Zbigniew Grande*, Mathematics Department, Pedagogical University, ul. Arciszewskiego 22b, 76-200 Słupsk, Poland

ON THE CARATHÉODORY SUPERPOSITION

Abstract

In this paper we investigate properties of Carathéodory's superposition and show some of their applications to differential equations.

Throughout this article (X, \mathcal{M}, μ) denotes a totally σ-finite measure space and (Φ, \Rightarrow) will denote a differentiation basis for this space. This means ([1]) that $\Phi \subset \mathcal{M}$ is a family of sets of finite positive measure μ and \Rightarrow is a notion of contraction of nets (generalized sequences) of sets in Φ to points of X, such that the following two conditions are satisfied:
(i) if $x \in X$, there exists a net $\left(I_{\alpha}\right)$ of elements of Φ rontracting (in the sense of \Rightarrow) to x; in symbols, $I_{\alpha} \Rightarrow x$;
(ii) any subnet of a net contracting to a point x also contracts to x.

Let $A \in \mathcal{M}$ and let $x \in X$. We define the upper ind lower densities of A at x with respect to (Φ, \Rightarrow) by

$$
D^{u}(A, x)=\sup \left\{\lim \sup \mu\left(A \cap I_{\alpha}\right) / \mu\left(I_{\alpha}\right)\right\}
$$

and

$$
D_{l}(A, x)=\inf \left\{\lim \inf \mu\left(A \cap I_{\alpha}\right) / \mu\left(I_{\alpha}\right)\right\}
$$

where the limits superior and inferior are taken over a net $\left(I_{\alpha}\right)$ contracting to x and the supremum and infimum are taken over the family of all such nets.

[^0]
Section I

Let (Y, ϱ) be a metric space with the metric ϱ and let $g: X \longrightarrow Y$ be a function. Let $\gamma \in(0,1]$ be a number. We say that the function g has the property:
($S_{u, \gamma}$) (with respect to (Φ, \Rightarrow)) if for every open set $U \subset Y$ and for every x with $g(x) \in U$, there is a set $B \subset g^{-1}(U)$ such that $B \in \mathcal{M}$ and $D^{u}(B, x) \geq \gamma ;$
($S_{l, \gamma}$) if for every open set $U \subset Y$ and for every x with $g(x) \in U$ there is a set $B \in \mathcal{M}$ such that $D_{l}(B, x) \geq \gamma$.

Theorem 1 Let $f: X \times Y \longrightarrow Y$ be a function. Suppose that:
(1) all sections $f^{y}(x)=f(x, y)(x \in X, y \in Y)$ have the property $\left(S_{u, \gamma}\right)$ $\left(\left(S_{l, \gamma}\right)\right)$, where $\gamma \in(0,1]$;
(2) for every point $(x, y) \in X \times Y$ there is a set $A(x, y) \in \mathcal{M}$ such that all sections $f_{t}(u)=f(t, u)(t \in A(x, y), u \in Y)$ are equicontinuous at a point y and $D_{l}(A(x, y), x)=1$.

Then for every function $g: X \longrightarrow Y$ having the property $\left(S_{l, 1}\right)$ the Carathédory superposition

$$
h(x)=f(x, g(x)), x \in X,
$$

has the property $\left(S_{u, \gamma}\right)\left(\left(S_{l, \gamma}\right)\right)$.
Proof. Fix $x \in X$ and an open set $U \subset Y$ such that $h(x) \in U$. Let $\varepsilon>0$ be such that $\{u \in Y ; \varrho(u, h(x)) \leq \varepsilon\} \subset U$. By (2) there is a set $A(x, g(x)) \in \mathcal{M}$ and a positive number $\delta>0$ such that $D_{l}(A(x, g(x))=1$ and $\varrho(f(t, y), f(t, g(x)))<\varepsilon / 2$ for $t \in A(x, g(x))$ and $y \in Y$ with $\varrho(y, g(x))<\delta$. Since the section $t \longrightarrow f(t, g(x))$ has the property $\left(S_{u, \gamma}\right)\left(\left(S_{l, \gamma}\right)\right)$, there is a set $C \in \mathcal{M}$ such that $D^{u}(C, x) \geq \gamma\left(D_{l}(C, x) \geq \gamma\right)$ and $\varrho(f(t, g(x)), f(x, g(x)))$ $<\varepsilon / 2$ for every $t \in C$. Analogously, since the function g has the property ($S_{l, 1}$), there is a set $E \in \mathcal{M}$ such that $D_{l}(E, x)=1$ and $\varrho(g(t), g(x))<\delta$ for every $t \in E$. Observe that the set $B=C \cap E \cap A(x, g(x)) \in \mathcal{M}$ and $D^{u}(B, x) \geq \gamma\left(D_{l}(B, x) \geq \gamma\right)$. If $t \in B$, then

