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 ON THE STRUCTURE OF THE SPACE OF

 METRICS DEFINED ON A GIVEN SET

 Abstract

 This paper is a continuation of the authors' earlier paper [4]. Denote
 by M the metric space of all metrics on a given nonvoid set X with the
 sup-metric. In this paper some subsets of M are investigated, namely
 subsets consisting of all metrics d G M for which (X, d) possesses pre-
 scribed topological (metric) properties.

 1. Introduction

 Let X be a given nonvoid set. Denote by M. = M(X) the set of all metrics
 on X endowed with the metric

 d*(d,ď) = min{l, sup 'd(x,y) - d'(x,i/)|} for d, d' € M.
 X}yex

 It is the purpose of this paper to investigate the structure of the metric
 space and examine the properties of the following sets:

 U = U{X) = {d G M; (X, d) is a complete metric space }
 S = S(X) = {d G M; (X,d) is a separable metric space }
 /C = JC(X) = {d G M ' ( X , d) is a compact metric space }

 C = C(X) = {d G M; (X,d) is a connected metric space}, and
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 T = {ta G M; ta(x , 2/) = a > 0 for x ^ y G X, and £a(x, x) = 0 for x G X}1

 For each a > 0 put

 H*a = {d e M;Vx,y€Xd(x,y) < a},

 Ha = {d e M; V d(x, y) > a} and H = Ua>o Ha-
 xt y£.X

 We have ([4], Lemma 2)
 Lemma A The set H is an open and dense subset of M, .

 Throughout this paper we will use the notation from [4]. In what follows
 suppose that 'X' > 2.

 2. Main Results

 The equivalence of metrics determines an equivalence relation ~ on M. The
 symbol M'~ stands for the set of all equivalence classes generated by

 Let Oq be the class from M'~ whose elements d fulfill the following prop-
 erty: the sequence Xk G X (fe G N) converges with respect to d if and only
 if {xk}kLi is almost stationary (i.e. d(xkix) - > 0 as fc - ► oo for some x e X
 implies that Xk= x for all but at most finitely many fc).

 The class Oq contains all trivial metrics, but there are other metrics, too.
 For instance if X = (0, +oo) and g(xi y ) = max{x, y} for x ^ y, and g(xi x) =
 0, then g e Oo'T (cf. [2]).

 Theorem 1 The sets Oo and U are residual subsets of the 2nd category in
 (M,d*).

 Proof. It is an easy consequence of Lemma 2 and Theorem 3 in [4]. □

 Remark 1 It is worth saying that the spaces (üo,d*) and (U, d*) are not
 complete, since the sequence ti G T C Oo C U (fc G N )is fundamental and
 has no limit in Oo and U, respectively.

 Theorem 2 Each of the sets 5, /C and C can be represented as a union of
 classes from M.'~.

 Proof. The assertion follows from the fact that the properties of separability,
 compactness and connectedness, respectively are topological properties. Thus
 if d e S (d G /C, d e C) is in the class (9, then O C S (O C JC,0 C C). □

 The analogous theorem for U does not hold in general. Actually we have

 1the elements of T are the so-called trivial metrics.
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 Theorem 3 (i) If X is a finite set, then U = M = Oo>

 (ii) If X is an infinite set , then Oo n U ^ 0 / Oo fi ( M ' U).

 Proof. Case (i) is trivial.
 (ii) Let X be an infinite set. Then there exists a one-toone sequence xk G
 X (k e N). Put X' = X ' {xi, £2, . . . , Xfc, . . .} and define the metric g on X
 as follows: g(x, x) = 0 for x G X, g(x , y) = 1 if x ± y and at least one of x, y

 belongs to X' , further g(x¿, Xj) = max{ł, y} for i ± j , ż, j € N. We prove that
 ^o0n (M'u).

 Let g(yk,y) -+ 0 as fe -> oo e X,k e N). Then g{yk,y) = 1 if
 y e X',y ^ yk and g(yk,y) > ^ if y = xmìyk ¿ xm ( k e N). Thus yk = y
 for every k > feo (feo ^ N), which implies that g e Öq. Further the sequence
 {xk}kLi is evidently fundamental in ( Xì g)i but does not converge because it
 is not almost stationary. Consequently g G M'U.

