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 THE S-HENSTOCK INTEGRATION AND

 THE APPROXIMATELY STRONG LUSIN

 CONDITION

 1.

 One approach to generalized integrals is to make use of Lusin's condition N [1,
 2]. P. Y. Lee [4] introduced a concept which lies between absolute continuity
 and Lusin's condition JV, and called it the strong Lusin condition. Recently,
 using the strong Lusin condition, Lee and Vyborny [5] defined the SL-integral.
 Moreover they showed the equivalence of the KH and SL-integrals. R. Gordon
 [3] gave an extension of the Henstock integral to the 5-Henstock integral. Liao
 and Chew [6] extended the strong Lusin condition to the approximately strong
 Lusin condition. In this note, using the approximately strong Lusin condition
 we define the ASL integral. In addition we show that the ASL and SH integrals
 are equivalent.

 2.

 We present some notation and defintions to be used later.
 Throughout this note we will consider real valued functions defined on a

 closed interval [a, b]. Let P = {([a¿, : i = 1,2, ...,n} denote a finite
 collection of nonoverlapping tagged intervals in [a, 6]. We call P a partial
 division of E , if G E, E C [a, 6].

 Definition 1 (Gordon). A distribution S on [a, 6] is a collection of measur-
 able sets {Sx : X G [a, b}} in [a, b] such that x G Sx and x is a point of density
 of Sx. For each x G [a, 6] let Ix = {[c, d' : x G [c, d' ande, d G Sx} let 6 be
 a positive function defined on [a, 6]. A collection P of tagged intervals is S-
 subordinate to 6 if d - c < 6(x) and [c,d] G IX) whenever ([c, d],x) G P.
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 Definition 2 (Liao and Chew). Given F : [a, 6] - ► M, we say that F satisfies
 the approximately strong Lusin condition , or ASL, on a set H C [a, b] if and
 only if there exists a distńbution S on H such that for every set E of measure
 zero and € > 0 there exists a positive function 'y on H such that

 ¿I F(vt) - F(u)i)' < e,
 i= 1

 whenever P = v»], .x¿); i = 1, 2, . . . , n} on E D H is S-subordinate to 7.

 3.

 In this section we will define the ASL-integral and show the equivalence of the
 ASL and SH integrals.

 Lemma 1 If a function F satisfies ASL on [a, 6], then F satisfies the Lusin
 condition N.

 Proof. Suppose to the contrary that F doesn't satisfy Lusin's condition N.
 There is a measurable set Eo C [a, 6] such that mEo = 0 but m*F(Eo) > 0
 where ra* denotes outer Lebesgue measure. First show that m*F(Eo) is finite.
 By applying the definition of ASL on [a, 6], there exists a distribution S on
 [a, b'. Let e = 'm*F(Eo). Choose a positive function 7 on [a, 6] such that
 EILiI F(vi)-F(ui)' <e, whenever P on Eo is S- subordinate to 7. For
 each x G [a, b] choose <5i(x) > 0 so that > §> whenever I is an interval
 containing x with ml < 6i(x). This defines a positive function ¿1 on [a, 6].
 Let 6(x) = min{7(x),<5i(x)}. Then <5 is a positive function on Eo. For each
 positive integral n, let En = {x G Eq : 6(x) > £}. Then Eo = U ™=1En and
 Hindoo m*F(En) = m*F(Eo ), (cf, [8, p. 213]). There is a positive integer N
 such that

 m*F(EN) > ļm*F(E0). (3.1)
 Let xq = inf{x : x G E n} and xs = sup{x : x G En}. Choose a positive
 integer M such that ^ and > j¡. Let = x0 + Xs^XQ , i =
 1, 2, . . . , M. Consequently

 M

 m*F(EN) < ^ m* F (En D [xi_i (3.2)
 2=1

 We claim that for each i with m* F (E^ D x¿]) > 0 there exist a¿, G
 En H [xi-',xi' such that

 |F(6¿) - F(oi)' > ļ m*F(EN n [x¿_i,x¿]) - (3.3)
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 where O < 6 < ^(b^f+l) • Suppose not. Then for all x, y e En D [x¿_i,x¿],
 we have |jF(x) - F(í/)| < 'm*F(EN n [x¿_i,x¿]) - We fix one variable x
 and denote it by a». Then |F(a¿) - /(y)| < 'm*F(EN n [x¿_i,xí]) - j¡ for all
 y G En H [xj_i,xj]. This implies

 F(£jvn[xi_i,xi]) c

 1 ô 1 ô
 F(ūi) - -ra F (En n [x¿_ i>#i]) H- - ,-F(ûi) 4- -ra F(En n [zí_i,z¿]) - - .

