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 MEASURABLE RECTANGLE

 Abstract

 We give an example of a measurable set E Ç R such that the set
 E' = {(x,2/) : X + y E E} is not in the cr-algebra generated by the
 rectangles with measurable sides. We also prove a stronger result that
 there exists an analytic (E}) set E such that E' is not in the a-algebra
 generated by rectangles whose horizontal side is measurable and vertical
 side is arbitrary. The same results are true when measurable is replaced
 with property of Baire.

 The cr-algebra generated by a family T of subsets of a set X is the small-
 est family containing T and closed under taking complements and countable
 unions. In Rao [12] it is shown that assuming the Continuum Hypothesis
 every subset of the plane M2 is in the <7-algebra generated by the abstract
 rectangles, i.e. sets of the form Ax B where A and B are arbitrary sets of
 reals. In Kunen [5] it is shown that it is relatively consistent with ZFC that
 not every subset of the plane is in the cr-algebra generated by the abstract
 rectangles. He shows that this is true in the Cohen real model. It also follows
 from a result of Rothberger [14] that if for example 2H° = N2 and 2**1 =
 then not not every subset of the plane is in the cr-algebra generated by the
 abstract rectangles. For a proof of these results see Miller [11] (remark 4 and
 5 page 180).

 A set is analytic or E} iff it is the projection of a Borei set. Answering
 a question of Ulam, Mansfield [7] [8] showed that not every analytic subset of
 the plane is in the cr-algebra generated by the analytic rectangles. Note that
 a rectangle A x B ÇR xR is analytic iff both A and B are analytic.

 He did this by showing that, in fact, any universal analytic set is not in the
 cr-algebra generated by the rectangles with measurable sides. This does the
 trick because analytic sets are measurable (see Kuratowski [6]). This theorem
 was also proved by Rao [13]. Their argument shows a little more, so we give
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 it next. A set U Ç M2 is a universal analytic set iff it is analytic and for every
 analytic set A Ç M there exist a real x such that

 A = Ux = {y:(xiy)eU}.

 Theorem 1 (Mansfield [8] and Rao [13]) Suppose U is a universal analytic
 set, then U is neither in the a -algebra generated by rectangles of the form AxB
 with A Ç M arbitrary and B Ç M measurable; nor in the a -algebra generated
 by rectangles of the form AxB with A Ç M arbitrary and BÇ1 having the
 property of Baire.

 PROOF. For any set U in the a-algebra generated by rectangles of the form
 A x B with AC! arbitrary and B CR measurable there is a countable family
 {An x Bn : n e u} such that each Bn is measurable and U is in the cr-algebra
 generated by {An x Bn : n G u}.

 Let Z be a measure zero set and Cn be Borei sets such that for every n we
 have BnACn Ç Z where A is the symmetric difference. Since Z is a measure
 zero set its complement must contain a perfect set P, i.e. a set homeomorphic
 to the Cantor space 2W. Now for any real x and any set V in the a-algebra
 generated by {An x Bn : n e u>} we have that Vx D P is Borei. This is proved
 by noting that it is trivial êii V = An x Bn (since we have P D Bn = P fl Cn),
 and it is preserved when taking complements and countable unions. But the
 set P being perfect must contain a subset A which is analytic but not Borei.
 Since U is universal for some real x we have that Ux = A and Ux fi P is not
 Borei. A similar proof works for the cr-algebra generated by sets of the form
 AxB where B has the property of Baire, since if B has the property of Baire,
 then for some G, an open set, BAG is meager. Din Miller [10] it is
 shown that it is relatively consistent with ZFC that no universal analytic set
 is in the cr-algebra generated by the abstract rectangles, answering a question
 raised by Mansfield.

 James Kuelbs raised the following question1: If E Ç M is measurable, is
 then

 E' = {( x,y ) : x + y e E}

 in the cr-algebra generated by the rectangles with measurable sides?
 One can think of E' as a parallelogram tipped 45 degrees, so it is clear by

 rotation and dilation that E' is measurable ii E is. Note also that since E' is

 the continuous preimage of E, if E is Borei then E' is Borei also.
 We give a negative answer to Kuelbs' question by showing:

 11 want to thank Walter Rudin for telling me about this question and also for encouraging
 me to write up the solution.
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 Theorem 2 For any set E Ç M we have that E is Borei iff E' is in the
 a-algebra generated by rectangles of the form Ax B where A and B are mea-
 surable. Similarly , E is Borei iff E' is in the a-algebra generated by rectangles
 of the form Ax B where A and B have the property of Baire.

