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 SOME ADDITIONAL NOTES ON

 GLOBALLY POROUS SETS*

 Abstract

 Two different notions of global porosity are discussed. Relations be-
 tween them are discovered, and some new characterizations of globally
 porous sets are given. A connection to Dolženko's boundary value prob-
 lem is emphasized. Finally the notion of a bilaterally globally porous set
 is defined and some properties of such sets are discused. Several errors
 in the literature are corrected.

 1. An Introduction

 A notion of global porosity appears for the first time (to my knowledge) in [3],
 where the definition and some basic properties were given. It was developed
 by the authors as a step in the solution of Dolženko's boundary value problem.
 The problem is as follows :

 Let / be a complex valued function, holomorphic in th* pen upper
 half plane J+. We can define a set of singular points of / in this
 sense : a point x G M is a singular point for / if there is a pair
 of open angles V, V' C /+ with a common vertex x such that the
 cluster set of / at x with respect to V differs from that with respect
 to V' . Let Avv(f) be the set of all singular points of /. Dolženko's
 problem is to find the full characterization of such sets.

 *1 want to express my sincere thanks to the supervisor of my diploma thesis, Profes-
 sor L. Zajíček from the Department of Mathematical Analysis of the Charles University in
 Prague for his substantial support of this work.
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 Dolženko in [2] showed that all such sets are Gsa and cr-porous. He states the
 hypothesis that this is a full characterization. In [4], Kolesnikov presents the
 following characterization :

 Theorem 1.1 (Kolesnikov) Let E ÇR. The following conditions are equiva-
 lent:

 (i) There is an arbitrary (real or complex valued) function f defined on J+
 such that E = Evv(f)-

 (ii) There is a function f holomorphic and bounded on 7+ such that E =
 Evv(f).

 (Hi) There is a sequence of closed sets {Fn} with each Fn Ç M such that
 E = p^n). ( For the definition of p(Fn) see below - Definition
 i.i.)

 However he did not answer Dolženko's original question - whether or not these
 sets are exactly the cr-porous Gßa sets. T. Vessey gives in [5] the following
 results (using a notion of global porosity) :

 Lemma 1.2 Let E be a Gsa subset of some globally porous set. Let a G
 (0, 7t/2). Then there is a continuous function f : - ► [0, 1] and ß G (a, 7t/2)
 such that

 (i) For each x G E the cluster set off at x with respect to the angle Vx(a , 7 r-
 a) is equal to [0, 1].

 (ii) For each x G E the cluster set of f at x with respect to V^(/3, 7r - ß ) is
 equal to {0}.

 (Hi) For each x & E and for each angle V C I+ with vertex at x the cluster
 set of f at x with respect to V is equal to {0}.

 Theorem 1.3 Let E be a a -globally porous Gta set. Then there is a contin-
 uous function f : 7+ - > [0, 1] such that E = Eyvif)-

 One can see that the notion of global porosity is a partial solution of Dolženko's
 problem. Acording to [3], chapter "Some negative results", it is not the com-
 plete solution. There is a set which is an Ayv(f) for some / and which is not
 cr-globally porous. We will investigate this definition and correct an error in
 Corollary 3 of [3] .

 L. Zajíček gives in [7] a different definition of global porosity and states
 that both definitions are equivalent. However we will show that this too is in
 error; the second definition is more general than the first one. We characterize
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 this second notion in several ways and investigate the relationship between the
 two definitions. We notice that the second definition is also a partial solution
 of Dolženko's problem in the same sense as the first one. Unfortunately again
 it is not the complete solution. Using arguments similar to those found in [3]
 it can be shown that the perfect porous set constructed in [3] is not cr-globally
 porous in the Zajíček sense. Finally we show that this second notion of global
 porosity is not a new notion at all; it is only a new name for something known
 before.

 First we establish some basic notation. We will use the common notation

 of basic set theoretical notions, such as M - the closure of a set M, M° -
 interior of M, M' - the set of limit points of M and dM - the boundary of
 M . If r is a real number, we will use the following notation :

 (i) r + M = {x = r + y: ye M} (r - M is defined similarly).

 (ii) r - M = {x = ry : y e M}.

 By "connecting interval" of some closed set E CR we mean an arbitrary
 bounded component (possibly empty) of the complement of E. Thus when
 referring to a system {In}^=i of all pairwise disjoint connecting intervals of E
 we mean the Jn's can be empty for n > no > 1.

 A "portion" of a set E is an arbitrary nonempty intersection of E with an
 open interval.

