Daniel M. Hyman, 10101 Grosvenor Place, Apt. 1020, Rockville, MD 20852

VANISHING DERIVATIVES AND NILPOTENCY

1. Introduction

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be infinitely differentiable, and let $t_{0} \in \mathbb{R}$. We ask some basic questions concerning the derivatives $f^{(p)}$ of f at t_{0}. For example, does $f^{(p)}\left(t_{0}\right)=0$ for all p ? (Equivalently, is the Taylor series of f, expanded at t_{0}, constant?) If not, then what is the smallest integer p for which $f^{(p)}\left(t_{0}\right) \neq 0$? Our purpose here is to give precise algebraic answers to these questions.

We will answer these questions by defining an extension \mathbb{R}^{*} of \mathbb{R} and studying the behavior of a certain mapping $f^{*}: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ induced by f. Over the years, other extensions of \mathbb{R} have been proposed, most notably Robinson's non-standard real line ${ }^{*} \mathbb{R}[7]$. Our algebra \mathbb{R}^{*} differs from ${ }^{*} \mathbb{R}$ in that \mathbb{R}^{*} is not a field; it possesses zero-divisors. Although one generally expects a number system to be a field, it will become evident that it is advantageous to have zero-divisors. For example, we will answer the questiuns posed above in terms of the vanishing of f^{*} on certain sets of nilpotent elements of \mathbb{R}^{*}. Such results, of course, cannot be formulated in a field.

See $[1,5,6,8]$ for other extensions of \mathbb{R} or other result. of possible related interest.

2. The Algebra \mathbb{R}^{*}

Throughout this paper, sequences are denoted by boldface letters. Individual terms of a sequence are denoted by the corresponding subscripted plain letters; for example, the general term of \mathbf{x} is x_{n}. Sequences are assumed to be infinite unless stated otherwise. Expressions involving sequences are always expanded termwise; for example, $\mathbf{x}+\mathbf{y}$ and $\mathbf{x} \cdot \mathbf{y}$ are the sequences with general terms $x_{n}+y_{n}$ and $x_{n} \cdot y_{n}$, respectively.

We recall that the variation of a sequence \mathbf{x} in \mathbb{R} is

$$
\begin{equation*}
\operatorname{Var}(\mathbf{x})=\sum_{n}\left|x_{n+1}-x_{n}\right| \tag{V}
\end{equation*}
$$

$\operatorname{Var}(\mathbf{x})$ can be finite or infinite, depending on \mathbf{x}. Every bounded monotonic sequence has finite variation (since the identity (V) above telescopes). All sequences of finite variation are Cauchy sequences and therefore converge in \mathbb{R}.

Let \mathcal{V} denote the collection of all sequences in \mathbb{R} of finite variation. One sees easily that if $\mathbf{x}, \mathbf{y} \in \mathcal{V}$, then $\mathbf{x} \pm \mathbf{y} \in \mathcal{V}$ and $\mathbf{x} \cdot \mathbf{y}=\mathbf{y} \cdot \mathbf{x} \in \mathcal{V}$. Also, if $r \in \mathbb{R}$, then $r \cdot \mathbf{x} \in \mathcal{V}$. Thus, \mathcal{V} is a commutative algebra over \mathbb{R}. Let \mathcal{A} denote the set of all absolutely summable sequences in \mathbb{R}. Then \mathcal{A} is an ideal in \mathcal{V}, and we form the quotient algebra $\mathbb{R}^{*}=\mathcal{V} / \mathcal{A}$.

Remark 1 In our definition of \mathbb{R}^{*}, no reason has been given for considering \mathcal{V} and \mathcal{A}. As it turns out, \mathcal{V} is closely related to the class of Lipschitz mappings (see Section 3). Also, $\mathbf{x} \in \mathcal{V}$ if and only if its "derivative"

$$
\Delta \mathbf{x}=x_{1}, x_{2}-x_{1}, x_{3}-x_{2}, x_{4}-x_{3}, \ldots
$$

belongs to \mathcal{A}. The technique of factoring out the subgroup of derivatives of certain groups of sequences is the cornerstone of the theory of discrete analysis [3,4], to which the reader is referred for a fuller understanding of the approach taken here. In the terminology of [3], \mathbb{R}^{*} is the "integral envelope" of \mathbb{R}.