$$
\begin{aligned}
\varrho(h(t), h(x)) & =\varrho(f(t, g(t)), f(x, g(x))) \\
& \leq \varrho(f(t, g(t)), f(t, g(x)))+\varrho(f(t, g(x)), f(x, g(x))) \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

So, $B \in \mathcal{M}, D^{u}(B, x) \geq \gamma\left(D_{l}(B, x) \geq \gamma\right)$ and $B \subset h^{-1}(U)$. This completes the proof.

Remark 1 If (X, \mathcal{T}) is a topological space with the topology \mathcal{T} such that $\mathcal{T} \subset$ \mathcal{M}, then we can define the properties $\left(S_{u, \gamma}^{\prime}\right)$ and $\left(S_{l, \gamma}^{\prime}\right)$ assuming that the set $B \subset g^{-1}(U)$ belongs to \mathcal{T}.

Then we have the following:
Theorem 2 Let $f: X \times Y \longrightarrow Y$ be a function. Suppose that:
(1') all sections $f^{y}, y \in Y$, have the property $\left(S_{u, \gamma}^{\prime}\right)\left(\left(S_{l, \gamma}^{\prime}\right)\right), \gamma \in(0,1]$;
(2') for every point $(x, y) \in X \times Y$ there is a set $A(x, y) \in \mathcal{T}$ such that all sections $f_{t}, t \in A(x, y)$, are equicontinuous at y and $D_{l}(A(x, y), x)=1$.

Then for every function $g: X \longrightarrow Y$ having the propurty $\left(S_{l, 1}^{\prime}\right)$ the superposition $h(x)=f(x, g(x)), x \in X$, has the property $\left.S_{u, \gamma}^{\prime}\right)\left(\left(S_{l, \gamma}^{\prime}\right)\right)$.

Section II

In this section we suppose that Y is a separable Banach space with the norm $\|\cdot\|$. Let $g: X \longrightarrow Y$ be a function which is integrable (in the Bochner sense) on every set $I \in \Phi$. The function g is called a derivative at a point $x \in X$ (with respect to (Φ, \Rightarrow)) ([1]) if for every net $I_{\alpha} \Rightarrow x$ we have

$$
\lim _{\alpha} \int_{I_{\alpha}} g(t) d t / \mu\left(I_{\alpha}\right)=g(x)
$$

Theorem 3 Let $f: X \times Y \longrightarrow Y$ be a bounded function. Suppose that f satisfies the condition (2) from Theorem 1 and the following conditions:
(3) all sections $f^{y}, y \in Y$, are derivatives;
(4) for every function $g: X \longrightarrow Y$ having the property $\left(S_{l, 1}\right)$ the superposition $x \longrightarrow f(x, g(x))$ is μ-measurable, i.e. for every open set $U \subset Y$ the preimage $\{x ; f(x, g(x)) \in U\} \in \mathcal{M}$.

Then for every function $g: X \longrightarrow Y$ having the property $\left(S_{l, 1}\right)$ Carathéodory's superposition $h(x)=f(x, g(x)), x \in X$, is a derivative.

Proof. First, we observe that h is μ-measurable and bounded, so integrable (in the Bochner sense) on every set $I \in \Phi$ ([9]). Fix $x \in X$, a net $I_{\alpha} \Rightarrow x$ and $\varepsilon>0$. Let $a>0$ be such that $\|f(t, y)\|<a$ for each $(t, y) \in X \times Y$. By (2) there is a set $A(x, g(x)) \in \mathcal{M}$ and $\delta>0$ such that $D_{l}(A(x, g(x)), x)=$ 1 and $\|f(t, y)-f(t, g(x))\|<\varepsilon / 3$ for all $t \in A(x, g(x))$ and $y \in Y$ with $\|y-g(x)\|<\delta$. Since g has the property $\left(S_{l, 1}\right)$, there is a set $E \in \mathcal{M}$ such that $D_{l}(E, x)=1$ and $\|g(t)-g(x)\|<\delta$ for every $t \in E$. Observe that the set
$B=E \cap A(x, g(x)) \in \mathcal{M}$ and $D_{l}(B, x)=1$. Since the section $t \longrightarrow f(t, g(x))$ is a derivative at x, we have

$$
\lim _{\alpha} \int_{I_{\alpha}} f(t, g(x)) d t / \mu\left(I_{\alpha}\right)=f(x, g(x)) .
$$

