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 VANISHING DERIVATIVES AND

 NILPOTENCY

 1. Introduction

 Let f -ě R -> R be infinitely differentiable, and let to e fi. We ask some
 basic questions concerning the derivatives / ^ of / at to. For example, does
 /(p)(£0) = 0 for all p? (Equivalently, is the Taylor series of /, expanded at to ,
 constant?) If not, then what is the smallest integer p for which f^p'to) ^ 0?
 Our purpose here is to give precise algebraic answers to these questions.

 We will answer these questions by defining an extension M* of M and study-
 ing the behavior of a certain mapping /* : M* - ► M* induced by /. Over the
 years, other extensions of M have been proposed, most notably Robinson's
 non-standard real line *M [7]. Our algebra M* differs from *M in that M* is not
 a field; it possesses zero-divisors. Although one generally expects a number
 system to be a field, it will become evident that it is advantageous to have
 zero-divisors. For example, we will answer the questions posed above in terms
 of the vanishing of /* on certain sets of nilpotent elements of M* . Such results,
 of course, cannot be formulated in a field.

 See [1,5,6,8] for other extensions of M or other result*- of possible related
 interest.

 2. The Algebra R*

 Throughout this paper, sequences are denoted by boldface letters. Individual
 terms of a sequence are denoted by the corresponding subscripted plain letters;
 for example, the general term of x is xn. Sequences are assumed to be infinite
 unless stated otherwise. Expressions involving sequences are always expanded
 termwise; for example, x + y and x • y are the sequences with general terms
 xn 4- yn and xn • yni respectively.
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 We recall that the variation of a sequence x in M is

 Var(x) = ^2 'xn+i - xn'- (V)
 n

 Var(x) can be finite or infinite, depending on x. Every bounded monotonie
 sequence has finite variation (since the identity (V) above telescopes). All
 sequences of finite variation are Cauchy sequences and therefore converge in
 M.

 Let V denote the collection of all sequences in M of finite variation. One
 sees easily that if x, y G V, then x±y 6 V and x • y = y • x G V. Also, if
 r G M, then r • x G V. Thus, V is a commutative algebra over M. Let A denote
 the set of all absolutely summable sequences in M. Then A is an ideal in V,
 and we form the quotient algebra M* = V/ A.

 Remark 1 In our definition o/M*, no reason has been given for considering
 V and A. As it turns out, V is closely related to the class of Lipschitz mappings
 (see Section 3 ). Also, x G V if and only if its "derivative"

 Ax = X' , X2 - , £3 - X2 , £4 - £3 , . . .

 belongs to A . The technique of factoring out the subgroup of derivatives of
 certain groups of sequences is the cornerstone of the theory of discrete analysis
 [3,4], to which the reader is referred for a fuller understanding of the approach
 taken here. In the terminology of [3], M* is the " integral envelope" o/M.

 If x G V, we denote its equivalence class in M* by [x]. If r G K, then the
 constant sequence r, r, r, . . . belongs to A if and only if r = 0. It follows that
 M is canonically embedded in M*. We identify M with its canonical image in
 M*; specifically, RcM*, under the identification r = [r, r, r, . . .] for all r G M.

 Given x G V, we define the kth tail of x to be the sequence

 1~k (x) = Xjç+i , X/C_ļ_2) • • • •

 Proposition 1 //xG V, then [x] = [rfc(x)] for every positive integer k.

 PROOF. By induction, the proof reduces to the case k = 1. But in this case,

 ^2 'ri(xn) - xn' = |xn+i - xn' = Var(x) < oo.
 n 71

 So Tļ (x) - X G A. □
 Let Z = {x G V| lim(x) = 0}, and define I = {[x] G M*|x G Z}. Then I is

 an ideal of M*.
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 Let X G M*, and suppose that x and y both represent x. Then x and y
 converge to the same limit in M. It follows that x has a unique decomposition
 as rx + iXi where rx = lim(x) G M, and ix = x - rx G I. So M* splits as
 an additive group into M 0 1, and we write x = ( rxiix ). Addition and scalar
 multiplication are then performed coordinatewise; and, since I is an ideal,

 x-y = (rX' ry,rx • iy + ix • ry + ix • iy) for all x, y G M*.

 Recall that a ring element x is nilpotent if xp = 0 for some positive integer
 p. By the rule for multiplication in M* displayed above, a necessary condition
 for a; € 1* to be nilpotent is that x G I.
 Let h denote the harmonic sequence, that is, hn = 1/n for all n; and let

 h = [h] G I. More generally, for each real r > 0, the sequence hr converges
 monotonically to zero and therefore represents hr G I. If r > 1, then hr = 0;
 otherwise, hr / 0. If p is an integer such that p > 1/r, then ( hr)p = 0; so hr
 is nilpotent for each r > 0. For every positive integer p, define Np = {x G
 I|a* = 0}. Then hl'p G Np+l'Np.

