Real Analysis Exchange Vol. 19(1), 1993/94, pp. 283-289

Daniel M. Hyman, 10101 Grosvenor Place, Apt. 1020, Rockville, MD 20852

VANISHING DERIVATIVES AND NILPOTENCY

1. Introduction

Let $f : \mathbb{R} \to \mathbb{R}$ be infinitely differentiable, and let $t_0 \in \mathbb{R}$. We ask some basic questions concerning the derivatives $f^{(p)}$ of f at t_0 . For example, does $f^{(p)}(t_0) = 0$ for all p? (Equivalently, is the Taylor series of f, expanded at t_0 , constant?) If not, then what is the smallest integer p for which $f^{(p)}(t_0) \neq 0$? Our purpose here is to give precise algebraic answers to these questions.

We will answer these questions by defining an extension \mathbb{R}^* of \mathbb{R} and studying the behavior of a certain mapping $f^* : \mathbb{R}^* \to \mathbb{R}^*$ induced by f. Over the years, other extensions of \mathbb{R} have been proposed, most notably Robinson's non-standard real line $*\mathbb{R}$ [7]. Our algebra \mathbb{R}^* differs from $*\mathbb{R}$ in that \mathbb{R}^* is not a field; it possesses zero-divisors. Although one generally expects a number system to be a field, it will become evident that it is advantageous to have zero-divisors. For example, we will answer the questions posed above in terms of the vanishing of f^* on certain sets of nilpotent elements of \mathbb{R}^* . Such results, of course, cannot be formulated in a field.

See [1,5,6,8] for other extensions of \mathbb{R} or other results of possible related interest.

2. The Algebra \mathbb{R}^*

Throughout this paper, sequences are denoted by boldface letters. Individual terms of a sequence are denoted by the corresponding subscripted plain letters; for example, the general term of \mathbf{x} is x_n . Sequences are assumed to be infinite unless stated otherwise. Expressions involving sequences are always expanded termwise; for example, $\mathbf{x} + \mathbf{y}$ and $\mathbf{x} \cdot \mathbf{y}$ are the sequences with general terms $x_n + y_n$ and $x_n \cdot y_n$, respectively.

Mathematical Reviews subject classification: Primary: 26A04, Secondary: 26A24 Received by the editors December 3, 1992

We recall that the *variation* of a sequence \mathbf{x} in \mathbb{R} is

$$\operatorname{Var}(\mathbf{x}) = \sum_{n} |x_{n+1} - x_n|. \tag{V}$$

 $Var(\mathbf{x})$ can be finite or infinite, depending on \mathbf{x} . Every bounded monotonic sequence has finite variation (since the identity (V) above telescopes). All sequences of finite variation are Cauchy sequences and therefore converge in \mathbb{R} .

Let \mathcal{V} denote the collection of all sequences in \mathbb{R} of finite variation. One sees easily that if $\mathbf{x}, \mathbf{y} \in \mathcal{V}$, then $\mathbf{x} \pm \mathbf{y} \in \mathcal{V}$ and $\mathbf{x} \cdot \mathbf{y} = \mathbf{y} \cdot \mathbf{x} \in \mathcal{V}$. Also, if $r \in \mathbb{R}$, then $r \cdot \mathbf{x} \in \mathcal{V}$. Thus, \mathcal{V} is a commutative algebra over \mathbb{R} . Let \mathcal{A} denote the set of all absolutely summable sequences in \mathbb{R} . Then \mathcal{A} is an ideal in \mathcal{V} , and we form the quotient algebra $\mathbb{R}^* = \mathcal{V}/\mathcal{A}$.

Remark 1 In our definition of \mathbb{R}^* , no reason has been given for considering \mathcal{V} and \mathcal{A} . As it turns out, \mathcal{V} is closely related to the class of Lipschitz mappings (see Section 3). Also, $\mathbf{x} \in \mathcal{V}$ if and only if its "derivative"

$$\Delta \mathbf{x}=x_1,x_2-x_1,x_3-x_2,x_4-x_3,\ldots$$

belongs to \mathcal{A} . The technique of factoring out the subgroup of derivatives of certain groups of sequences is the cornerstone of the theory of discrete analysis [3,4], to which the reader is referred for a fuller understanding of the approach taken here. In the terminology of [3], \mathbb{R}^* is the "integral envelope" of \mathbb{R} .