There exists an index β such that for $\alpha>\beta$ we have:
(5) $\left\|\int_{I_{\alpha}} f(t, g(x)) d t / \mu\left(I_{\alpha}\right)-f(x, g(x))\right\|<\varepsilon / 3$;
(6) $\mu\left(B \cap I_{\alpha}\right) / \mu\left(I_{\alpha}\right)>1-\varepsilon / 6 a$.

Consequently, by (5) and (6) we have for $\alpha>\beta$,

$$
\begin{aligned}
\| \int_{I_{\alpha}} & h(t) d t / \mu\left(I_{\alpha}\right)-h(x) \| \\
= & \left\|\int_{I_{\alpha}} f(t, g(t)) d t / \mu\left(I_{\alpha}\right)-f(x, g(x))\right\| \\
= & \left\|\int_{I_{\alpha}}(f(t, g(t))-f(x, g(x))) d t\right\| / \mu\left(I_{\alpha}\right) \\
\leq & \int_{I_{\alpha} \cap B}\|f(t, g(t))-f(t, g(x))\| d t / \mu\left(I_{\alpha}\right) \\
& +\int_{I_{\alpha} \cap B}\|f(t, g(x))-f(x, g(x))\| d t / \mu\left(I_{\alpha}\right) \\
& +\int_{I_{I_{\alpha}} B}\|f(t, g(t))-f(x, g(x))\| d t / \mu\left(I_{\alpha}\right) \\
< & \varepsilon \mu\left(I_{\alpha} \cap B\right) / 3 \mu\left(I_{\alpha}\right)+\varepsilon \mu\left(I_{\alpha} \cap B\right) / 3 \mu\left(I_{\alpha}\right) \\
& +2 a \mu\left(I_{\alpha}-B\right) / \mu\left(I_{\alpha}\right)<\varepsilon / 3+\varepsilon / 3+2 a \varepsilon / 6 a=\varepsilon .
\end{aligned}
$$

This shows that

$$
\lim _{\alpha} \int_{I_{\alpha}} h(t) d t / \mu\left(I_{\alpha}\right)=h(x)
$$

and finishes the proof.
Remark 2 A particular case of Theorem 3 is proved in [7].
Remark 3 In the general case there can exist nonmeasurable derivatives having the property $\left(S_{l, 1}\right)$. For example, if $X=\mathbb{R}$ (the set of all reals), μ is the Lebesgue measure and Φ is the family of open intervals then there exists a μ-nonmeasurable set $A \subset[0,1]$. Let $I_{k} \Rightarrow x \in . \quad[0,1]$ mean that $x \in I_{k} \subset \mathbb{R}-[0,1]$ for all $k=1,2, \ldots$ and $\lim _{k \rightarrow \infty} d\left(I_{k}\right)=0\left(d\left(I_{k}\right)\right.$ denotes
the diameter of I_{k}), and for $x \in A$ let $I_{k} \Rightarrow x$ mean that $I_{k} \Rightarrow 2$, and for $x \in[0,1]-A$ let $I_{k} \Rightarrow x$ mean that $I_{k} \Rightarrow-2$. Then the function

$$
g(x)= \begin{cases}1 & \text { for } x \in A \cup(1, \infty) \\ 0 & \text { otherwise }\end{cases}
$$

is a μ-nonmeasurable derivative having the property $\left(S_{l, 1}\right)$. Some additional assumptions for the differentiation basis (Φ, \Rightarrow) (for example, the density property [1]) imply the μ-measurability of all derivatives and all functions having the property $\left(S_{u, \gamma}\right), \gamma \in(0,1]$.

Remark 4 Some counterexamples concerning Theorems 1 and 3 are contained in [5], [7], and [6].