 Consequently, i71*F(En H [xt-i,£i]) < m*F(Ejsi fl [x¿_i,x¿]) - 77, a contra-
 diction. Hence (3.3) holds.
 Note that 6(o¿) > ^ and <5(6¿) > so that <5i(a¿) > ^ and <5i(6¿) >
 This implies

 ra([o.¿, bj] n S«) ^ ^ ra([a¿, Pi ) 2 ^3 4^
 m([ai,bi ]) 3' ra([a¿,6¿]) 3'

 Therefore there is a c* € 5a¿ H fi [a¿, 6»]. Let P = {([a¿, c¿], a¿) U ([c¿, 6¿], 6¿) :
 i = 1,2, . . . , M}. Then the partial division P on Eq is 5-subordinate to 7.
 Thus we have

 M M 1
 X; iw - ^(coi + E 'F^ - F(a')i < (3.5)
 i=i ¿=1

 Clearly from (3.5) we get

 M

 E l^i) -F(ai)'>-m*F(E0). (3.6)
 ¿=1

 According to (3.1), (3.2) and (3.3) this yields

 M - M
 £ 'F(bi) - F(oi) I > jm'FļEo) - -S. (3.7)
 ¿=1

 Combining (3.6) and (3.7) gives jm*F(Eo) > |ra*F(E0) - $6. Note that
 $ 6 < (b - a 4- 1)0 and 0 < w(b^a+i) • This *s a contradiction.

 If m*F(Eo) = oo, then lim^oo ra*(F(£0) H [-Ml) = m*F(Eo). We can
 find a subset £i of Eq such that m*F(E') > 0 and niE' = 0. Therefore, we
 have reduced the problem to the above case. □

 Remark. This lemma answers an open problem which was asked by Liao and
 Chew [6]: Does ASL imply Lusin condition N ?

 We shall use following theorem.
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 Theorem 1 (O'Malley). Let f be a function defined on [a, 6] and

 (1) f is Baire class 1,

 (2) aplimsup^.^- f(x) < f(x0) < aplims'ip)x_^x+ f(x) for every x0i and

 (3) interior [f({x : /+, (x) < 0})] = 0.

 Then f is nondecreasing.

 Lemma 2 Suppose F satisfies ASL andF'ap(x) > 0. Then F is nondecreasing.

 Proof. Let G{x) = F(x) + ex where e > 0. It is clear that the sum of
 two ASL functions is an ASL function. This shows that G satisfies ASL. By

 Lemma 1, G satisfies Lusin's condition N. This implies that mG{x : G+p(x) <
 0} = 0. Since an ASL function is approximately continuous, it is clear that G
 satisfies the three conditions of O'Malley's Theorem 1. We conclude that G is
 nondecreasing. Let € ļ 0. We get that F is nondecreasing. □

 A routine argument preves the following theorem.

 Theorem 2 If a function F satisfies ASL and Fáp(x) = 0 a.e. on [a, 6], then
 F is constant on [a, b] .

 Definition 3 A function f is said to be ASL-integrable on [a,b' if there exists
 an ASL the function F on [a, 6] such that F'ap{x ) = f(x) almost everywhere
 on [a, b'. We define the ASL-integral of f on [a, 6] by

 A SlJ^ f(x) dx = F(b) - F (a).

 We show that the F in the definition is uniquely determined (up to an
 additive constant). Indeed suppose that function G(x) and F(x) satisfy ASL
 and i^áp(x) = G'ap(x) almost everywhere on [a, 6]. It follows that (F- G)'ap = 0
 a.e. on [a, 6]. Thus F - G is constant on [a, 6]. Consequently

 ASL f f(x) dx = F(b) - F (a) = G(b) - G (a).
 J a

 This proves that the ASL-integral is well defined.

 Theorem 3 A function f : [a, 6] - > M is SH-integrable on [a, b] if and only if
 f is ASL-integrable on [a, ò] .
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 Proof. Suppose first that the function / is SH-integrable on [a, 6]. Let
 F(x) = SH f* f(x) dx. Then F'ap(x) = f(x) a.e. on [a, b] and F satisfies ASL
 (cf, 3, Theorem 11 and Theorem 15]).
 Conversely suppose that / is ASL-integrable on [a, 6]. Then there exists
 an ASL function F on [a, 6] such that F^p(x) = f(x) a.e. on [a, 6]. We claim
 that f is SH-integrable on [a, b] with primitive F. It is sufficient to show that
 F is ACGs on [a, 6] (cf, 3, Theorem 17]).
 Let En = {x: 'F'ap(x)' < n} and H = [a, 6] ' U~ i^n, then [a, 6] =
 En (J H. Since F is approximately differentiate on En , there exists a

 distribution S and function 7 on En such that for every x e Enìj e Sx and
 'x - VÍ < 70e) > we have 'F(y) - < n'x ~ VÍ- This proves that F is ACs
 on En. Note that mH = 0, the ASL condition of F will take care of that F is
 ACs on H. □
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