 Proof. Suppose E' = a(Xn xYn : n € u), where Xn and Yn are measurable
 for every n. Here a is a recipe which describes how a particular set is built up
 (using countable intersections and complementation), i.e., it is the Borei code
 of E'. Since Xn and Yn are measurable we can obtain An and Bn Borei sets
 and Z a Borei set of measure zero such that:

 XnAAn Ç Z and YnABn Ç Z for each neu.

 Claim, u G E iff 3x, y£Z(x + y = u and (x, y) G cr(An x Bn : n € lj)).

 The implication <- is clear because if x,y £ Z, then since [x G Xn iff
 x G An] and [y G Yn iff y G Bn' we have that (x,y) G cr(An x Bn : n G u) iff
 (x, y) G a(Xn xYn : n G uj) and hence u G E.

 The implication - ► is true because of the following argument. Suppose
 u e E is given. Choose x ^ Z U (u - Z). Since these are measure zero sets
 this is easy to do. But now let y = u - x, then y £ Z since x £ u - Z. Since
 u G E it must be that (x, y) G E' and so (x, y) G cr(Xn xYn : n G u) and thus
 (x,2/) G <j(An x Bn : n e u>). This proves the Claim.

 By the Claim, E is the projection of a Borei set and hence analytic. But
 note that ( E°)f = ( E')c where Ec denotes the complement of E. It follows
 that Ec is also analytic and so by the classical theorem of Souslin, E is Borei
 (see Kuratowski [6]).

 A similar proof works for the Baire property since we need only that every
 set with the property of Baire differs from some Borei set by a meager set.

 □

 This answers Kuelbs' question since if E is analytic and not Borei (or any
 measurable set which is not Borei), then E' is not in the cr-algebra generated
 by rectangles with measurable sides. The argument also shows, for example,
 that a set E Ç M is analytic iff J E' can be obtained by applying operation A
 to the cr-algebra generated by the rectangles with measurable sides.

 Next we show that a slightly stronger result holds for the sets of the form
 E' where E is analytic. The following lemma is the key.

 Lemma 3 There exists an analytic set E CM such that for any Z which has
 measure zero or is meager there exists x G M such that E'(x + Z) is not Borei.
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 PROOF. Note that we may construct two such sets, one for category and one
 for measure, and then putting them into disjoint intervals and taking the union
 would suffice to prove the lemma.
 We first give the proof for category. We may assume that the set Z is the

 countable union of compact nowhere dense sets. This is because, if Z' is any
 meager set, then there is such a Z D Z'. But now if E ' (x f Z) is not Borei,
 then neither is E ' (x 4- Z') since E'(x + Z) = (E'(x + Z')) ' (x + Z).
 It is a classical result that the set of irrationals is homeomorphic to the

 Baire space, u", which is the space of infinite sequences of integers with the
 product topology (see Kuratowski [6]). Let h : M ' Q - ► u" be a homeomor-
 phism. For f,g e u" define f <* g iff for all but finitely many neu we have
 f{n) < g(n). It is not hard to see the for any countable union of compact sets
 F Ç u" there exists / e u" such that F Ç {g e u" : g <* /}. Therefore,
 if G Ç M is a Gs set (countable intersection of open sets) which contains the
 rationals, then R ' G is a cr-compact subset of M ' Q and therefore there exists
 feu" such that for every g >* f we have h~l(g) e G. (This is a trick going
 back at least to Rothberger [14]).
 For p : u" - > (the parity function) by

 , w v f 0 if g(n) is even
 ?Cs)(n) , w v = ļ ! if9(„)i50dd even

 Let Eo Ç 2U be an analytic set which is not Borei. Define

 E = {g e ffi ' Q : p{h(g)) € £<)}•

 Now suppose that Z Ç M is a meager set which is the countable union of
 compact sets and let G = M ' Z. Let xo € CìqeqiQ ~ G) be arbitrary (this set
 is nonempty since each q - G is comeager), and note that Q Ç (xo + G).

 Hence there exists feu" such that for every g eu" with g >* f we have
 h~l(g) e xo + G. Without loss we may assume that for every neu that f(n)
 ś's even. Let

 P = {g e u" : Vn g(n) = f(n) or g(n) = f(n) + 1}.