Section III

In this section we assume that (Y, ϱ) is a metric space, $\left(Y, \mathcal{M}_{1}, \mu_{1}\right)$ is a totally σ-finite complete measure space and that $\left(\Phi_{1}, \Rightarrow\right)$ is a differentiation basis in Y.

Theorem 4 Let $f: X \times Y \longrightarrow Y$ be a function such that:
(7) for every $(x, y) \in X \times Y$ and for every $\varepsilon>0$ there are sets $A(x, y) \in$ $\mathcal{M}, B(x, y) \in \mathcal{M}_{1}$ such that $D_{l}(A(x, y), x)=D_{l}(B(x, y), y)=1, y \in$ $B(x, y)$, and $\varrho(f(t, u), f(t, y))<\varepsilon$ for every $t \in A(x, y)$ and every $u \in$ $B(x, y)$;
(8) all sections $f^{y}, y \in Y$, have the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)$, where $\gamma \in(0,1]$.

Then for every function $g: X \longrightarrow Y$ satisfying
(9) if $g(x) \in U \in \mathcal{M}_{1}$ and $D_{l}(U, g(x))=1$, then there is a set $C \in \mathcal{M}$ such that $x \in C \subset g^{-1}(U)$ and $D_{l}(C, x)=1$,
the superposition $h(x)=f(x, g(x)), x \in X$, has the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)$.
Proof. Fix $x \in X$, and an open set $U \subset Y$ such that $h(x) \in U$. Let $\varepsilon>0$ be such that

$$
\{u \in Y ; \varrho(u, h(x)) \leq \varepsilon\} \subset U .
$$

By (7) there are sets $A(x, g(x)) \in \mathcal{M}$ and $B(x, g(x)) \in \mathcal{M}_{1}$ such that

$$
\begin{gathered}
g(x) \in B(x, g(x)), \\
D_{l}(A(x, g(x)), x)=D_{l}(B(x, g(x)), g(x))=1 \text { and }
\end{gathered}
$$

$$
\varrho(f(t, u), f(t, g(x)))<\varepsilon / 2
$$

for every $t \in A(x, g(x))$ and every $u \in B(x, g(x))$. By (9) there is a set $C \in \mathcal{M}$ such that $x \in C \subset g^{-1}(B(x, g(x)))$ and $D_{l}(C, x)=1$. Since the section $t \longrightarrow f(t, g(x))$ has the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)$, there is a set $E \in \mathcal{M}$ such that $D_{l}(E, x) \geq \gamma\left(D^{u}(E, x) \geq \gamma\right)$ and $\varrho(f(t, g(x)), f(x, g(x)))<\varepsilon / 2$ for each $t \in E$. Observe that the set $G=C \cap E \cap A(x, g(x)) \in \mathcal{M}$ and $D_{l}(G, x) \geq \gamma$ ($D^{u}(G, x) \geq \gamma$). Moreover, we have for $t \in G$,

$$
\begin{aligned}
\varrho(h(t), h(x)) & =\varrho(f(t, g(t)), f(x, g(x))) \\
& \leq \varrho(f(t, g(t)), f(t, g(x)))+\varrho(f(t, g(x)), f(x, g(x))) \\
& <\varepsilon / 2+\varepsilon / 2=\varepsilon
\end{aligned}
$$

This completes the proof.

Section IV

In this section we assume that $(Y,\|\cdot\|)$ is a separable Banach space and $\left(Y, \mathcal{M}_{1}, \mu_{1}\right)$ is a totally σ-finite complete measure space and $\left(\Phi_{1}, \Rightarrow\right)$ is a differentiation basis in Y.

Theorem 5 Let $f: X \times Y \longrightarrow Y$ be a bounded function satisfying the condition (7) from Theorem 3 such that
(10) all sections $f^{y}, y \in Y$, are derivatives;
(11) for every function $g: X \longrightarrow Y$ satisfying the condition (9) from Theorem 4 the superposition $h(x)=f(x, g(x)), x \in X$, is μ-measurable.

Then for every function $g: X \longrightarrow Y$ satisfying the condition (9) from Theorem 4 the superposition $h(x)=f(x, g(x)), x \in X$, is a derivative.