 As usual, the porosity of E at a point x e M is defined by

 _,e. _' i:
 _,e. p{E, x) _' - i: lim

 h-+0+ 2 Al

 where for an arbitrary interval I :

 A (E, I) = sup {| J I : J is an interval , J Ç I ' E} ,

 "the length of the largest gap of E in the interval The right and left
 porosities (p+ and p_) are defined in the obvious way. Notice that some
 authors omit the coefficient 1/2 in the definition of the porosity.

 A set E ś's called porous at x (porous on right, left, bilaterally porous) if
 the porosity (right, left porosity, both right and left porosity) of E in the x is
 greater than 0.

 TA set is called porous if it is porous at each of its points. A set is called
 uniformly porous if the porosity at each of its points is greater than some
 fixed € > 0. The notions of bilaterally and uniformly bilaterally porous set are
 defined in the obvious way. A set is called cr-porous if it can be expressed as
 a countable union of porous sets.
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 Definition 1.1 Let E ÇR and set p(E) = {x e E' fi E : p (E, x) > 0} .

 We will say that two intervals are concentric if they have the same geometry
 and have a common center. If I is an interval and 0 < r G M we define r * I to

 be the interval concentric with I which has the same geometry as I and which
 is of length r • 'I'.

 The binary operation * is obviously monotone in both variables with re-
 spect to usual ordering of M and inclusion.

 The following two lemmas are easy to prove.

 Lemma 1.4 Suppose EÇ1 and xGl. Let 1 be the system of all connecting
 intervals of E . Let r > 0 be such that for every d > 0 there exists an interval
 I el, 'I' < d such that x e r * I. Then p (E,x) >

 Proof. Fix x and take I e 1 such that x e r * I. The distance of x

 from the center of I is less than r'I'/2 and therefore I Ç (x - h, x + h) with
 h = (r + 1)|/|/2. Thus A (E, (x + h,x - h)) > |J|. Since the interval I can be
 arbitrarily small, p (E,x) > l/(r + 1).

 Lemma 1.5 Let E Ç M. Let x e (inf(E),sup(E)); and let I denote the
 system of all connecting intervals of E . Suppose there exists an e > 0 and
 r > 1 such that x ^ r * I for every interval I el with distance from x smaller
 than e. Then p (E,x) <

 PROOF. Take e, r and x such that hypothesis is valid. Let p (¿£,x) > l/(r + l).
 There exists arbitrarily small h > 0 such that À(i2, (x - h,x + h)) > 2/i/(r + l).
 Choose h < min(£,x - inf(i£),sup(i£) - x). Let L be the longest gap of E in
 the interval (x - /i, x + h). Then, 'L' > The choice of h implies that
 L = I n (x - /i, x + h) for some I el. As the distance of x from I is less
 than h < £, it follows that x £ r * I. The monotonicity of * implies that
 x & r * L. Therefore the distance of x from the center of L is greater or equal

 than r'L'/2. Thus h > (r + l)|L|/2 and 'L' < ^¡-, a contradiction.

 2. Globally Porous Sets

 Definition 2.1 Let E be a bounded subset of M, containing at least two el-
 ements. Take a system {/n}^=i of all connecting intervals of E . For each
 Ne N let E P(N) denote the set of all endpoints of intervals /i, . . . ,In- i-

 If r > 0 exists such that for each N e N there isaMef$,M>N such
 that E ' E P(N) Ç U%LNr * Jn, then the set E is called r -globally porous. The
 empty set and singletons are defined to be r-globally porous for each r > 0.

 A set is called globally porous if it is r-globally porous for some r > 0. A set
 is called a-globally porous if it can be writen as a countable union of globally
 porous sets.
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 It is easy to see the definition does not depend on the ordering of the
 system of the connecting intervals of E. Also it is clear that E is globally
 porous iff E is globally porous. As a result of this fact Humke and Vessey
 state that a set is cr-globally porous iff it is a subset of a cr-globally porous Fa
 set ([3], Corollary 3). As we will show, only the necessity is true, namely:

 Corollary 2.1 Let E be a a -globally porous set. There exists another cr-
 globally porous set F of type Fa such that E Ç F.

 First we consider the porosity of globally porous sets at points of their
 closures. The following lemma can be easily proved using Lemma 1.4.

 Lemma 2.2 Let E C M be globally porous. There exists an e > 0 such that
 for each x e E, p (E,x) > e.1

 Lemma 2.3 Let E be a bounded subset of M. Let I denote one of the com-
 ponents of the complement of E and let a denote the left (ńght) endpoint of
 I. If E is not porous on the ńght (left) at a then E is not globally porous .

 Proof. For a contradiction consider E to be r-globally porous with some
 constant r. We may assume E is closed. It is easy to see that F = E D [a, oo)
 should be globally porous as well. So there exists an arbitrarily small connect-
 ing interval J of F such that a e r * J. Thus F is porous on the right at a,
 which is a contradiction.