 It follows from Theorems 1 and 3 below that non-nilpotent elements of I
 exist, but to appeal to an existence proof for this is overkill; the reader should
 have no trouble finding a sequence that represents a non-nilpotent element of
 L

 Finally, we remark that the order relation on M induces a partial ordering
 on M* . Specifically, for x, y G M* , we define x < y if there exist representatives
 x and y of x and y , respectively, such that xn < yn for all n. It can be shown
 that this is a well-defined partial ordering under which M* is a lattice. One sees
 easily that if x G I and if 0 < r G M, then x < r. We can therefore regard I as
 the set of infinitesimals of M* . Our theorems will then reduce questions about
 the "infinitesimal calculus" to questions about this algebra of infinitesimals.

 3. Functions on R* Induced by Lipschitz Mappings on R

 Let X be a non-empty subset of M. We recall that a function / : X - ► M
 is a Lipschitz mapping if for each x G X there exist a neighborhood U of x
 and a real number M such that | f(y) - f(z) ' < M • 'y - z' for all y,z G U.
 Every continuously differentiate function is a Lipschitz mapping, and every
 Lipschitz mapping is continuous. The function l^l1/2, defined on X = M,
 is the conventional example of a continuous function that is not a Lipschitz
 mapping.

 The following proposition is immediate.

 Proposition 2 If X is closed (and therefore complete) and if f G LIP, then
 Var(/(x)) is finite whenever Var(x) is finite.
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 The hypothesis of completeness in Proposition 2 cannot be dropped. For
 example, tan(x), as a function from the set of rational numbers into M, is a
 Lipschitz mapping that does not preserve sequences of finite variation. We
 remark that the converse of Proposition 2 is also true, even without the as-
 sumption that X is complete. This can be shown by a slight modification to
 the proof of [2; Theorem 3.1].
 Let / : 1 -> M be a Lipschitz mapping. If x, y G V and x - y G A, then

 it follows immediately from the definition of a Lipschitz mapping and the
 completeness of R that /(x) - /( y) G A. Consequently, / induces a function
 /* : R* - > R* defined by /*([x]) = [/(x)] for all x G V.
 The following propositions, where /, <7 G LIP, are easily verified.

 Proposition 3 (/4- g)* = f* + g* and (/ • g)* = f* • g*. Also, if s G R,
 then (s - g )* = s • g*.

 Proposition 4 The identity mapping on R induces the identity mapping on
 R*, and (fog)* = f* o g* .

 Proposition 5 ///( 0) = 0, then f*(f) C I.

 4. The Action of Induced Mappings on Np

 We are now ready to establish our results relating the vanishing of derivatives
 to nilpotency. Some of our proofs will involve extensions of methods employed
 in [2],

 We are given a function / : M - ► M and a point to G M. For each í Gl,
 let g(t) = f(t + t0) - f(t0). Then #(0) = 0 and f^k't0) = g(k' 0) for all k.
 So, replacing / by g if necessary, we can assume with no real loss of generality
 that to = 0 and that /(0) = 0; in particular, f*(ï) C I.

 Our first theorem follows directly from Lemmas 2 and 3 below.

 Theorem 1 If f is infinitely differentiate, then f^( 0) = 0 for all k if and
 only if f*(x) = 0 for every nilpotent x G I.

 Definition 1 The function f is p-smooth if f is differentiate at least p times
 and /M G LIP.

 Lemma 1 If f is p-smooth and fW (0) = 0 for all k < p, then there exists a
 real number M and a neighborhood U of 0 such that 'f(t)' < M • |í|p+1 for all
 teU.
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 Proof. Since G LIP, there exist M and U such that 'f^(t)' < M • 't'
 for all t G U. There is no loss in generality in assuming that U is an open
 interval.

 Let t eU. If t = 0, the equality 'f(t)' = M • |£|p+1 holds trivially. Suppose
 then that t ^ 0, and put to = t. By the Mean Value Theorem, there exists
 ti such that 0 < |£i| < |¿o| and such that /(¿o) = f'(t i) • ¿o- Inductively,
 for each k < p there exists tk such that 0 < 'tk' < |£fc_i| and such that
 /(fc_1)(*fc-i) = /(fc)(ijb) • ijfe-i. Then tp G U, and

 1/(01 = imMoi
 = ìf'fo) -ti -to'

 = 'f^P'tp)' ' 'tp-i • tp- 2 ' • • • * ¿1 * to'

 ^ AI • 'tp ' tp- i • tp- 2 ' . . . ' t' ' t()'

 < M - |t|p+1.

 □

 Lemma 2 If f is p-smooth and /^(0) = 0 for all k <p, then f*(x) = 0 for
 every x G ATp+1.