Proof. Fix $x \in X$, a net $I_{\alpha} \Rightarrow x$, and $\varepsilon>0$. By (7) theie are sets $A(x, g(x)) \in$ \mathcal{M} and $B(x, g(x)) \in \mathcal{M}_{1}$ such that $g(x) \in B(x, g(x))$, $D_{l}(A(x, g(x)), x)=D_{l}(B(x, g(x)), g(x))=1$ and $\|f(t, u)-f(t, g(x))\|<\varepsilon / 3$ for every $t \in A(x, g(x))$ and every $u \in B(x, g(x))$. By (9) there is a set $C \in \mathcal{M}$ such that $x \in C \subset g^{-1}(B(x, g(x)))$ and $D_{l}(C, x)=1$. Observe that the set $E=A(x, g(x)) \cap C \in \mathcal{M}$ and
(12) $D_{l}(E, x)=1$.

By (10) and (12) there is an index β such that for $\alpha>\beta$ we have:

$$
\begin{equation*}
\left\|\int_{I_{\alpha}} f(t, g(x)) d t / \mu\left(I_{\alpha}\right)-f(x, g(x))\right\|<\varepsilon / 3 ; \tag{13}
\end{equation*}
$$

(14) $\mu\left(I_{\alpha} \cap E\right) / \mu\left(I_{\alpha}\right)>1-\varepsilon / 6 a$, where $a>0$ is such that $\|f(t, u)\| \leq a$ for all $(t, u) \in X \times Y$.
If $\alpha>\beta$ then, by (13) and (14),

$$
\begin{aligned}
& \| \int_{I_{\alpha}} h(t) d t / \mu\left(I_{\alpha}\right)-h(x) \\
&=\left\|\int_{I_{\alpha}} f(t, g(t)) d t / \mu\left(I_{\alpha}\right)-f(x, g(x))\right\| \\
&=\left\|\int_{I_{\alpha}}(f(t, g(t))-f(x, g(x))) d t\right\| / \mu\left(I_{\alpha}\right) \\
& \leq\left(\int_{I_{\alpha} \cap E}\|f(t, g(t))-f(t, g(x))\| d t\right. \\
& \quad+\int_{I_{\alpha}-E}\|f(t, g(t))-f(t, g(x))\| d t \\
&\left.\quad+\int_{I_{\alpha}}\|f(t, g(x))-f(x, g(x))\| d t / \mu\left(I_{\alpha}\right)\right) \\
&< \varepsilon \mu\left(I_{\alpha} \cap E\right) / 3 \mu\left(I_{\alpha}\right)+2 \varepsilon a / 6 a+\varepsilon / 3 \\
& \leq \varepsilon / 3+\varepsilon / 3+\varepsilon / 3=\varepsilon .
\end{aligned}
$$

So,

$$
\lim _{\alpha} \int_{I_{\alpha}} h(t) d t / \mu\left(I_{\alpha}\right)=h(x)
$$

and the proof is finished.

Section V

Now we will show some applications of Theorems 1,2 , and 3 to the differential equations. In this section $X=\mathbb{R}, \mu$ is the Lebesgue measure and Φ denotes the family of all open intervals. Let $I_{k} \Rightarrow x$ mean that $x \in I_{k}$ for all k and $\lim _{k \rightarrow \infty} d\left(I_{k}\right)=0$. Let Y be a separable Banluh space. Observe that in this case all derivatives and all functions having the property $\left(S_{u, \gamma}\right), \gamma \in$ $(0,1]$ are measurables in the Lebesgue sense. The functions with the property $\left(S_{l, 1}\right)\left(\left(S_{l, 1}^{\prime}\right)\right)$ are called approximately continuous [2] (a.e. continuous [10]). Moreover, in this case every bounded function g having the property $\left(S_{l, 1}\right)$ is a derivative ([2], and [8]).

Let $D \subset \mathbb{R} \times Y$ be a nonempty open set and let $f: D \longrightarrow Y$ be a function. A continuous function $g: I \longrightarrow Y$, where I is a nondegenerate interval, is called a Carathéodory solution of the Cauchy problem

$$
\begin{equation*}
y^{\prime}(x)=f(x, y(x)), y\left(x_{0}\right)=y_{0} \tag{1}
\end{equation*}
$$

if $g^{\prime}(x)=f(x, g(x))$ almost everywhere (with respect to the Lebesgue measure) on $I, x_{0} \in I$, and $g\left(x_{0}\right)=y_{0}$. Obviously, if the superposition $x \longrightarrow$ $f(x, g(x)), x \in I$, is a derivative and f is bounded, then the Carathéodory solution g of the problem (1) is an ordinary solution of (1), i.e. $g^{\prime}(x)=f(x, g(x))$ everywhere on I ([7]).