If $\mathbf{x} \in \mathcal{V}$, we denote its equivalence class in \mathbb{R}^{*} by $[\mathbf{x}]$. If $r \in \mathbb{R}$, then the constant sequence r, r, r, \ldots belongs to \mathcal{A} if and only if $r=0$. It follows that \mathbb{R} is canonically embedded in \mathbb{R}^{*}. We identify \mathbb{R} with its canonical image in \mathbb{R}^{*}; specifically, $\mathbb{R} \subset \mathbb{R}^{*}$, under the identification $r=[r, r, r, \ldots]$ for all $r \in \mathbb{R}$.

Given $\mathbf{x} \in \mathcal{V}$, we define the $k^{t h}$ tail of \mathbf{x} to be the sequence

$$
\tau_{k}(\mathbf{x})=x_{k+1}, x_{k+2}, x_{k+3}, \ldots
$$

Proposition 1 If $\mathbf{x} \in \mathcal{V}$, then $[\mathbf{x}]=\left[\tau_{k}(\mathbf{x})\right]$ for every positive integer k.
Proof. By induction, the proof reduces to the case $k=1$. But in this case,

$$
\sum_{n}\left|\tau_{1}\left(x_{n}\right)-x_{n}\right|=\sum_{n}\left|x_{n+1}-x_{n}\right|=\operatorname{Var}(\mathbf{x})<\infty
$$

So $\tau_{1}(\mathbf{x})-\mathbf{x} \in \mathcal{A}$.
Let $\mathcal{Z}=\{\mathbf{x} \in \mathcal{V} \mid \lim (\mathbf{x})=0\}$, and define $\mathbb{I}=\left\{[\mathbf{x}] \in \mathbb{R}^{*} \mid \mathbf{x} \in \mathcal{Z}\right\}$. Then \mathbb{I} is an ideal of \mathbb{R}^{*}.

Let $x \in \mathbb{R}^{*}$, and suppose that \mathbf{x} and \mathbf{y} both represent x. Then \mathbf{x} and \mathbf{y} converge to the same limit in \mathbb{R}. It follows that x has a unique decomposition as $r_{x}+i_{x}$, where $r_{x}=\lim (\mathbf{x}) \in \mathbb{R}$, and $i_{x}=x-r_{x} \in \mathbb{I}$. So \mathbb{R}^{*} splits as an additive group into $\mathbb{R} \oplus \mathbb{I}$, and we write $x=\left(r_{x}, i_{x}\right)$. Addition and scalar multiplication are then performed coordinatewise; and, since \mathbb{I} is an ideal,

$$
x \cdot y=\left(r_{x} \cdot r_{y}, r_{x} \cdot i_{y}+i_{x} \cdot r_{y}+i_{x} \cdot i_{y}\right) \text { for all } x, y \in \mathbb{R}^{*}
$$

Recall that a ring element x is nilpotent if $x^{p}=0$ for some positive integer p. By the rule for multiplication in \mathbb{R}^{*} displayed above, a necessary condition for $x \in \mathbb{R}^{*}$ to be nilpotent is that $x \in \mathbb{I}$.

Let \mathbf{h} denote the harmonic sequence, that is, $h_{n}=1 / n$ for all n; and let $h=[\mathbf{h}] \in \mathbb{I}$. More generally, for each real $r>0$, the sequence \mathbf{h}^{r} converges monotonically to zero and therefore represents $h^{r} \in \mathbb{I}$. If $r>1$, then $h^{r}=0$; otherwise, $h^{r} \neq 0$. If p is an integer such that $p>1 / r$, then $\left(h^{r}\right)^{p}=0$; so h^{r} is nilpotent for each $r>0$. For every positive integer p, define $N^{p}=\{x \in$ $\left.\mathbb{I} \mid x^{p}=0\right\}$. Then $h^{1 / p} \in N^{p+1} \backslash N^{p}$.