 PROOF. By Lemma 1, there exist M and U such that 'f(t)' < M • |í|p+1 for
 all t G U . Let x G ¿Vp+1, and let x G Z represent x. By Proposition 1, we can
 suppose that xn G U for all n. Then I f(xn)' < M • |xn|p+1 < oo. So
 /(x) G A', equivalently, f*(x) = 0. □

 Remark 2 The hypothesis that f ^ G LIP is critical in this lemma and also
 in Theorem 2 below. For example , take p = 1 and let f(t) = 't' 3/2. Then
 /*(/i2/3) = ^ ^ o, even though h 2/3 G iV2.

 Lemma 3 Let f be p-smooth , and suppose that f ^ (0) = 0 for all k < p but
 that fW( 0) ^ 0. Then f*(x) ķ , 0 for every x G Np+l'Np .

 Proof. Let g(t) = f(t) - C-tp , where C = f^p'0)/p'. Then g^k'0) = 0 for all
 k < p. Let xGl Then f*(x) = g*(x) + C • xp . If x G iVp+1, then by Lemma
 2, s* (x) = 0. If x i Np, then C - xp =£ 0. So /*(x) ^ 0 if x G iVp+1'ATp. □

 The simplest function that satisfies the hypothesis of Lemma 3 is f(t) = tp.
 Lemma 3 ensures only that /*(x) ^ 0 for every x G iVp+1'iVp, but for this
 particular function we obviously have /*(x) ^ 0 for every X G f'Np. Our
 next theorem, which follows from Lemma 6 and Lemma 2 (applied to p - 1),
 shows that the non-vanishing of /* throughout I'iVp is true in general.
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 Theorem 2 Let f be p-smooth, and suppose that /^(0) = 0 for all k < p
 but that f(p' 0) 0. If X el, then /*(x) = 0 if and only if x G Np.

 Lemma 4 If x G then for any real numbers 0 < s < t, there exists a
 finite subsequence yi, . . . , ym o/x such that s < IvA - ^š

 Proof. Remove from x all terms xn such that 'xn' > t - s, and call the re-
 sulting subsequence y. Since only finitely many terms of x have been removed,

 y ^ A; this implies the existence of an index m such that s < Ej<m'yj'- if
 m is chosen to be the smallest such index, then, since 'ym' < t - s, this sum
 is bounded above by t. □

 Lemma 5 If x G 2 represents x G I 'NP, then there exists a subsequence y
 o/x such that [y] G NP+1'NP.

 Proof. Since x converges to zero, there is an index m such that 'xn' < 1 for all
 n > ra. Then ^2n>m 'xn'p = oo; so, by Lemma 4, we can extract from rm(x) a
 finite subsequence y1 = 2/1,1, 2/1,2, • • • ,2/i,mi such that 1 < £¿<mi 'yi,j'p < 2.
 Additionally, 'yitj' < 1 for all j. Inductively, for n > 1, extract from x a finite
 sequence yn = yn, 1, yn, 2, . . . , yn,mn such that s/M follows yn-i.m^ in x, and
 such that

 l/n< E 'yn,j'p < 2/n. (a)
 j<mn

 and

 'yn,j' < 1/n for all j. (b)

 We then have

 E 'y^'P+1 Ś (V») • E ^ (V") • (2/n) = 2/n2. (c)
 J<mn j<mn

 The juxtaposed sequence y = yiy2y3 ... is then a subsequence of y. The first
 inequality in (a) implies that [y] ^ iVp, and (c) implies that [y] G 7VP+1. □

 Lemma 6 Let f be p-smooth, and suppose that /^(0) = 0 for all k < p but
 that /^(0) 0. Then f*(x) ^ 0 for every x G I 'NP.

 Proof. Let x G Z represent x G I'iVp. By Lemma 5, there exists a subse-
 quence y of x such that y = [y] G Np+l'Np. By Lemma 3, f*(y) ^ 0. Since
 /( y) is a subsequence of /(x), it follows that /*(x) ^ 0. □
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 5. The Faithfulness of the Induced Mapping

 Let / : M - ► M be a Lipschitz mapping such that /(0) = 0. We conclude this
 study by showing that /* represents / "faithfully" on I.

 Theorem 3 f*(x) = 0 for every x G I if and only if f(t) = 0 for every t in
 some neighborhood of zero.

 PROOF. It is immediate from Proposition 1 that if / vanishes on some neigh-
 borhood of zero, then /* vanishes on I. To establish the converse, suppose
 that / does not vanish on any neighborhood of zero. Then for every n there
 exists xn e M such that 'xn' < l/2n and such that f(xn) ^ 0. Choose an inte-
 ger jn > l/|/(xn)|, and let z = xi, . . .xi,x2, . . .x2, . . .xn, . . .xn, . . . where xn
 appears jn times. Then z G Z, and it follows immediately from the definition
 of jn that /( z) ^ A ; equivalently, /*([z]) ^0. □
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