 A globally porous set can contain a subset which is not globally porous.2 It
 follows that globally porous sets can contain subsets which are only unilaterally
 porous at some point. The previous lemma describes the situations which
 cannot occur.

 3. Divisions and Coverings

 Definition 3.1 By M* we mean the the set of real numbers extended by el-
 ements -oo and +oo. We mil consider the usual topology and ordeńng of
 M*.

 In a sequel, the symbol I means a nonempty open interval (o, b) Ç R*.

 Definition 3.2 Two intervals intersecting each other in at most one point
 are said to be almost disjoint. A system of pairwise almost disjoint intervals
 is called an almost disjoint system of intervals.

 1 That is, E is uniformly porous.
 2It is easy to construct a globally porous set containing a sequence { l/nJ-JJLj .
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 Definition 3.3 Let a, b G M*, a < b and let {ûn^-oo be a stńctly increasing
 sequence of real numbers such that limn^_00 an = a, and limn_>oo an = b.
 Then the system of intervals D = {[an,an+i] : ft G 2£} will be called a division
 of E = (a, 6). The norm of the division D, assign* I v{D), is defined as
 s^Pn6S {ûn+ 1 ~~ an}-

 Let f be a stńctly increasing function defined on the interval [0, oo) such that
 /(0) = 0. The division D of I = (a, 6) is said to be controlled by the function
 f if both :

 (a) If a G R, then an+i - an < f(an - a) holds for each n Gl

 (b) Ifb G R, then an+ 1 - an < /(6 - an+i) holds for each n eZ.

 Now suppose that a, 6 G M and a < b. A division of the closed interval [a, 6]
 is defined as a finite almost disjoint system D = {lv}^=1 nf closed intervals
 such that U%=1In = [a, 6]. If the interval [a, 6] is now! generate, the intervals
 of the division should be nondegenerate as well.

 The norm of the division D is maxn=iv >)7v{|^n|}-

 Definition 3.4 A system S of intervals is called a timer) covering of I if
 I = U S and for each J € 5, / Ç 1 (We will omit the adjective " inner " in the
 sequel.)

 A covering S of I is called locally finite if for each x G H there is a neighbour-
 hood of X intersecting only finitely many intervals of S .

 In an obvious way an almost disjoint locally finite covering of I by closed
 intervals defines a division of I.

 Lemma 3.1 Let V be a covering of I by open intervals such that for each
 x G I U ievi is a compact subset of I. Then V contains o locally finite covering

 x€/

 5 of L

 Proof. Cover E by an almost disjoint system of compac' intervals {Ki}(^_ ^
 such that for Xi G Ki we have lim¿_>_oo£t = a aiu' un.¿ = b. Let
 Vi = {I G V : I fi Ki ^ 0}. It follows from the compactness of U iev I that for

 xG /

 each i there are only finitely many j such that there is /7 G Vi and Ij^Kj / 0.
 As Vi is a covering of Ki by open intervals, there exists a finite subcovering

 Qi QVi. Let Q = U ^LiQi' It is clear that Q is a covering of I, so it remains to
 prove that Q is locally finite. First note that each x G I has a neighborhood
 Ux which intersects at most two of the intervals Ki, i e 'Z. Assign their indices
 as j = j(x) and k = k(x) (with j = k if there is only one such interval).
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 Since each interval I G Q intersecting Ux intersects Kj or Kk , there are
 only finitely many systems Qk which can contain such I. As all of them are
 finite, it follows that the covering Q is locally finite.
 Now we state several elementary lemmas concerning locally finite coverings.

 Lemma 3.2 Let S be a system of open intervals such that for each / G <S,
 ICI. Then, S is a locally finite covering of I iff for every compact K Ç I
 the system {I G S : I fi K ± 0} is nonempty and finite.

 Lemma 3.3 Let S be a locally finite covering of I. Then for each I e S there
 are only finitely many J e S such that I D J ^ 0.

 Lemma 3.4 Let S be a locally finite covering of I, and let S = {/ : I G 5} .
 Then S is locally finite covering of I by closed intervals.

 The proof of the following technical lemma is trivial.

 Lemma 3.5 Let be intervals and suppose k > 3. if nti h ¥> 0,
 then there are indices i,j<k such that U f=17/ = J¿ U Ij.

 Lemma 3.6 Let V be a locally finite covering of L Then there is a covering
 K ÇV of I, such that each I e U intersects at most two of the other intervals
 ofU.

 PROOF. We construct sequences Vp by induction.
 1. Let Vi be an arbitrary sequence of all intervals G V. This is the first
 sequence.

