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AN ACG FUNCTION WHICH IS NOT AN
ACGs FUNCTION

1. Introduction and preliminaries

R. Gordon (3] asked whether an ACG function is an ACGs function. As noted
by Skvortsov [8], there is an example of an ACG function that is not an ACGs
function. Such a function was first constructed by Tolstov [9]. He gave an
example of a function that was ACG, but not an indefinite approximately
continuous Perron integral. Since the approximately continuous Perron inte-
gral and the approximately continuous Henstock integral are equivalent, this
function is also not an indefinite approximately continuous Henstock integral.
We will present a direct proof of this fact. The advantage of this is that the
property of the indefinite AH integral used below is simpler than the property
of the indefinite AP integral used by Tolstov.

Moreover, this example also shows that there are Khinchine integrable
functions which are not AH integrable. Suppose that F' is an ACG function
which is not an ACGs function. Let ADF = f, then f is Khinchine integrable.
We claim that f is not AH integrable. Suppose that f is AH integrable. Put
G(z) = (an) [T f = (aP) [T f. Since the Kubota integral [4] includes the
Khinchine integral and AP integral as special cases, we have that F and G are
the indefinite Kubota integral of f. Therefore, F and G differ by a constant.
This is a contradiction.

A detailed study of ACG functions, AP functions, and Henstock integrals
can be found in [7], [2], and [5] respectively. In recent years many authors (see
[1] and [6]) have worked on the AP integral and the AH integral. To make the
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reading easier we list a definition and the statement of a known result which
will be used in the paper.

Let P = {([as, b;];z;)} denote a finite collection of non-overlapping tagged
intervals in [a,b]. We call P a partial division on E C [a,b] if z; € E for each
i. The following definition and lemma can be found in [3].

Definition 1 A distribution S on [a,b] is a collection of measurable sets {S; :
z € [a,b]} in [a,b] such that x € S; and x is a point of density of S;. For
each = € [a,b], let I, = {[c,d] : = € [c,d] and ¢,d € S;} and let § be a
positive function defined on [a,b]. A partial division P is S—subordinate to 6
ifd —c < 8(z) and [c,d] € I, whenever ([c,d],z) € P.

Lemma 1 Suppose that F : [a,b] — R is ACGs on [a,b] and let E C [a,b].
If m(E) = 0, then for each € > 0 there exists a positive function 6 on E such
that 3, |F(b;) — F(as)| < € for any partial division P = {([as, bs]; zi)} which
is S—subordinate to 6 on E.

2. An Example

Let I = [0,1] and let C denote the Cantor ternary set. Let {IP : 1 <i < 2n~1}
be the collection of the 27! intervals which are removed at the n'th stage. It
is understood that the numbering IT, I, - -+, I7.._, is in increasing order from
left to right on the line. Let ¢} denote the center of the interval I?* = [a, b}
and let F' be the function defined on the interval I by the following conditions:

(i) F(z) =0 for z € C;
(if) F(c?) =1/n for all n and corresponding 3;
(iii) The function F is linear in each of the intervals [a?, c}] and [c}, b7].

It is clear that F' is continuous on I. Since F' is AC on C and on each I, the
function F is ACG on I.

To verify that F' is not an ACGs function on I, we will show that F does
not satisfy the above lemma for C' C I. Since z is a point of density of S,, for
each z € I there exists () > 0 such that

m(Sz; N (z,y)) _ 2
—_— > —_

y—x 3
whenever y € (z,z + n(z)). Let 6§ be any positive function defined on C
and (without loss of generality) assume that §(z) < n(z) for each z € C.
For each positive integer n, let C, = {z € C : §(z) > 1/n} and note that
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C= U Cp. By the Baire Category Theorem, there exists an interval (c,d)

and a set Cn such that Cy is dense in the non-empty set (¢,d) N C and
d—c < 1/N. Since C N (c,d) # 0, there exist an interval (u,v) C (c,d)
and integers j and m such that IT" is the open middle third of (u,v). Now

(u,v) contains 2 intervals from the set {I™*! : 1 < i < 2™}, 4 intervals from
the set {I™*? : 1 < i < 2™} and in general, 2* intervals from the set
{Imtk i1 <i< gm+k=1} " Choose an integer k such that 2%/(m + k) > 2
and denote the intervals by {(u;,v;) : 1 < i < 2} in increasing order. Let c;
denote the center of the interval (u;,v;).

We claim that for each i, there exist z; € Cn and z; € [u;,v;] such that
u < z1 < Uy, Vi1 < z; < uy; for i > 2, ([x5,2],z;) is S—subordinate to 6,
and F(z;) > 1/2(m + k). We will establish the claim for ¢ = 2; the proof for
the other values of ¢ is quite similar. Since Cy is dense in (¢,d) N C, there
exists a point z2 € (vi,u2] N Cn such that uz — xy < 0.1(c2 — ug). Since
Cy — Ty < l/N < 7](1‘2),

m(Sz, N (z2,¢2)) S 2
C2 — T2

w

Let my = (’u,z + 02)/2. If Sz, N (mz,CQ) = @, then

m(Sz, N (22,02)) . M2 -T2 _ 1(1+ uz—xz)
Co — T2 T Cp— 9 2 Cy — T2
1 Ug — T 1 1 2
< = - < -
= 2(1+C2—u2) 20+ 55) <3

a contradiction. Let zp € Sy, N (M2, c2). Since F is increasing on [ug, ¢3),

1
F(Zz) > F(mg) = 2(m—+k)
The partial division {([z:, z:],z;) : 1 <14 < 2¥} is S-subordinate to 6§ on C
and
21:

Z(F(zz F(:L‘,) > Z 2(m+k)

i=1

Since § was an arbitrary positive function defined on C, the function F is not
ACGson I.
The author would like to thank the referee for his valuable suggestions.
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