From the above, by Theorems 1, 2, and 3, and by Theorem 1 from [4], p. 7 we have the following:

Theorem 6 Let $Y=\mathbb{R}^{k}, D=\left[t_{0}, t_{0}+a\right] \times\left\{y \in \mathbb{R}^{k} ;\left|y-y_{0}\right|<b\right\}(a, b>0)$, and $f: D \longrightarrow \mathbb{R}^{k}$ be a locally bounded function satisfying the condition (2) ((2)) [(2')] \{ (2') \} and such that:

- all sections f^{y} are derivatives having the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)$ $\left[\left(S_{l, \gamma}^{\prime}\right)\right]\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}$, where $\gamma \in(0,1]$;
- almost all sections f_{x} are continuous;
- there is an integrable function $h:\left[t_{0}, t_{0}+a\right] \longrightarrow \mathbb{R}$ such that $|f(t, y)| \leq$ $h(t)$ for every $(t, y) \in D$.

Let

$$
g(u)=\int_{t_{0}}^{u} h(t) d t, u \in\left[t_{0}, t_{0}+a\right] .
$$

Then for every d such that $0<d \leq a$ and $g\left(t_{0}+d\right) \leq b$ there is a solution y of the Cauchy problem (1) (where $t_{0}=x_{0}$) defined on $\left[t_{0}, t_{0}+d\right]$ and such that its derivative y^{\prime} has the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)\left[\left(S_{l, \gamma}^{\prime}\right)\right]\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}$.

Remark 5 Observe that all sections $f_{x}, x \in\left[t_{0}, t_{0}+a\right]$, of the function f from Theorem 6 are continuous. Indeed, if a section f_{x} is not continuous at some point y then there is $s>0$ such that $\operatorname{osc} f_{x}(y) \geq s$. By (2) there is a set $A \in \mathcal{M}$ and $r>0$ such that $D_{l}(A, x)=1$ and $|f(t, u)-f(t, y)|<s / 4$ for each $t \in A$ and $u \in Y$ with $|u-y|<r$. Since every section f^{u} is a derivative and $|f(t, u)-f(t, y)|<s / 4$ for $t \in A$ and $u \in Y$ with $|u-y|<r$, we have that $|f(x, u)-f(x, y)| \leq s / 4$, a contradiction.

Theorem 7 Let $Y=\mathbb{R}^{k}, D=[0,1] \times U$, where U is an open ball in \mathbb{R}^{k} with center y_{0} and radius $r_{0}>0$. Let $f: D \longrightarrow \mathbb{R}^{k}$ be a loc:ally bounded function satisfying the condition (2) ((2)) [(2')] \{ (2') \} such that:

- all sections $f^{y}, y \in U$, are derivatives having the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)$ $\left[\left(S_{l, \gamma}\right)\right]\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}$, where $\gamma \in(0,1]$;
- almost all sections $f_{x}, x \in[0,1]$, are continuous;
- there is an integrable function $h:[0,1] \longrightarrow \mathbb{R}$ such that $|f(t, y)| \leq h(t)$ for each $(t, y) \in D$.

Let $J=[0, T]$, where $0<T \leq 1$ be such that $\int_{0}^{T}(h(t)+1) d t<r_{0}$. Then the set of all solutions y of the Cauchy problem (1) defined on J and such that their derivatives y^{\prime} have the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)\left[\left(S_{l, \gamma}^{\prime}\right)\right]\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}$ is an R_{δ}-set in the space $C\left(J, \mathbb{R}^{k}\right)$ of all continuous functions from J to \mathbb{R}^{k} with the norm of uniform convergence.(Recall that a subset of a metric space is called an R_{δ}-set if it is the intersection of a decreasing sequence of (nonempty) compact absolute retracts.)

The proof of Theorem 7 follows from de Blasi's and Myjak's Theorem in [3] and from our Theorems 1, 2, 3.