If $\mathbf{x} \in \mathcal{V}$, we denote its equivalence class in \mathbb{R}^* by $[\mathbf{x}]$. If $r \in \mathbb{R}$, then the constant sequence r, r, r, ... belongs to \mathcal{A} if and only if r = 0. It follows that \mathbb{R} is canonically embedded in \mathbb{R}^* . We identify \mathbb{R} with its canonical image in \mathbb{R}^* ; specifically, $\mathbb{R} \subset \mathbb{R}^*$, under the identification r = [r, r, r, ...] for all $r \in \mathbb{R}$.

Given $\mathbf{x} \in \mathcal{V}$, we define the k^{th} tail of \mathbf{x} to be the sequence

$$au_{oldsymbol{k}}(\mathbf{x}) = x_{oldsymbol{k}+1}, x_{oldsymbol{k}+2}, x_{oldsymbol{k}+3}, \dots$$

Proposition 1 If $\mathbf{x} \in \mathcal{V}$, then $[\mathbf{x}] = [\tau_k(\mathbf{x})]$ for every positive integer k.

PROOF. By induction, the proof reduces to the case k = 1. But in this case,

$$\sum_{n} |\tau_1(x_n) - x_n| = \sum_{n} |x_{n+1} - x_n| = \operatorname{Var}(\mathbf{x}) < \infty.$$

So $\tau_1(\mathbf{x}) - \mathbf{x} \in \mathcal{A}$.

Let $\mathcal{Z} = \{\mathbf{x} \in \mathcal{V} | \lim(\mathbf{x}) = 0\}$, and define $\mathbb{I} = \{[\mathbf{x}] \in \mathbb{R}^* | \mathbf{x} \in \mathcal{Z}\}$. Then \mathbb{I} is an ideal of \mathbb{R}^* .

VANISHING DERIVATIVES AND NILPOTENCY

Let $x \in \mathbb{R}^*$, and suppose that **x** and **y** both represent x. Then **x** and **y** converge to the same limit in \mathbb{R} . It follows that x has a unique decomposition as $r_x + i_x$, where $r_x = \lim(\mathbf{x}) \in \mathbb{R}$, and $i_x = x - r_x \in \mathbb{I}$. So \mathbb{R}^* splits as an additive group into $\mathbb{R} \oplus \mathbb{I}$, and we write $x = (r_x, i_x)$. Addition and scalar multiplication are then performed coordinatewise; and, since \mathbb{I} is an ideal,

$$x \cdot y = (r_x \cdot r_y, r_x \cdot i_y + i_x \cdot r_y + i_x \cdot i_y)$$
 for all $x, y \in \mathbb{R}^*$

Recall that a ring element x is *nilpotent* if $x^p = 0$ for some positive integer p. By the rule for multiplication in \mathbb{R}^* displayed above, a necessary condition for $x \in \mathbb{R}^*$ to be nilpotent is that $x \in \mathbb{I}$.

Let **h** denote the harmonic sequence, that is, $h_n = 1/n$ for all n; and let $h = [\mathbf{h}] \in \mathbb{I}$. More generally, for each real r > 0, the sequence \mathbf{h}^r converges monotonically to zero and therefore represents $h^r \in \mathbb{I}$. If r > 1, then $h^r = 0$; otherwise, $h^r \neq 0$. If p is an integer such that p > 1/r, then $(h^r)^p = 0$; so h^r is nilpotent for each r > 0. For every positive integer p, define $N^p = \{x \in \mathbb{I} | x^p = 0\}$. Then $h^{1/p} \in N^{p+1} \setminus N^p$.

It follows from Theorems 1 and 3 below that non-nilpotent elements of \mathbb{I} exist, but to appeal to an existence proof for this is overkill; the reader should have no trouble finding a sequence that represents a non-nilpotent element of \mathbb{I} .

Finally, we remark that the order relation on \mathbb{R} induces a partial ordering on \mathbb{R}^* . Specifically, for $x, y \in \mathbb{R}^*$, we define $x \leq y$ if there exist representatives **x** and **y** of x and y, respectively, such that $x_n \leq y_n$ for all n. It can be shown that this is a well-defined partial ordering under which \mathbb{R}^* is a lattice. One sees easily that if $x \in \mathbb{I}$ and if $0 < r \in \mathbb{R}$, then x < r. We can therefore regard \mathbb{I} as the set of infinitesimals of \mathbb{R}^* . Our theorems will then reduce questions about the "infinitesimal calculus" to questions about this algebra of infinitesimals.