It follows from Theorems 1 and 3 below that non-nilpotent elements of \mathbb{I} exist, but to appeal to an existence proof for this is overkill; the reader should have no trouble finding a sequence that represents a non-nilpotent element of II.

Finally, we remark that the order relation on \mathbb{R} induces a partial ordering on \mathbb{R}^{*}. Specifically, for $x, y \in \mathbb{R}^{*}$, we define $x \leq y$ if there exist representatives \mathbf{x} and \mathbf{y} of x and y, respectively, such that $x_{n} \leq y_{n}$ for all n. It can be shown that this is a well-defined partial ordering under which \mathbb{R}^{*} is a lattice. One sees easily that if $x \in \mathbb{I}$ and if $0<r \in \mathbb{R}$, then $x<r$. We can therefore regard \mathbb{I} as the set of infinitesimals of \mathbb{R}^{*}. Our theorems will then reduce questions about the "infinitesimal calculus" to questions about this algebra of infinitesimals.

3. Functions on \mathbb{R}^{*} Induced by Lipschitz Mappings on \mathbb{R}

Let X be a non-empty subset of \mathbb{R}. We recall that a function $f: X \rightarrow \mathbb{R}$ is a Lipschitz mapping if for each $x \in X$ there exist a neighborhood U of x and a real number M such that $|f(y)-f(z)| \leq M \cdot|y-z|$ for all $y, z \in U$. Every continuously differentiable function is a Lipschitz mapping, and every Lipschitz mapping is continuous. The function $|x|^{1 / 2}$, defined on $X=\mathbb{R}$, is the conventional example of a continuous function that is not a Lipschitz mapping.

The following proposition is immediate.
Proposition 2 If X is closed (and therefore complete) and if $f \in$ LIP, then $\operatorname{Var}(f(\mathbf{x}))$ is finite whenever $\operatorname{Var}(\mathbf{x})$ is finite.

The hypothesis of completeness in Proposition 2 cannot be dropped. For example, $\tan (x)$, as a function from the set of rational numbers into \mathbb{R}, is a Lipschitz mapping that does not preserve sequences of finite variation. We remark that the converse of Proposition 2 is also true, even without the assumption that X is complete. This can be shown by a slight modification to the proof of [2; Theorem 3.1].

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz mapping. If $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and $\mathbf{x}-\mathbf{y} \in \mathcal{A}$, then it follows immediately from the definition of a Lipschitz mapping and the completeness of \mathbb{R} that $f(\mathbf{x})-f(\mathbf{y}) \in \mathcal{A}$. Consequently, f induces a function $f^{*}: \mathbb{R}^{*} \rightarrow \mathbb{R}^{*}$ defined by $f^{*}([\mathbf{x}])=[f(\mathbf{x})]$ for all $\mathbf{x} \in \mathcal{V}$.

The following propositions, where $f, g \in \operatorname{LIP}$, are easily verified.
Proposition $3(f+g)^{*}=f^{*}+g^{*}$ and $(f \cdot g)^{*}=f^{*} \cdot g^{*}$. Also, if $s \in \mathbb{R}$, then $(s \cdot g)^{*}=s \cdot g^{*}$.

Proposition 4 The identity mapping on \mathbb{R} induces the identity mapping on \mathbb{R}^{*}, and $(f \circ g)^{*}=f^{*} \circ g^{*}$.

Proposition 5 If $f(0)=0$, then $f^{*}(\mathbb{I}) \subset \mathbb{I}$.

4. The Action of Induced Mappings on N^{p}

We are now ready to establish our results relating the vanishing of derivatives to nilpotency. Some of our proofs will involve extensions of methods employed in [2].