 Then P is homeomorphic to 2" and

 Q = h~1{P) Cxq + G

 and so

 Q n (xo + Z) = 0.

 But clearly Q D E is homeomorphic to Eo via poh and therefore E ' (xo + Z)
 cannot be Borei.
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 Next we give the proof for measure. Here we use a coding technique due to
 Bartoszynski and Judah [1] who used it to show that a dominating real followed
 by a random real gives a perfect set of random reals (Theorem 2.7 [1]). Only a
 reader thoroughly familiar with [1] and a fan of forcing should attempt to read
 this. We begin by giving the proof in a slightly different situation, namely 2W
 instead of the reals and where 4- denotes pointwise addition modulo 2 on 2W
 and the usual product measure on 2W. Afterwards we will indicate how to
 modify the proof for the reals with ordinary addition and Lebesgue measure.
 Define I Ç 2^ to be the set of all x G 2W which have infinitely many ones
 and infinitely many zeros. It is easy to see that I is a Gs set. Any x G I can be
 regarded as a sequence of blocks of consecutive ones, i.e., blocks of consecutive
 ones each separated by blocks of one or more zeros. Define q : I - > u" by
 q(x)(n) is the length of the nth block of consecutive ones. As above let Eo Ç 2^
 be an analytic set which is not Borei and let p(f) for / G ^ be the parity
 function. Let

 E = {x G I : p(q(x)) G E0}.

 We claim that this works, i.e. given a measure zero set 2 Ç 2W there
 exists a real x such that E ' (x + Z) is not Borei. Let dn for n G u be the
 dominating sequence as given in the proof of Theorem 2.7 [1]. Without loss
 we may assume that <¿271+2 - ¿2n+i is even if n is even and odd if n is odd.

 According to Bartoszynski and Judah there exist sufficiently random reals
 r,r' G such that following holds. Let r" be defined by r"(n) = r'(n) + 1
 mod 2 for each n. Define P to be the set of all i G 2W such that for every n
 we have that

 % Í [^2n?^2n+l) = T Í [^2n>^2n+l)

 and either

 % F [^2n+l i ^2n+2) = r [ [^2n+lj ^2n+2)

 or

 X ' [d2n+l»^2n+2) = r" ' [¿271+1,^271+2)-

 The main difficulty of Bartoszynski and Judah's proof is to show that the
 perfect set P is disjoint from Z. Let x' G 2U be defined by

 •Kl ' [¿2riî^2n+l) = 7* f [¿2rn^2n+l)

 and

 XI ' [d2n+l?C?2n+2) = ?' ' [<¿2n+l » ¿2n+2)-

 Let Q Ç 2W be the perfect set of all x G 2W such that x ' [d2n^2n+i) is
 constantly zero and x ' [cÍ2n+i> ^n+2) is constantly zero or constantly one.
 It then follows that P = x' + Q and that Q is disjoint from x' + Z . Note
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 that the mapping (p o q) takes Q onto 2^. Hence E D Q is not Borei, because
 ¿271+2 - ¿2ti+i is even if n is even and odd if n is odd and so it easy to see the
 Eo is coded into E C)Q.

 Now we indicate how to modify the above proof so as to work for the reals
 with ordinary addition and Lebesgue measure. First we modify it to work for
 the unit interval [0, 1] with ordinary addition modulo one. Let s : - ► [0, 1]
 be the map defined by

 sm S{X) = Z°° £Í2) sm S{X) = Z°° 271+1*

 This map is continuous, measure preserving, and one-to-one except on count-
 ably many points where it is two-to-one. On the points x where it is two-to-one
 let us agree that s~l(x) denotes the preimage of x which is eventually zero.
 The main difficulty is that addition mod 1 in [0, 1] is quite different than point-
 wise addition modulo 2 in 2". Define for x,y e 2" the operation x 0 y to be
 s~1(s(x) + s(y)) where s(x) + s(y) is the ordinary addition in [0, 1] modulo 1.
 The operation © just corresponds to a kind of pointwise addition with carry.
 Instead of r" being the complement of r' as in the proof of Bartoszynski and
 Judah we will take a sparser translate. Let Q Ç 2" be the set of x e 2" such
 that x(m) = 1 only if for some n we have m = ¿271+2 - 1, i.e., the last element
 of the interval [<¿271+17 ¿271+2)-
 Note that the set of all r G 2W such that for all but finitely many n there