3. Functions on \mathbb{R}^* Induced by Lipschitz Mappings on \mathbb{R}

Let X be a non-empty subset of \mathbb{R} . We recall that a function $f: X \to \mathbb{R}$ is a Lipschitz mapping if for each $x \in X$ there exist a neighborhood U of x and a real number M such that $|f(y) - f(z)| \leq M \cdot |y - z|$ for all $y, z \in U$. Every continuously differentiable function is a Lipschitz mapping, and every Lipschitz mapping is continuous. The function $|x|^{1/2}$, defined on $X = \mathbb{R}$, is the conventional example of a continuous function that is not a Lipschitz mapping.

The following proposition is immediate.

Proposition 2 If X is closed (and therefore complete) and if $f \in LIP$, then $Var(f(\mathbf{x}))$ is finite whenever $Var(\mathbf{x})$ is finite.

The hypothesis of completeness in Proposition 2 cannot be dropped. For example, $\tan(x)$, as a function from the set of rational numbers into \mathbb{R} , is a Lipschitz mapping that does not preserve sequences of finite variation. We remark that the converse of Proposition 2 is also true, even without the assumption that X is complete. This can be shown by a slight modification to the proof of [2; Theorem 3.1].

Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz mapping. If $\mathbf{x}, \mathbf{y} \in \mathcal{V}$ and $\mathbf{x} - \mathbf{y} \in \mathcal{A}$, then it follows immediately from the definition of a Lipschitz mapping and the completeness of \mathbb{R} that $f(\mathbf{x}) - f(\mathbf{y}) \in \mathcal{A}$. Consequently, f induces a function $f^* : \mathbb{R}^* \to \mathbb{R}^*$ defined by $f^*([\mathbf{x}]) = [f(\mathbf{x})]$ for all $\mathbf{x} \in \mathcal{V}$.

The following propositions, where $f, g \in LIP$, are easily verified.

Proposition 3 $(f+g)^* = f^* + g^*$ and $(f \cdot g)^* = f^* \cdot g^*$. Also, if $s \in \mathbb{R}$, then $(s \cdot g)^* = s \cdot g^*$.

Proposition 4 The identity mapping on \mathbb{R} induces the identity mapping on \mathbb{R}^* , and $(f \circ g)^* = f^* \circ g^*$.

Proposition 5 If f(0) = 0, then $f^*(\mathbb{I}) \subset \mathbb{I}$.

4. The Action of Induced Mappings on N^p

We are now ready to establish our results relating the vanishing of derivatives to nilpotency. Some of our proofs will involve extensions of methods employed in [2].

We are given a function $f : \mathbb{R} \to \mathbb{R}$ and a point $t_0 \in \mathbb{R}$. For each $t \in \mathbb{R}$, let $g(t) = f(t+t_0) - f(t_0)$. Then g(0) = 0 and $f^{(k)}(t_0) = g^{(k)}(0)$ for all k. So, replacing f by g if necessary, we can assume with no real loss of generality that $t_0 = 0$ and that f(0) = 0; in particular, $f^*(\mathbb{I}) \subset \mathbb{I}$.

Our first theorem follows directly from Lemmas 2 and 3 below.

Theorem 1 If f is infinitely differentiable, then $f^{(k)}(0) = 0$ for all k if and only if $f^*(x) = 0$ for every nilpotent $x \in \mathbb{I}$.

Definition 1 The function f is p-smooth if f is differentiable at least p times and $f^{(p)} \in LIP$.

Lemma 1 If f is p-smooth and $f^{(k)}(0) = 0$ for all $k \leq p$, then there exists a real number M and a neighborhood U of 0 such that $|f(t)| \leq M \cdot |t|^{p+1}$ for all $t \in U$.

286

PROOF. Since $f^{(p)} \in \text{LIP}$, there exist M and U such that $|f^{(p)}(t)| \leq M \cdot |t|$ for all $t \in U$. There is no loss in generality in assuming that U is an open interval.