 On the other hand the trivial metric t' € O o fi U. □

 Lemma 4 Every class Ö G M'~ is a dense in itself subset of M . Moreover
 each point of Ö is its point of condensation.

 Proof. Let € > 0. Let Ö e M'~,d G Ö. It suffices to consider the metrics
 da = d 4- a • min{l, d} for 0 < a < e, and notice that da G O fi K(d, e) for all
 0 < a < €. □

 Theorem 5 Each of the sets <S, /C, C and U is a dense in itself subset of

 Proof. The union of an arbitrary system of dense in itself sets is dense in itself
 (see [1], p.46). Accordingly for <S, /C and C the assertion follows from Theorem
 3 and Lemma 4. In view of Theorem 3(ii) we have to deal with li separately.
 Let d eU,£ > 0 and 0 < a < e. Put da(x , y) = d(x, y) + a, for x, y G X, x ^
 y and da(x , x) = 0 for x G X. Then da G U D K(d, e) for each 0 < a < e. □

 Theorem 6 The set S is closed in (M,d*).

 Proof. Suppose that d belongs to the closure of <S in (M,d*). Then there
 exists a sequence dn G S (n G N) such that lim d*(dn,d) = 0. There is a

 71- KDO

 countable set Mn C X dense in (X , dn) (n € N). Put M = U J°=1Mn. Then M
 is countable. To prove M is dense in (X, d ) let xo e X and 0 < e < 1. Since
 d*(dn,d ) - ► 0 (n - * oo), there exists no € N such that 'dno(x,y) - d(x, y) <
 § for every x,y e X whence d(x,y) < dna(x,y) + § (x,,j G X). Since Mno
 is dense in (X,dno), there is y0 € Mno C M for which dno (x0,y0) <
 Consequently we get d(x0, yo) < dno (x0, yo) + § < £■ □
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 Remark 2 In view of Theorems 5 and 6 it turns out that S is a perfect subset
 of (M,d*).

 Theorem 7 We have

 (i) if 2 < |X| < No, then S is of the 2nd category in M, and

 (ii) if 'X' > No, then S is nowhere dense in M.

 Proof.

 (i) If 2 < 'X' < No, then S = M and Theorem 3 in [4] yields the desired
 result.

 (ii) If |X| > c, then 5 = 0 (see [1], p. 140). Therefore it suffices to consider
 the case No < 'X' < c. The trivial metric t' is evidently in Oo ' S.
 Furthermore, according to Theorem 2 d ~ t' implies d £ S. Thus
 Oo C M ' S. The assertion follows from Theorems 1 and 6. □

 Theorem 8 We have

 (i) if 2 < 'X' < No, then /C is of the 2nd category in M ,

 (ii) if 'x' > «0, then fC is nowhere dense in A4.

 Proof.

 (i) In this case we have fC = A4.

 (ii) Let |X| > No- Then similar to the proof of Theorem 7 (ii) we can show
 that Oo C M '/C. Thus /C C M'Oo C M'H, Hence Lemma A applies.

 □

 Theorem 9 The set /C is closed in (W,d*).

 Proof. If X is a finite set, then /C = U. So we can suppose that 'X' > N0.
 Let dn e JC (n e N),d G U and d*(dn,d) - ► 0 as n - ► oo. Assume that
 d G U ' ÌC. Then (X, d) is not totally bounded. Hence for some 1 >£o >0X
 has a countable eo-discrete subset, i.e. there exists a sequence xn G X (n G N)
 such that

 d(xk,xi) > £o> for all fc, l G N, k ^ I. (1)

 Let n G N be fixed. The metric space (X, dn) is compact. So
 has a convergent subsequence in (X,dn). Then from (1) we have
 'd(xkiìxkj) - dn(xkiixkj)' > eo-dn(xki,xkj), for i, j G N,i ^ j, So

 sup I d(xki , xkj ) - dn(xki , xkj ) I > e0.
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 This implies that ď(didn) > £q > 0 for every n G N, which is a contradic-
 tion. □

 Remark 3 It is not true in general that K, is closed in (Ad^d*). To see this,
 let X = {#i, . . . . . .} be a countable set. Define metrics d,dn ( n G N)
 as follows : d(x1x) = 0 for all x G X and d(xiixj) = max{ł,ł} for all
 i,j G N,¿ ^ j. Farther for each n G N put dn(x, x) = 0 for x G X and for
 h j £ N, i ķ j

 = ļ mm)},)), i} minļī.j} = n.