We are given a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and a point $t_{0} \in \mathbb{R}$. For each $t \in \mathbb{R}$, let $g(t)=f\left(t+t_{0}\right)-f\left(t_{0}\right)$. Then $g(0)=0$ and $f^{(k)}\left(t_{0}\right)=g^{(k)}(0)$ for all k. So, replacing f by g if necessary, we can assume with no real loss of generality that $t_{0}=0$ and that $f(0)=0$; in particular, $f^{*}(\mathbb{I}) \subset \mathbb{I}$.

Our first theorem follows directly from Lemmas 2 and 3 below.
Theorem 1 If f is infinitely differentiable, then $f^{(k)}(0)=0$ for all k if and only if $f^{*}(x)=0$ for every nilpotent $x \in \mathbb{I}$.

Definition 1 The function f is p-smooth if f is differentiable at least p times and $f^{(p)} \in$ LIP.

Lemma 1 If f is p-smooth and $f^{(k)}(0)=0$ for all $k \leq p$, then there exists a real number M and a neighborhood U of 0 such that $|f(t)| \leq M \cdot|t|^{p+1}$ for all $t \in U$.

Proof. Since $f^{(p)} \in$ LIP, there exist M and U such that $\left|f^{(p)}(t)\right| \leq M \cdot|t|$ for all $t \in U$. There is no loss in generality in assuming that U is an open interval.

Let $t \in U$. If $t=0$, the equality $|f(t)|=M \cdot|t|^{p+1}$ holds trivially. Suppose then that $t \neq 0$, and put $t_{0}=t$. By the Mean Value Theorem, there exists t_{1} such that $0<\left|t_{1}\right|<\left|t_{0}\right|$ and such that $f\left(t_{0}\right)=f^{\prime}\left(t_{1}\right) \cdot t_{0}$. Inductively, for each $k \leq p$ there exists t_{k} such that $0<\left|t_{k}\right|<\left|t_{k-1}\right|$ and such that $f^{(k-1)}\left(t_{k-1}\right)=f^{(k)}\left(t_{k}\right) \cdot t_{k-1}$. Then $t_{p} \in U$, and

$$
\begin{aligned}
|f(t)| & =\left|f^{\prime}\left(t_{1}\right) \cdot t_{0}\right| \\
& =\left|f^{\prime \prime}\left(t_{2}\right) \cdot t_{1} \cdot t_{0}\right| \\
& \cdots \\
& =\left|f^{(p)}\left(t_{p}\right)\right| \cdot\left|t_{p-1} \cdot t_{p-2} \cdot \ldots \cdot t_{1} \cdot t_{0}\right| \\
& \leq M \cdot\left|t_{p} \cdot t_{p-1} \cdot t_{p-2} \cdot \ldots \cdot t_{1} \cdot t_{0}\right| \\
& \leq M \cdot|t|^{p+1} .
\end{aligned}
$$

Lemma 2 If f is p-smooth and $f^{(k)}(0)=0$ for all $k \leq p$, then $f^{*}(x)=0$ for every $x \in N^{p+1}$.

Proof. By Lemma 1, there exist M and U such that $|f(t)| \leq M \cdot|t|^{p+1}$ for all $t \in U$. Let $x \in N^{p+1}$, and let $\mathbf{x} \in \mathcal{Z}$ represent x. By Proposition 1, we can suppose that $x_{n} \in U$ for all n. Then $\sum_{n}\left|f\left(x_{n}\right)\right| \leq M \cdot \sum_{n}\left|x_{n}\right|^{p+1}<\infty$. So $f(\mathbf{x}) \in \mathcal{A}$; equivalently, $f^{*}(x)=0$.

Remark 2 The hypothesis that $f^{(p)} \in \operatorname{LIP}$ is critical in this lemma and also in Theorem 2 below. For example, take $p=1$ and let $f(t)=|t|^{3 / 2}$. Then $f^{*}\left(h^{2 / 3}\right)=h \neq 0$, even though $h^{2 / 3} \in N^{2}$.