 2, Let p > 1. If Vp contains no triad of intervals /, J and K such that
 I D J n K 0, we are ready. Alternatively, if there is such a triad, we will
 construct a sequence Vp+i. Let np be the first natural number for which there
 is a pair i,j G N, i / np / j ^ z, such that V£p D V? fi V? ^0. Using the
 previous lemma, we can see that one of these three intervals is contained in
 the union of the others. Assign its index as k. Clearly k > np. Now for each
 n G N put

 VP+l = / Vn if n < fc,
 n = ' V£+1 alternatively

 If the process does not stop after some step, we will obtain the sequences
 (coverings of I) Vp D Vp+i, p = 1,2,... and the increasing (not necessarily
 strictly) sequence of natural numbers n' < . . . < np < np+i < . . . such that
 for each p G N each interval 1% for n < np intersects only two of the other
 intervals from Vp. The sequence {np} is unbounded (Use Lemma 3.3 and the
 fact that all sequences Vp are locally finite coverings of I). Put U = n S^Vp.
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 Let I e U. Then I G Vp for each p and there is a p¡ and n < nPl such that
 I = V£! . Thus the cardinality of the system

 sy = {j evPI :J¿I, J n / ^ 0}

 is at most 2. But the system Si = {J e U : J ^ I, J D I ^ 0} is contained in
 each of Sj including Sj1 and therefore its cardinality is at most 2.
 It remains to show the U is a covering of I. Take an arbitrary x G I. Since

 V is locally finite, the system Sx = {I G V : x G 1} is finite. If Sx D U = 0
 then there is a p G N such that Vp fl Sx = 0, but Vp is a covering of I, a
 contradiction.

 4. II-globally Porous Sets

 Definition 4.1 A set E Ç M is called II-globally porous if there is a c > 0
 such that for each d > 0 there is a division D of M with norm less or equal to
 d such that for each I e D A (E, I) > c • 'I'.

 The following technical lemma will be useful in the sequel.

 Lemma 4.1 Let E Cl, and let I and J be closed intervals such that 7° D J° ^
 0. I ' J ^ 0, J ' I ^ 0. Suppose that X (E, I) > c/| J| and A (E, J) > cj'J' for
 some c/, cj > 0. Tften there exists a pair of almost disjoint closed intervals
 JÇ/,JÇJ,/UJ = /UJ, such that X(Eiî) > (cj/2)|/| and '(E,J) >
 (cj/2)'J'.

 PROOF. Let I = [a, 6], J = [c, d], a < c < 6 < d. Take two intervals if, L such
 that KCI'E,LCI'E, 'K' = A (E, /), |L| = A (E, J). Assign components
 of R'E containing K and L as S and T, respectively. We will distinguish the
 five possible cases :

 1. S ^ T and I fl J Ç S U T.
 It follows either IDJÇS or InJÇT because S D T = 0 and the set

 I fl J is connected. If, for example, J fl J Ç S, put 1 = 1 , J = [b,d'. Then
 KQÎ,LÇJ.
 2. and (I n J) ' (S U T) ¿ 0.

 In this case, there is a point x G I fl J such that S is on the left of x and
 T is on the right of x. Put î = [a, x], J = [x, d'. Again K Ç Î and L Ç j.

 3. S = T and the center of 5 fl [a, d] lies in I D J.
 Let x denote this center and put I = [a, x], J = [x,d'. Then,

 X(E,î)>lx(E,I)>^'I'>^'î'.



 340 Jan Hlaváček

 The same is valid for J.

 4 . S = T and the center of 5 fi [a, d] lies to the right of I fi J.
 In this case put 1 = 1 and J = [6, d'. Then

 5 . S = T and the center of 5 D [a, d] lies to the left of I fl J.
 Set I = [a, c] and J = J. The same estimate we made for J in the previous

 case is now valid in this case for I.

 Now we will introduce several characterizations of globally porous sets.

 Theorem 4.2 Let £C1. The following conditions are equivalent :

 (i) E is II-globally porous.

 (ii) There is a c > 0 such that for every d > 0, for an arbitrary interval
 [a, 6] and every e > 0 there are 0 < <5i,<52 < e and a division D of
 the closed interval [a - ¿i, b 4- 62] with norm less or equal to d such that
 A (E,I) > c'I' for each interval I € D.

 (iii) E is uniformly porous.

 (iv) There is a c > 0 such that for arbitrańly small d > 0, for every I =
 (a, b) with a, 6 £ M* and every continuous stńctly monotone function
 f : [0, 00) - ► [0, 00) with /(0) = 0 there is a division D of I with norm
 less or equal to d (controlled by the function f) such that X(EiI) > c'I'
 for every interval I G D.