 Then d e M'U C M ' IC. Further, dn G /C for each n G N, since every
 sequence in (X, dn) is either almost stationary or dn-converges to xn. On the
 other hand , as n - ► oo

 d*(d,dn) = sup 'd(xi,xj) - dn(xi,xj)'
 min{i,j}=n

 = sup I d(xn,xj) - dn{xn,xj) I = sup - - -T = - - » 0.
 j>n j>n Tí J U

 Theorem 10 The set C is nowhere dense in (A4,d*).

 Proof. Suppose Oq n C ^ 0 and let d G Oo fi C. Then by Theorem 2 Oo C C
 which contradicts the fact that t' G Oo ' C. Thus Oo C M ' C whence C C
 M ' Oo C M. ' H. Thus Lemma A implies that C is nowhere dense. □

 Remark 4 We do not know whether C is a Borei subset of ( M , d*).

 Let ( X , K) be a linear space over the field K and define the set

 Ai = M{X) = {d e M(X); d(x , 0) is a norm on X }.

 Theorem 11 The set M is nowhere dense and closed in (M^d*).

 PROOF. Every normed linear space is connected (cf. [3], p. 148). So the
 nowhere density of J'f in M. follows from Theorem 10.
 Let d G M,dn G Aí (n G N) such that d*(dnìd) - > 0 (n - > oo). Then
 lim dn(x, 0) = d(xì 0) for each x G X. It is now not hard to see that de. hi.

 71 - ► OO

 Consequently Af is closed in M . □

 Theorem 12 The set T is perfect in ( M,d *). Further, if 'X' > 3, then T is
 nowhere dense in A4. (In case 'X' = 2 we have T = A4.)
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 Proof. It is obvious that T is closed in M, . Further, T is dense in itself
 since for d e T, e > 0 d + ta e K(d, e) D T, where 0 < a < e. We shall show
 that M ' T is dense in M.

 Let 'X' > 3, d e T, e > 0 and 0 / A C X, A ^ X . Define the metric d! :

 {§ ů f if if 'úxeA,yeX'A,'<<d<% x,y x,y e e X'A,x A,x ¿y
 f if x,y e X'A,x ¿y
 ů 'úxeA,yeX'A,'<<d<%

 and for each x e X put d'(x,x) = 0. One can see that d' e M'T. So
 d' + d e M'T and further d' + d G K(d, e). □

 If we consider the set (0, +oo) with the usual metric, then the function
 F (a) =ta (a e (0, +oo)) is a homeomorphism. Therefore we have:

 Theorem 13 The space (T, d*) is connected.

 Let A and B denote the set of all metrics on X that are unbounded and

 bounded, respectively. It is proved in [4] (Theorem 5) that A , B are nonempty,
 open subsets of the Baire space (A1,ci*) (cf. [4], Theorem 3) provided 'X' >
 No- Consequently we have

 Theorem 14 The sets A,B are sets of the 2nd category in M if X is infinite.
 (If X is finite, then B = M and A = 9.)

 We can strengthen this theorem as follows:

 Proposition 15 The set H* (Ha) is of the 2nd category in M for every
 a > 0.

 Proof. Let a > 0. Since M is a, Baire space, it suffices to show that H *
 contains a ball. Choose an arbitrary do G C H*. Then K(doì § ) C W*.

 The proof for Ha is similar. □

 Remark 5 It is well-known that K C B. In this connection observe that

 according to Theorem 8(H) and Theorem 1Ą B'K, is of the 2nd category in
 M, provided 'X' > Ho.
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