Now, we assume that Y is an infinite-dimensional separable Banach space and we recollect the following notions:

- for a bounded set $A \subset Y, \alpha(A)$ denotes the Kuratowski α-index of the set A, i.e. the greatest lower bound of the set of such numbers r that A can be covered by a finite number of sets with the diameter not larger than r;
- we shall call a Kamke function every function $\omega:[0, a] \times \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$such that all sections $\omega_{t}, 0 \leq t \leq a$, are continuous, all sections $\omega^{y}, y \geq 0$, are measurable (in the Lebesgue sense), $\omega(t, 0)=0$ for $0 \leq t \leq a$, and $u(t)=0$ for $0 \leq t \leq a$ is the only continuous solution of the inequality $u(t) \leq \int_{0}^{t} \omega(s, u(s)) d s$ satisfying the condition $u(0)=0$.

Fix a Kamke function ω. Then we have:
Theorem 8 Let D be a rectangle $[0, a] \times\left\{y \in Y ;\left\|y-y_{0}\right\|<b\right\}(a, b>0)$. Let $f: D \longrightarrow Y$ be a bounded function such that:

- all sections $f_{x}, 0 \leq x \leq a$, are continuous;
- all sections $f^{y}, y \in Y$ and $\left\|y-y_{0}\right\|<b$, are derivatives having the property $\left.\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right) /\left(S_{l, \gamma}^{\prime}\right)\right]\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}, \gamma \in(0,1]$;
- there is $c>0$ such that $\|f(x, y)\| \leq c$ for each $(x, y) \in D$;
- for each bounded set $A \subset Y$ and for almost every $x \in I$,

$$
\lim _{s \rightarrow 0} \alpha\left(f\left(I_{x, s}, A\right)\right) \leq \omega(x, \alpha(A))
$$

where $I=[0, \beta], \beta=\min (a, b / c), I_{x, s}=(x-s, x+s)$;

- f satisfies the condition (2) ((2)) [(2')] \{ (2') \}.

Then there exists at least one solution y of the Cauchy problem (1) defined on $[0, \beta]$ such that its derivative y^{\prime} has the property $\left(S_{l, \gamma}\right)\left(\left(S_{u, \gamma}\right)\right)\left[\left(S_{l, \gamma}^{\prime}\right)\right]$ $\left\{\left(S_{u, \gamma}^{\prime}\right)\right\}$.

The proof of this Theorem follows from Theorems 1, 2, 3 and from Pianigiani's Theorem in [11].

References

[1] A. M. Bruckner, Differentiation of integrals, Amer. Math. Monthly 78 (1971) (supplement), 1-50.
[2] A. M. Bruckner, Differentiation of real functions, Lectures Notes in Math. 659, Springer-Verlag, Berlin 1978.
[3] F. S. De Blasi, J. Myjak, On the solutions sets for differential inclusions, Bull. Polon. Acad. Sci., Math., 33 (1985), 17-24.
[4] A. F. Filippov, Differential equations with discontinuous right-hand (in Russian), Nauka, Moscow 1985.
[5] Z. Grande, Derivatives and the Carathéodory superposition, Real Analysis Exchange 16, No. 2 (1990-91), 475-480.
[6] Z. Grande, La mesurabilité des fonctions de deux variables et de la superposition $F(x, f(x))$, Dissert. Math. 159 (1978), 1-45.
[7] Z. Grande, A theorem about Carathéodory's superposition, Math. Slovaca 42 (1992), 443-449.
[8] Z. Grande, D. Rzepka, Sur le produit de deux dérivées vectorielles, Real Analysis Exchange 6, No. 1, (1980-81), 95-110.
[9] E. Hille, Functional analysis and semi-groups, Amer. Math. Soc., New York, 1948.
[10] R. J. O'Malley, Approximately differentiable functions. The r topology, Pacific J. Math. 72 (1977), 207-222.
[11] G. Pianigiani, Existence of solutions for ordinary differential equations in Banach spaces, Bull. Acad. Polon. des Sci., Math., Astronom., Phys. 23 (1975), 853-857.

[^0]: *Supported by KBN grant (1992-94) No. 211449101
 Key Words: upper and lower density, basis of differentiation, Carathéodory's superposition, Cauchy problem, Carathéodory solution, derivative.

 Mathematical Reviews subject classification: Primary: 28A35, 26B40 Secondary: 34A34, 34G20

 Received by the editors October 15, 1992