 PROOF, a) (i) => (ii) : Given an interval [a, 6], d > 0 and e > 0, put do =
 min (d, e). There is a division D of M with v(D) < do such that D fulfills the
 definition of II-globally porous. If a (respectively 6) is an endpoint of some
 interval of D , put 61 = 0 (62 = 0). Otherwise there is an endpoint an of some
 interval of D in (a - £,a) (or, in the case of 6, (6, 64 e)). In this case put
 6' = a - an (respectively 62 = an - b). The division D can now be restricted
 to the interval [a - <5i,ò + ¿2].

 b) (ii) => (iii) : Let x G E and put a < x < b. Suppose d - e is arbitrary and
 small. There are ¿1,62 < £ and a division D of [a - b 4- ¿2] with norm less
 or equal to d such that for each I e D, '(E, I) > c'I'. This holds in particular
 for an interval I e D which contains x. (At least one such interval exists.)
 Thus x is contained in an arbitrary small interval I such that À(i£, I) > c'I'.
 It follows that p (E,x) > c/2.
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 c) (iii) =*► (iv) : This is the most difficult implication. For x £ E, p (E,x) = 1.
 Thus there is e > 0 such that p(¿?, x) > e for each ¿cel. For definiteness we
 suppose a G M and b = +oo.3 Take a d > 0 and a strictly monotone continuous
 function / : [0, oo) - ► [0, oo) such that /(0) = 0. For every x G I there is an
 open symmetric neighbourhood of x, Ux = ( axibx ) with length less than or
 equal to d such that A (E, Ux) > (e/2)'Ux', Ux Ç I and 'UX' < f(ax - a). The
 system of all such neighbourhoods is a covering of Iě
 Let x G I, and define Fx = U x^uyUy. If x - a > d then Fx is clearly a

 compact subset of I, since 'Uy' < d for every y. A more complicated situation
 takes place if x is close to a. If x - a < d, let v = x - a. Since the function / is
 strictly increasing and /(0) = 0, there exists yo G I such that f(yo-a)+yo-a <
 v. Then for each y such that ay < y o it follows that 'Uy' <v - (yo - a) = x - y o
 and thus x & Uy. But then, (a, yo) D Fx = 0 and therefore Fx is a compact
 subset of I. The hypothesis of Lemma 3.1. is fulfilled, and hence we can choose
 from our covering a locally finite subcovering of I, which we denote as Q. Put
 V = Q Using Lemma 3.6. we choose from V a new subcovering U such that
 each I G U intersects at most two of the other intervals of U. The covering U
 of I is comprised of closed intervals and has these properties :

 • For every I eU is A (E,I) > (e/2)'I'.

 • For every I G U is |7| < d.

 • For every I G U is 'I' < f(s - a), where s is a center of the interval /.

 • Every I e U intersects at most two of the other intervals of U .

 • Every compact subset of I intersects only finitely many intervals of U .

 However, we need a covering which is also almost disjoint and construct
 such a covering by induction.
 1) If W contains two intervals whose intersection is a singleton, define these two

 intervals as Io and Jo- Alternatively choose two arbitrary intervals /,J G W
 which intersect each other and applying Lemma 4.1. take a new pair of intervals
 Io and Jo such that

 io U Jo = I U J,

 Io D J0 is a singleton

 and

 '(E,TO) > l'îo',
 '(E,Z) > l'To .

 3 The other cases can be handled in a completely analogous manner
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 2) Let n > 0. Suppose Io, ■ ■ ■ , /n-i, Jo, ■ . . In and Jn are intervals
 which are altogether pairwise almost disjoint, and such that these properties
 hold:

 '{E,Ik) > ||4|forfc<n,
 A (E,Jk) > I 'Jk' for k<n,

 X(EX ) > ^'ln',
 A Jnj > j Jn , and

 each of them is contained in an intervalJ)elonging to U. Let the interval in U
 containing Ik ( Jk ) be denoted by Ķ ( Jk ) for k < n, and that containing In
 ( Jn ) be denoted as In (Jn). Suppose too that

 U U k_Qi/fc U In U Jn - U k-ftik Ü

 and Jn and Jn are only intervals intersecting some intervals of U different from
 J*, Jk for fc = 0,

 We will construct intervals 7n, Jn and In+ 1, Jn+i • Let us show the con-
 struction of In and 7n+i- The sets Jn and Jn+i will be constructed in a similar
 way.

 There is only onejnterval I e U which intersects In and which is not among
 the intervals Ij^ or Jk for k = 0, . . . , n. If this intersection is a singleton, put
 In = In and 7n+i = I. Otherwise use Lemma 4.1., obtaining intervals In and
 Jn+ 1 such that In U Jn+i = In U /, In U Jn+ 1 is a singleton and

 A(£,Jn) >

 ^ ^ -^rc+1 •

 The definitions of Jn and Jn+i are made in a similar way.