Lemma 3 Let f be p-smooth, and suppose that $f^{(k)}(0)=0$ for all $k<p$ but that $f^{(p)}(0) \neq 0$. Then $f^{*}(x) \neq 0$ for every $x \in N^{p+1} \backslash N^{p}$.

Proof. Let $g(t)=f(t)-C \cdot t^{p}$, where $C=f^{(p)}(0) / p!$. Then $g^{(k)}(0)=0$ for all $k \leq p$. Let $x \in \mathbb{I}$. Then $f^{*}(x)=g^{*}(x)+C \cdot x^{p}$. If $x \in N^{p+1}$, then by Lemma $2, g^{*}(x)=0$. If $x \notin N^{p}$, then $C \cdot x^{p} \neq 0$. So $f^{*}(x) \neq 0$ if $x \in N^{p+1} \backslash N^{p}$.

The simplest function that satisfies the hypothesis of Lemma 3 is $f(t)=t^{p}$. Lemma 3 ensures only that $f^{*}(x) \neq 0$ for every $x \in N^{p+1} \backslash N^{p}$, but for this particular function we obviously have $f^{*}(x) \neq 0$ for every $X \in \mathbb{I} \backslash N^{p}$. Our next theorem, which follows from Lemma 6 and Lemma 2 (applied to $p-1$), shows that the non-vanishing of f^{*} throughout $\mathbb{I} \backslash N^{p}$ is true in general.

Theorem 2 Let f be p-smooth, and suppose that $f^{(k)}(0)=0$ for all $k<p$ but that $f^{(p)}(0) \neq 0$. If $x \in \mathbb{I}$, then $f^{*}(x)=0$ if and only if $x \in N^{p}$.

Lemma 4 If $\mathbf{x} \in \mathcal{Z} \backslash \mathcal{A}$, then for any real numbers $0 \leq s<t$, there exists a finite subsequence y_{1}, \ldots, y_{m} of \mathbf{x} such that $s \leq \sum_{j \leq m}\left|y_{j}\right| \leq t$.

Proof. Remove from \mathbf{x} all terms x_{n} such that $\left|x_{n}\right|>t-s$, and call the resulting subsequence \mathbf{y}. Since only finitely many terms of \mathbf{x} have been removed, $\mathbf{y} \notin \mathcal{A}$; this implies the existence of an index m such that $s \leq \sum_{j \leq m}\left|y_{j}\right|$. If m is chosen to be the smallest such index, then, since $\left|y_{m}\right| \leq t-s$, this sum is bounded above by t.

Lemma 5 If $\mathbf{x} \in \mathcal{Z}$ represents $x \in \mathbb{I} \backslash N^{p}$, then there exists a subsequence \mathbf{y} of \mathbf{x} such that $[\mathbf{y}] \in N^{p+1} \backslash N^{p}$.

Proof. Since \mathbf{x} converges to zero, there is an index m such that $\left|x_{n}\right| \leq 1$ for all $n>m$. Then $\sum_{n>m}\left|x_{n}\right|^{p}=\infty$; so, by Lemma 4, we can extract from $\tau_{m}(\mathbf{x})$ a finite subsequence $\mathbf{y}_{1}=y_{1,1}, y_{1,2}, \ldots, y_{1, m_{1}}$ such that $1 \leq \sum_{j \leq m_{1}}\left|y_{1, j}\right|^{p} \leq 2$. Additionally, $\left|y_{1, j}\right| \leq 1$ for all j. Inductively, for $n>1$, extract from \mathbf{x} a finite sequence $\mathbf{y}_{n}=y_{n, 1}, y_{n, 2}, \ldots, y_{n, m_{n}}$ such that $y_{n, 1}$ follows $y_{n-1, m_{n-1}}$ in \mathbf{x}, and such that

$$
\begin{equation*}
1 / n \leq \sum_{j \leq m_{n}}\left|y_{n, j}\right|^{p} \leq 2 / n \tag{a}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|y_{n, j}\right| \leq 1 / n \text { for all } j \tag{b}
\end{equation*}
$$