Let $t \in U$. If t = 0, the equality $|f(t)| = M \cdot |t|^{p+1}$ holds trivially. Suppose then that $t \neq 0$, and put $t_0 = t$. By the Mean Value Theorem, there exists t_1 such that $0 < |t_1| < |t_0|$ and such that $f(t_0) = f'(t_1) \cdot t_0$. Inductively, for each $k \leq p$ there exists t_k such that $0 < |t_k| < |t_{k-1}|$ and such that $f^{(k-1)}(t_{k-1}) = f^{(k)}(t_k) \cdot t_{k-1}$. Then $t_p \in U$, and

$$\begin{aligned} |f(t)| &= |f'(t_1) \cdot t_0| \\ &= |f''(t_2) \cdot t_1 \cdot t_0| \\ & \cdots \\ &= |f^{(p)}(t_p)| \cdot |t_{p-1} \cdot t_{p-2} \cdot \cdots \cdot t_1 \cdot t_0| \\ &\leq M \cdot |t_p \cdot t_{p-1} \cdot t_{p-2} \cdot \cdots \cdot t_1 \cdot t_0| \\ &\leq M \cdot |t|^{p+1}. \end{aligned}$$

Lemma 2 If f is p-smooth and $f^{(k)}(0) = 0$ for all $k \leq p$, then $f^*(x) = 0$ for every $x \in N^{p+1}$.

PROOF. By Lemma 1, there exist M and U such that $|f(t)| \leq M \cdot |t|^{p+1}$ for all $t \in U$. Let $x \in N^{p+1}$, and let $\mathbf{x} \in \mathcal{Z}$ represent x. By Proposition 1, we can suppose that $x_n \in U$ for all n. Then $\sum_n |f(x_n)| \leq M \cdot \sum_n |x_n|^{p+1} < \infty$. So $f(\mathbf{x}) \in \mathcal{A}$; equivalently, $f^*(x) = 0$.

Remark 2 The hypothesis that $f^{(p)} \in \text{LIP}$ is critical in this lemma and also in Theorem 2 below. For example, take p = 1 and let $f(t) = |t|^{3/2}$. Then $f^*(h^{2/3}) = h \neq 0$, even though $h^{2/3} \in N^2$.

Lemma 3 Let f be p-smooth, and suppose that $f^{(k)}(0) = 0$ for all k < p but that $f^{(p)}(0) \neq 0$. Then $f^*(x) \neq 0$ for every $x \in N^{p+1} \setminus N^p$.

PROOF. Let $g(t) = f(t) - C \cdot t^p$, where $C = f^{(p)}(0)/p!$. Then $g^{(k)}(0) = 0$ for all $k \leq p$. Let $x \in \mathbb{I}$. Then $f^*(x) = g^*(x) + C \cdot x^p$. If $x \in N^{p+1}$, then by Lemma 2, $g^*(x) = 0$. If $x \notin N^p$, then $C \cdot x^p \neq 0$. So $f^*(x) \neq 0$ if $x \in N^{p+1} \setminus N^p$. \Box

The simplest function that satisfies the hypothesis of Lemma 3 is $f(t) = t^p$. Lemma 3 ensures only that $f^*(x) \neq 0$ for every $x \in N^{p+1} \setminus N^p$, but for this particular function we obviously have $f^*(x) \neq 0$ for every $X \in \mathbb{I} \setminus N^p$. Our next theorem, which follows from Lemma 6 and Lemma 2 (applied to p-1), shows that the non-vanishing of f^* throughout $\mathbb{I} \setminus N^p$ is true in general.

Theorem 2 Let f be p-smooth, and suppose that $f^{(k)}(0) = 0$ for all k < p but that $f^{(p)}(0) \neq 0$. If $x \in \mathbb{I}$, then $f^*(x) = 0$ if and only if $x \in N^p$.

Lemma 4 If $\mathbf{x} \in \mathcal{Z} \setminus \mathcal{A}$, then for any real numbers $0 \leq s < t$, there exists a finite subsequence y_1, \ldots, y_m of \mathbf{x} such that $s \leq \sum_{j \leq m} |y_j| \leq t$.

PROOF. Remove from **x** all terms x_n such that $|x_n| > t - s$, and call the resulting subsequence **y**. Since only finitely many terms of **x** have been removed, $\mathbf{y} \notin \mathcal{A}$; this implies the existence of an index m such that $s \leq \sum_{j \leq m} |y_j|$. If m is chosen to be the smallest such index, then, since $|y_m| \leq t - s$, this sum is bounded above by t.

Lemma 5 If $\mathbf{x} \in \mathcal{Z}$ represents $x \in \mathbb{I} \setminus N^p$, then there exists a subsequence \mathbf{y} of \mathbf{x} such that $[\mathbf{y}] \in N^{p+1} \setminus N^p$.