 In this manner we obtain an almost disjoint system of intervals Ik and Jk
 for k = 0, . . . , which is a covering of I. It is easy to aee this system forms a

 division D of I for which A (E, I) >i 'I' for every i G D.
 d) (iv) => (i) : Choose I = M.

 5. Relations between Both Definitions

 To begin we state a simple corollary of the last theorem of the previous section.
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 Corollary 5.1 Every globally porous set is II-globally porous.

 We now use induction to construct a II-globally porous set which is not
 a-globally porous.

 Put Fl = [0,1] and let Gx = U%12 + 2n(n-i)) • Inductively put
 Fn = Fn- 1 ' Gn- 1. Let Jn be the system of all components of (Fn)° and
 put Gn = U iejnG(I) where G(I) = (inf(J) + 'I' • Gi).4
 At this point we have a sequence of closed sets F' D F2 D .. . and we let

 F be their intersection. Then F is a nonempty perfect set which we prove
 is II-globally porous. It is sufficient to find e > 0 such that for each x G F,
 p(F,x) > £.
 Let x G F. If x e dFn for some n, then p(F,x) = 1/2. Alternatively,

 suppose x G (Fn)° for each n. Let In = /n(x) be the component of (-Fn)°
 containing x. Since x G (Fn+i)°, x G ( In'G (In))° . The intervals =
 inf (Jn) -h 'In' • [1/fc, 1 /{k -f 1)] for k > 2 cover In and x belongs to the right
 half of some Jļļ. The left half of this does not intersect F.
 For large n, 'In(x)' (and hence | J^|) can be chosen to be arbitrarily small

 and hence, p(F, x) > 1/4. Thus we can choose e = 1/4.

 Now we will show the F is not cr-globally porous. Suppose to the contrary
 that F = U JJĻļjEn, where each En is globally porous. According to Baire's
 theorem there is an n G N such that En is somewhere dense in F and hence
 En contains a portion of F. This portion contains some small copy, H , of
 F. From the construction, it is evident that inf (fi) is the right endpoint of
 some component of M ' En. Using Lemma 1.4. together with the fact that
 En is globally porous iff En is, we conclude that En is not globally porous, a
 contradiction.

 Theorem 5.2 Let E be a bounded subset of M. If E is II-globally porous then
 there is a globally porous set F such that E Ç F.

 Proof. Let_{(an,6n)}^Ļ2 be the system of all pairwise disjoint connecting
 intervals of E. Let K0 = (inf(E) - 3, inf(F)), K' = (sup(E'), sup(E') 4- 3),
 Kn = (an, bn) for n > 2 and S = {^}~ „. Put

 F = E U u^an + S.s^uu^òn-S.^u
 U(sup(£) + 2 • S) U (inf(£) -2 -S)

 *G(I) is actually a small copy of Gi.
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 If i) is a division of R, J e D and J fi (inf (E) - 3, sup(J5) + 3) ^ 0 choose
 i(J) such that I J n Ki(j) ' = A (E', J). Order all connecting intervals of F into
 a sequence {/n}n€N such that 'In' > |/n+i|. For N G N let E P(N) denote the
 set of all endpoints of intervals In for n < N. We want to find such M > N
 that F ' EP(N) C U %LNr * In for some fixed r > 0.
 As E is II-globally porous, there is a c > 0 such that for every d > 0 there
 is a division D of M with norm less or equal than d such that A (E, J) > c'J'
 for each J G D. For fixed N G N, put s = |iW-i| and d = s /(2c). There is a
 division D of M with norm less or equal then d such that A (E, J) > c'J' for
 each J e D.

 Consider only those intervals of D intersecting F'EP(N). There are only
 finitely many such intervals, and we let m denote the number of them. Denote

 the intervals themselves as {Jj}™=v

 Case 1. Suppose Jj D E ± 0.
 If the middle third of interval j.) is not among the intervals Ik for fc < iV,

 assign this third as Ij. Clearly it is a connecting interval of F. Otherwise,
 find a connecting interval of F in this way : from the definition of the index
 i(Jj) it follows that n Jj = Qj, where 'Qj' > c'Jj'. Thus there is an
 interval L Ç Qj Ç Jj with length c'Jj' such that L contains an endpoint of
 Ki(Jj)- For definiteness suppose it is the right endpoint. Further we know
 that 'L' = c'Jj' < = §. Now let Sj = min{|7fc| : fc < AT, Ik Ç K^j^} .
 Because Sj < s, 'L' < and it follows that L Ç + ļf] • Put
 Ij = + Sj) . Then î j is a connecting interval of F lying in
 the set Kiļjj)' As its length is it cannot be among the intervals Ķ for
 k < N. For the left endpoint of K^j.) we obtain a similar situation, but the

 interval îj is : îj = - Sj, bi(Jj) - %) .
 Case 2. Suppose Jj D E = 0.