We then have

$$
\begin{equation*}
\sum_{j \leq m_{n}}\left|y_{n, j}\right|^{p+1} \leq(1 / n) \cdot \sum_{j \leq m_{n}}\left|y_{n, j}\right|^{p} \leq(1 / n) \cdot(2 / n)=2 / n^{2} \tag{c}
\end{equation*}
$$

The juxtaposed sequence $\mathbf{y}=\mathbf{y}_{1} \mathbf{y}_{2} \mathbf{y}_{3} \ldots$ is then a subsequence of \mathbf{y}. The first inequality in (a) implies that $[\mathbf{y}] \notin N^{p}$, and (c) implies that $[\mathbf{y}] \in N^{p+1}$.

Lemma 6 Let f be p-smooth, and suppose that $f^{(k)}(0)=0$ for all $k<p$ but that $f^{(p)}(0) \neq 0$. Then $f^{*}(x) \neq 0$ for every $x \in \mathbb{I} \backslash N^{p}$.

Proof. Let $\mathbf{x} \in \mathcal{Z}$ represent $x \in \mathbb{I} \backslash N^{p}$. By Lemma 5, there exists a subsequence \mathbf{y} of \mathbf{x} such that $y=[\mathbf{y}] \in N^{p+1} \backslash N^{p}$. By Lemma $3, f^{*}(y) \neq 0$. Since $f(\mathbf{y})$ is a subsequence of $f(\mathbf{x})$, it follows that $f^{*}(x) \neq 0$.

5. The Faithfulness of the Induced Mapping

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipschitz mapping such that $f(0)=0$. We conclude this study by showing that f^{*} represents f "faithfully" on \mathbb{I}.

Theorem $3 f^{*}(x)=0$ for every $x \in \mathbb{I}$ if and only if $f(t)=0$ for every t in some neighborhood of zero.

Proof. It is immediate from Proposition 1 that if f vanishes on some neighborhood of zero, then f^{*} vanishes on II. To establish the converse, suppose that f does not vanish on any neighborhood of zero. Then for every n there exists $x_{n} \in \mathbb{R}$ such that $\left|x_{n}\right| \leq 1 / 2^{n}$ and such that $f\left(x_{n}\right) \neq 0$. Choose an integer $j_{n} \geq 1 /\left|f\left(x_{n}\right)\right|$, and let $\mathbf{z}=x_{1}, \ldots x_{1}, x_{2}, \ldots x_{2}, \ldots x_{n}, \ldots x_{n}, \ldots$ where x_{n} appears j_{n} times. Then $\mathbf{z} \in \mathcal{Z}$, and it follows immediately from the definition of j_{n} that $f(\mathbf{z}) \notin \mathcal{A}$; equivalently, $f^{*}([\mathbf{z}]) \neq 0$.

Acknowledgment

The author wishes to thank one of the referees, who pointed out some of the references below.

References

[1] J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984.
[2] D. M. Hyman, Convergent sequences and tangent mappings in the Lipschitz category, Rev. Colombiana Mat., 23 (1989), 103-117.
[3] D. M. Hyman, A theory of discrete analysis, J. Math. Anal. Appl., 169 (1992), 374-390.
[4] D. M. Hyman, Discrete analysis in commutative rings, J. Math. Anal. Appl., 171 (1992), 537-554.
[5] E. Kähler, Bericht über die Mathematiker-Tagung in Berlin, Deutcher Verlag der Wissenschaften, Berlin (1953), 48-163.
[6] A. Kock, A simple axiomatic for differentiation, Mat. Scand., 40 (1977), 183-193.
[7] A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam, 1966.
[8] C. Schmieden and D. Laugwitz, Eine Erweiterung der Infinitesimalrechnung, Math. Z., 69 (1958), 1-39.