PROOF. Since **x** converges to zero, there is an index *m* such that $|x_n| \leq 1$ for all n > m. Then $\sum_{n>m} |x_n|^p = \infty$; so, by Lemma 4, we can extract from $\tau_m(\mathbf{x})$ a finite subsequence $\mathbf{y}_1 = y_{1,1}, y_{1,2}, \ldots, y_{1,m_1}$ such that $1 \leq \sum_{j \leq m_1} |y_{1,j}|^p \leq 2$. Additionally, $|y_{1,j}| \leq 1$ for all *j*. Inductively, for n > 1, extract from **x** a finite sequence $\mathbf{y}_n = y_{n,1}, y_{n,2}, \ldots, y_{n,m_n}$ such that $y_{n,1}$ follows $y_{n-1,m_{n-1}}$ in **x**, and such that

$$1/n \le \sum_{j \le m_n} |y_{n,j}|^p \le 2/n.$$
 (a)

and

$$|y_{n,j}| \le 1/n \text{ for all } j. \tag{b}$$

We then have

$$\sum_{j \le m_n} |y_{n,j}|^{p+1} \le (1/n) \cdot \sum_{j \le m_n} |y_{n,j}|^p \le (1/n) \cdot (2/n) = 2/n^2.$$
(c)

The juxtaposed sequence $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \mathbf{y}_3 \dots$ is then a subsequence of \mathbf{y} . The first inequality in (a) implies that $[\mathbf{y}] \notin N^p$, and (c) implies that $[\mathbf{y}] \in N^{p+1}$. \Box

Lemma 6 Let f be p-smooth, and suppose that $f^{(k)}(0) = 0$ for all k < p but that $f^{(p)}(0) \neq 0$. Then $f^*(x) \neq 0$ for every $x \in \mathbb{I} \setminus N^p$.

PROOF. Let $\mathbf{x} \in \mathcal{Z}$ represent $x \in \mathbb{I} \setminus N^p$. By Lemma 5, there exists a subsequence \mathbf{y} of \mathbf{x} such that $y = [\mathbf{y}] \in N^{p+1} \setminus N^p$. By Lemma 3, $f^*(y) \neq 0$. Since $f(\mathbf{y})$ is a subsequence of $f(\mathbf{x})$, it follows that $f^*(x) \neq 0$.

5. The Faithfulness of the Induced Mapping

Let $f : \mathbb{R} \to \mathbb{R}$ be a Lipschitz mapping such that f(0) = 0. We conclude this study by showing that f^* represents f "faithfully" on \mathbb{I} .

Theorem 3 $f^*(x) = 0$ for every $x \in \mathbb{I}$ if and only if f(t) = 0 for every t in some neighborhood of zero.

PROOF. It is immediate from Proposition 1 that if f vanishes on some neighborhood of zero, then f^* vanishes on \mathbb{I} . To establish the converse, suppose that f does not vanish on any neighborhood of zero. Then for every n there exists $x_n \in \mathbb{R}$ such that $|x_n| \leq 1/2^n$ and such that $f(x_n) \neq 0$. Choose an integer $j_n \geq 1/|f(x_n)|$, and let $\mathbf{z} = x_1, \ldots, x_1, x_2, \ldots, x_2, \ldots, x_n, \ldots, x_n, \ldots$ where x_n appears j_n times. Then $\mathbf{z} \in \mathcal{Z}$, and it follows immediately from the definition of j_n that $f(\mathbf{z}) \notin \mathcal{A}$; equivalently, $f^*([\mathbf{z}]) \neq 0$.

Acknowledgment

The author wishes to thank one of the referees, who pointed out some of the references below.

References

- J. F. Colombeau, New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984.
- [2] D. M. Hyman, Convergent sequences and tangent mappings in the Lipschitz category, Rev. Colombiana Mat., 23 (1989), 103-117.
- [3] D. M. Hyman, A theory of discrete analysis, J. Math. Anal. Appl., 169 (1992), 374–390.
- [4] D. M. Hyman, Discrete analysis in commutative rings, J. Math. Anal. Appl., 171 (1992), 537-554.
- [5] E. Kähler, Bericht über die Mathematiker-Tagung in Berlin, Deutcher Verlag der Wissenschaften, Berlin (1953), 48-163.
- [6] A. Kock, A simple axiomatic for differentiation, Mat. Scand., 40 (1977), 183-193.
- [7] A. Robinson, Non-Standard Analysis, North-Holland, Amsterdam, 1966.
- [8] C. Schmieden and D. Laugwitz, Eine Erweiterung der Infinitesimalrechnung, Math. Z., 69 (1958), 1-39.