 In this case, Jj C and Jj is a closed interval containing no limit
 point of F. It is easy to see that among the connecting intervals Ik of F
 intersecting Jj there is the shortest one, Jm, with m > N. Put Ij = Im.

 For each j = 1, . . . ,ra there is rij > N such that Ij = Inj. Put M =
 ma x{rij : j = l,...,m}. Let x G F 'EP(N). Then there exists a j G
 {1, . . . , 77i } such that x e Jj.

 If Jj fi E = 0 (Case 2), then Ij is the shortest of connecting intervals of F
 intersecting Jj. Because of ordering of connecting intervals of F, among the
 intervals Ji , . . . , Im are all connecting intervals of F which intersect Jj . Points
 of F belonging to the interval Jj are isolated points of F and thus it is easy
 to see that

 (F n Jj) ' EP(iV) Ç Un=Nr * In
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 whenever r > 1. Suppose now Jj fi E ^ 0 (Case 1). If Ij is the middle third
 of the interval K^j.^ then K^j.^ Ç 3 * Ij and because fi Jj' > c'Jj',
 it follows that Jj Ç (6/c) * Ij. Otherwise we have an interval L Ç K^j.) D Jj
 with length c'Jj' such that L Ç 3 * Ij. But then (6/c) * Ij covers the entire
 interval Jj. Since c < 1, we have 6/c > 1 and thus F ' EP(N) Ç U%LN^ * In.

 Corollary 5.3 The cr-globally porous sets do not form a a-ideal.

 Corollary 5.4 The smallest a-ideal containing all globally porous sets is the
 a-ideal of a -II- globally porous sets.

 One can see that Corollary 3. from [3] indeed does not hold. A corrected
 version is below.

 Corollary 5.5 Let EÇ1. The following conditions are equivalent:

 (i) E is a-II-globally porous.

 (ii) There is a a-globally porous set, F of type Fa containing E.

 (Hi) There is a a-II-globally porous set , F of type Fa containing E.

 Now we can reformulate Vessey's lemma from [5] :

 Lemma 5.6 Let E CM be II-globally porous and suppose a G (0,7t/2). Then
 there is a continuous function f : J+ - ► [0, 1] and ß G (a,7r/2) such that

 (i) For each x G E the cluster set of f atx with respect to the angle V^a, ir-
 ot) is equal to [0, 1].

 (ii) For each x G E the cluster set of f at x with respect tif Vx(ß) 7T ß) iS
 equal to {0}.

 (Hi) For each x £ E and for each angle V C /+ with vertex at x, the cluster
 set of f at x with respect to V is equal to {0}.

 As a result of this lemma we obtain the next theorem.

 Theorem 5.7 Let E be a a-II-globally porous set. Then there is a con-
 tinuous function f : 7+ - ► [0, 1] such that E = Eyy(f).

 By using Kolesnikov's characterization of Ay y sets and the next lemma
 it is possible to prove this theorem without Lemma 5.6. The next lemma is
 based on the Theorem 4.2. and an idea suggested to me by M. Zelený.
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 Lemma 5.8 Let E CR be a Il-globally porous Gs set without isolated points.
 Then there is a closed set H CR such that E = p(i2").

 The main idea is this : Express £ as an intersection of a monotone sequence
 of open sets {Gn}. Then for each open set construct a system Jn of open
 intervals K C Gn' E whose lengths are relatively small compared to their
 distances from the complement of Gn. On the other hand, these intervals
 should also determine sufficiently large "gaps of En in order to assure the
 porosity of the final set. It is sufficient to make a division of I controlled by
 the function f(x) = x2 for each component I of the Gn and simply take all
 "gaps" whose existence follows from the Theorem 4.2. item (iv).
 The union of all such intervals is an open set G whose complement we
 denote as F. Adding some isolated points to the set F we obtain a closed set
 H such that E = p (H). The size of selected "gaps" assures porosity at points
 of E and the controlling function assures that there are no "new" points of
 porosity.

 The complete proof is considerably more detailed.

 6. Bilaterally Globally Porous Sets

 Items (ii) and (iii) of Theorem 4.2. suggest two different ways to define a notion
 of a bilaterally globally porous set.

 Definition 6.1 Let set E CR. The E is called bilaterally globally porous if
 there is a c > 0 such that for each d > 0 and each closed interval I there
 exists a division D of I with norm less than d such that for each J e D,
 '(E, J) > c'J'.

 Definition 6.2 Let set E CR. The E is called bilaterally globally porous if
 it has bilaterally uniformly porous closure.