 exists i e [¿n,¿n+i) such that r(i) = 0 has measure one. Hence, by changing
 our dn if necessary we may assume that our random real r has the property
 that for every n there is an i e [¿271+1, ¿271+2) such that r(i) = 0. This means
 that when we calculate r © x for any x G Q the carry digit on each interval
 [(¿2ti+i , ¿271+2) does not propagate out of that interval. Now by the argument
 of Bartoszynski and Judah there exists r € 2U sufficiently random so that
 r © Q is disjoint from s~l(Z).
 We also use a different coding scheme. We may assume that for every n

 that ¿2ti+2 - 1 is even for even n and odd for odd n. Let J be the set of all
 x € 2W such that there are infinitely many n with x(n) = 1. Let q : 2W - ► 2"
 be defined by q(x) = y where {in : n € u} lists in order all i such that x(i) = 1
 and y(n) = 1 iff in is even. Now let

 E = {x e [0, 1] : q(s~1(x)) G £0}.

 Let x = s(r) and note that (x + E) ' Z is not Borei, since x + s(Q) is disjoint
 from Z. Also note that we can assume r(0) =0 and so x H- s(Q) is the same
 whether we do addition or addition modulo one. But E ' (- x + Z) is just the
 translate of (x + E) ' Z via - x and so we are done.

 □
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 Theorem 4 There exists E Ç M which is analytic (hence measurable and
 having the property of Baire) such that E' = {(x, y) : x + y e E} is not in
 either the a -algebra generated by rectangles of the form Ax B with A arbitrary
 and B measurable , nor is it in the a-algebra generated by rectangles of the form
 Ax B with A arbitrary and B having the property of Baire.

 Proof.

 Let E be the analytic set given by Lemma 3. Suppose for contradiction
 that E' = cr(An x Bn : n e u) where the An are arbitrary and the Bn are
 measurable. Let Z be a measure zero Borei set and Bn be Borei such that
 BnABn Ç Z for every neu. Suppose that E ' (x + Z) is not Borei. By
 translating this set by - x we must have that (- x + E) ' Z is not Borei.
 Define Bn as follows. If - x G An let Bn = Bn and if - x £ An let Bn = 0.
 Define C = a(Bn : n e cj), i.e., C has exactly the same Borei code as E' =
 a(An x Bn : n G u) except at the base we substitute Bn for Anx Bn. Since
 each Bn is Borei, the set C is a Borei set. Now for any y £ Z we have that

 1. y G (-x 4- E) iff

 2. x + y G E iff

 3. (x, y) e E' iff

 4. (x, y) G a(An x Bn : n e lj) iff

 5. (x,2/) G cr(An x Bn : n G uj) iff

 6. y G cr{Bn :n Go;) = C.

 (4) and (5) are equivalent because y £ Z. (5) and (6) are proved equivalent
 by an easy induction on the Borei code a.

 Consequently, for every y £ Z we have that y G (- x + E) iff y G C. But
 this means that (- x + E)'Z = C'Z which contradicts the assumption that
 (-x + E)'Z is not Borei (both C and Z are Borei). A similar proof works
 for the property of Baire case. □

 Let P be the proposition that E is Borei iff E' is in the a-algebra generated
 by rectangles of the form Ax B with A arbitrary and B measurable. Kunen
 has shown that P is false if the continuum hypothesis is true, but P is true in
 the random real model.

 There is other work on measurable rectangles which does not seem to be
 directly related to this. For example, Eggleston [3] proves that every subset of
 the plane of positive measure contains a rectangle X x Y with X uncountable
 (in fact perfect) and Y of positive measure. Martin [9] gives a metamathe-
 matical proof of this result.
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 Erdos and Stone [4] show that there exist Borei sets A and B such that
 the set A + B = {x + y : x G A1 y G B} is not Borei.
 Friedman and Shelah (see Burke [2] or Steprans [15]) proved that in the

 Cohen real model for any Fa subset E of the plane, if E contains a rectangle
 of positive outer measure, then E contains a rectangle of positive measure.
 One corollary of this is that it is consistent that there is a subset of the plane
 of full measure which does not contain any rectangle Ax B with both A and
 B having positive outer measure. To see this let E Ç M be any meager F0 set
 with full measure. Then E' = {(x, y) : x + y G E} is a subset of the plane of
 full measure which is meager. It cannot contain a rectangle of positive measure
 Ax B since by the classical theorem of Steinhaus the set A + B would contain
 an interval and hence E would not be meager.
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