( / (If’(w)|+|f’(t)|)pdt>

1 b—2) "+ (z—a
b—a qg+1

1 b , , - N 1
<o [l dir @I Old= @ [ roya

)Q+1 q
] I @)+ £,

and the inequality (3.2) is proved.
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(iii). We also have that

M@ < sl -t [ Ir@r o

te(a,b]

b
= b—la) max (z — a,b — x) [(ba)|f'(x)|+/a |f’(t)|dt]

I
D)

and the inequality (3.3) is proved. Q.E.D.

a+b

T—

b—

] [(b—a) lf" (@) + [1£1],]

The following particular case is interesting.

Corollary 3.2. With the assumptions of Theorem 3.1, we have the midpoint inequality

a+b 1 b
‘f( ) -5 | e (3.4
1 ,(a+bd , !
<to-a [l (50)|+ 1 [ roa
provided f’ € Lyla,b].
If f" € Lyla,b], p>1, % + % =1, then, we have,
a+b 1 b
|f< ! )-H/ F(t)dt (3.5)
) b b P % 1
S%(b—a)ﬁ (/ [ (“; )’+|f’(t)|] dt) /Oh(t)dt.
If f' € Ly[a,b], then
a+b 1 b
| < )b_a/ F(t)dt (3.6)

;[a)—) ()] [ |dt]/ o) dt

Remark 3.3. We observe that if |f’| is convex on (a,b), then Theorem 3.1 reduces to Theorem
1.8.

Assume that |f’| is Breckner s-convex on [a,b], for s € (0,1).
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(a) If f' € Loola,b], then for any z € [a, 1],

b
—bia/}ﬂﬂﬁ (3.7)
1 1 x—“—M
< L 4+<b_ ) =) 15+ 1)
(aa) If f" € Ly[a,b], p > 1, % + % =1, then for any z € [a, b],
b
O AL (33)
— g\ r—a\? .
<(s+1)zq+1); (=) +(i=2) ] < (b a)? |1 @) + 1711,

(aaa) If f' € Ly[a,b], then for any z € [a, b],

1 /bﬂﬂﬁ < 1,
b—a /, T s+1 2

Assume that |f'| is of s-Godunova-Levin type, with s € [0,1).

fz) - bh—

] < [O=a)[f' @+ L]. (39)

(b) If f" € Loola, b], then for any z € [a, D],

1 b
= [ s B.10)
_ atb
< li ¥ (xb 2 ) ] (b ) [ @) +171.]-
(bb) If f" € Ly[a,b], p > 1, % + % = 1, then for any z € [a, ],
b
7bia/‘ﬂﬂﬁ (3.11)

1

< T
(1—=s)(g+1)°

bh— q+1 _ q+1% i
(b—i) +(§_2) ]X(b—a)QIf’(x)lﬂLlf’lllp-

(bbb) If f' € Ly]a,b], then for any x € [a, b],

_a/f dt<1_l

J;_Ler

- ] [(b—a)[f' (@) + 1] (312)
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3.2 The Case of |f'|" is h-Convex
The following result also holds:

Theorem 3.4. Let f : [a,b] — C be an absolutely continuous function on [a, b] so that |f’|” with
p > 1is h-convex on (a,b) and h € L[0,1].

(i) If f' € Lla, b], then for any z € [a, b],

b
o) - bia/ Ft)dt (3.13)
1 — ot ’ / / p ! Hr
< L+ (xb_; ) ] - (PP I ([ hwa)
(ii) If f" € Lpla,b], p > 1, % + % = 1, then for any z € [a, ],
b
|f(x) S =l RICL (3.14)

= <E;b+_f§)jq [(i:i)qt(ﬁij)qﬂ] ’ (6-alf @rire]” (/Olh(t) dt)

(i) If f' € L,la,b], then for any x € [a, b],

1/p

‘f(x)_ bia/abf(t)dt < %“L xb__afb 1 < |[If" @)+ 1£1°]]” (/Olh(t) dt)l/p (3.15)
< [;+ xb__fb ]x<(b—a)|f' (a:)l”+||f’li)l/p</olh(t) dt)l{p

Proof. As in the proof of Theorem 3.1 we have

b 1
bia//o(w_t)f/[(l—)\)a:—&-)\t]d)\dt

b 1
S#/ Iw—t|</ |f’[(1—A>x+At]|dA)dt;:K
b—aJ, o
for any x € [a, b].

By Holder’s integral inequality we have

/01|f’[(1—)\)x+>\t]|d)\< (/01 1%)1/‘1 </01|f’[(1—)\)x+>\t]|pd>\>1/p

_ (/01|f’[(1—)\)a:+)\t]pd)\>1/p

b
‘f(w)— e AL
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for any x € [a, b], where % + é =1,p>1.
Since |f’|” is h-convex on (a,b) with h € L[0,1], then

1

/ P L= N+ 2P < [ @F +1F (0F] / B (A) dX,
0 0

for any x € [a, b].
Therefore

1 ' Ve / p ’ p11l/p
I(Sb_a([;hﬁﬁﬂ> .Alx—ﬂﬂfwm @] at (3.16)

for any x € [a, b].
(1). Now, if f € L [a, b] then

b "
/ e — 1[I @ + | (1)) at

b
<ess s (1@ 417 OF) [ o - dae
t€la,b] a

= [ @F + 1P 5 [ - o+ 0 - o]

for any x € [a, ], and utilizing (3.16), the inequality (3.13) is proved.
(ii). If f" € Lpyla,b], p > 1, % + % = 1, then by Holder’s inequality we have
’ 1/p
[ o=t @p + 1 P77 e

b YVa /o L\ P
s( / |zt|th> ( | (0 @r+1r or”) dt)

_ l(b —)™ 4 (@ -

1/p

1/p

q+1
b— q+1 _ N\ atl 1/
(=) +() ] < [o—a)lr @ + 1718

for any x € [a,b], and by (3.16) we deduce the desired inequality (3.14).

1/q
] (=)' @I + 1171

(b—a)'ts

(¢+1)"
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iit). If f' € L,la,b], then by Holder’s inequality we also have
P
b Y
[ o=t @P 417 @]

b
§ sup |II}'*t|\/ [|f/($)|p+|fl(t)‘p}1/pdt

t€la,b]
= max {z — a, b—x}/ |p+‘f()|]1/pdt
[1 z — atb ] p
—-a) |5+ [S2|| Ir @P +1p)

o atb]] b 1/p
<(b-a) b4 T (/[u%mf+u%wﬂdﬂ

= b-a) |3+ |52 || (G- alr @r+171)

for any x € [a, b].
The following midpoint type inequalities are of interest.

Corollary 3.5. With the assumptions of Theorem 3.4, we have the inequality

a+b 1 b
|f< 5 )_b—a/a f(t)dt
a-+b\|P 1/p 1 1/p
(50 ] ([ rwa)
0
provided f' € Lyla,b).

If f' € Lyla,b],p>1, 1% + % =1, then we have

(25%) st f o

1 1
_W(b—a)‘l X [(b—a)

<10-0)|

)

p+nfﬁrm(47uww>

1/p

13

Q.E.D.

(3.17)

(3.18)
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If /' € Lyla,b], then
‘f (‘2”’) - b_lafabfu)dt
sl (53 ] ([ )
s (0-alr ()] + |f’|§>l/p ([ r dt)l/p.

(3.19)

1/p

p
+ 11

IN

Remark 3.6. The interested reader can state the corresponding particular inequalities for different
h-convex functions. However the details are omitted.
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