 Theorem 6.1 Definitions 6.1 and 6.2 are equivalent.

 Proof. Suppose E satisfies the first definition with some constant c, and let
 x G E. Put I = [x, y] for some y > x, and set d > 0. Then, by definition 6.1.,
 there is a division D of I with norm less than d such that for each J e D,
 A (E, J) ^ c'J'. There exists J G such that J - x -l- /ij and h ^ d. Thus
 A {E, (x, x + h)) > ch. Since we can take an arbitrarily small d, we can obtain
 arbitrarily small h as well. Therefore p+ ( E , x) > c. In the same way we can
 obtain an estimate of p _(Eix).

 Now, on the other hand, suppose that E has bilaterally uniformly porous
 closure. Having an interval I = [a, b] and d > 0, we need a division D of
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 I. We know that p+{E, a) > £ and p_(E,b) > £ for some £ > 0, which
 does not depend on the interval I. Hence there are 0 < ea,£b < d such
 that A (¿7, [a, a + ea]) > and likewise '(E,[b - e^b]) > &b> Put e =
 min ( ea , Sb) and let a' = a + £a, b' = b - e &.
 By the Theorem 4.2. there exist 0 < 6a,6b < £ and a division D of the

 interval [a' - 6aib' + 6b] with norm less than d such that for each J G D,
 KE, J) > c' J I, where c is independent of a', 6', d and e.
 The interval [a' - 6a, b' 4- 6b] is a part of I. The point a' - 6a belongs to the

 interval Ja = [a,a+ea' and similarly, b' -'-6b G Ą = [b - Sb, b]. Define a division
 D' of I in the following manner : if the interval J e D intersects each of Ja and
 Ą in at most one point, then J e D'. If all intervals from D intersecting Ja
 in more than one point are part of Ja, then Ja G D'. Otherwise there is only
 one interval J G D such that J° fl / 0 and J (¡L J a. By Lemma 4.1. there
 exists a pair of almost disjoint intervals J and Ja such that J U Ja = J U Ja,
 A (Ej) > (c/2)'J' and '(E, Ja) > (f/2)|Ja|. Both J and Ja fall into D'. In
 the same way we manage the set J&. We obtain the division D' of the interval
 /, whose norm is less than d and for each J e D' , A (E, J) > mm(c»£) | j|t
 As for the other kinds of porosity, a set is called a- bilaterally globally

 porous if it can be written as a countable union of bilaterally globally porous
 sets. The cr-bilaterally globally porous sets form a ^ ideal.
 It is also apparent that each bilaterally globally porous set is II-globally

 porous. Moreover, each bounded bilaterally globally porous set is globally
 porous :

 Theorem 6.2 Suppose E C M is a bounded bilaterally globally porous set. Let
 c > 0 be the constant from definition 6.1. Then E is (2 /c)- globally porous.

 Proof. Put a = inf(£'), b = sup(£), and let { In be a system of all
 connecting intervals of E. Let N e N, N > 2. Then (a, b)'U^~iIn = U*=1ifn,
 where Kn are pairwise disjoint closed intervals (possibly degenerate). For each
 Kn and for every d > 0 there is a division D from the definition 6.1. For each
 n = 1, . . . , k and for arbitrary d take such a division Dn of Kn.

 Fix X G E ' EP(N). Then x G Kn for some n and the interval Kn is
 nondegenerate. Hence, x belongs to an interval J G Dn. Let K be the greatest
 component of J'E. Then 'K' = A (E, J) > c' J|, and therefore J Ç (2/c) * K.
 But K Ç Im for some m > N and thus J Ç (2/c) * Im. Since there are
 only finitely many of intervals Kn and each division Dn has only finitely many

 intervals, there is a M > N such that E ' EP(N) Ç u1¡LN^ * In. As N êis
 arbitrary it follows that E is (2/c) -globally porous.

 There is another relation between bilaterally globally porous sets and glob-
 ally porous sets.
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 Theorem 6.3 A set E C M is bilaterally globally porous iff there exists r > 0
 such that every portion of E is r-globally porous.

 PROOF. The necessity immediately follows from the preceeding theorem.
 For the sufficiency, take r > 0 such that every portion of E is r-globally
 porous. For x G E, let I be an arbitrary nondegenerate interval with left end-
 point at x. The set I D E is r-globally porous and all its connecting intervals
 In are to the right of x. If x is the left endpoint of any Jn, then p+(.E' x) = 1.
 Otherwise x & EP(N) for every AT, and hence for every N G Ń there is a
 n> N such that x e r * In. Since 'In' 0 for N - ► oo, p +{E,x) > 2/(r + 1).
 In the same manner we can estimate the left porosity. Thus E is bilaterally
 globally porous.
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