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 HOW TO OBTAIN ALL FINE CATEGORY

 DENSITY TOPOLOGIES

 Introduction

 In the eighties, Professor Wilczyński and his colleagues published a series of
 papers on Wilczynski's T-density topology (cf. [7]) which is, in a sense, anal-
 ogous to the density topology on the line. One of the main analogies consists
 of the fact that both topologies arise from some "lower density operator" and
 therefore have similar properties. L. Zajíček showed in [2] that the X-density
 topology is created by the *-modification of the so-called porous topology. In
 addition he showed that if in a Baire topological space the *-modification is
 applied to a topology that is S-related to the original topology, then a cate-
 gory density topology (i.e. topology determined by a category lower density
 operator) is obtained as a consequence.

 The main result of the present paper contained in the first part is the as-
 sertion that every fine category density topology in a Baire regular topological
 space can be obtained in this way; i.e. every fine category density topology
 is obtained as the *-modification of some (called "primitive" in the paper)
 topology, ¿>-related to the original topology. Moreover, two ways of obtaining
 the coarsest and the finest of all topologies primitive to the original category
 density topology are presented.

 In the second part of the paper, the results are applied to some well-known
 fine topologies in M. A consequence of these applications is the observation
 that a primitive topology generally is not determined uniquely.

 Preliminaries

 First, let us recall several definitions, notation and facts.

 *1 am indebted to Professor Luděk Zajíček for his valuable comments.
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 Let X be topological space, E the family of all subsets of X having the
 Baire property and AÍ the family of all first-category subsets of X. We will
 write A ~ B, where A^B C X, to denote the fact that (A ' B) U (B ' A) G Aí.
 A mapping S : E - ► E satisfying conditions

 (51) S(A) ~ A

 (52) A~ B => S(A) = S(B)

 (53) 5(0) = 0, S(X) = X

 (54) S(A D B) = S (A) n S(B)

 is called category lower density. If 5 is a category lower density and rs ģis
 the family of sets defined by Ts = {A G E : A C 5(A)}, then rs forms a
 topology (cf. [1]) that is called the category density topology (determined by
 the category lower density 5). Moreover, rs = {5(A) ' N : A e E, Ne Aí}.

 The following theorem yields useful characterizations of category density
 topologies.

 Theorem A (cf. [1]). Let r be a topology for X. Then the following are
 equivalent.

 (i) r is a category density topology.

 (ii) r has the following properties:

 (a) A G Aí ==> A is r-closed

 (b) every nonempty r-open set contains a subset from E ' AÍ

 (c) A r*j intT A A for every A e E.

 (iii) r has the following properties:

 (a) A G Aí A is r-closed and r-nowhere dense
 (b) A G E <=> A has the r-Baire property.

 Now we will give the definitions of some particular topologies. Let ( X , t)
 be a topological space.

 A set H C X is said to be regular open if H = intt H . The family of all
 regular open sets forms a basis of a topology (cf. [5]) that will be denoted by
 i+.

 The family {G ' N : G G t, N is of the ¿-first category} is a topology
 (cf. [2]). It will be denoted by t*.

 The family of all subsets A satisfying A C intt intt A forms a topology
 (denoted by ta ) such that ta = {B'N : B G t, N is t-nowhere dense} (cf. [4]).
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 Let r be a topology finer than t. The family of r-open sets of the form
 U U {rr}, where U e t and x e X forms a basis of a topology; we will call it
 the a.e.-modification of r (cf. [1] and [6]) and denote it by ra.

 Let ti and £2 be topologies on a set X. Then t', ¿2 are said to be 5-related
 if for any set A C X, inttl A ^ 0 iff intt2 A^fy (cf. [2]).
 Let a; be a fine category density topology on (X,i). A topology r will be

 called primitive to cj if r and t are 5-related and r* = u.
 In what follows, it will be helpful for us to be able to describe a category

 lower density in terms of the category density topology determined by it.

 Proposition 1. Let r be a category density topology determined by a category
 lower density S. Then for each A G E, S (A) = intT A and S (A) is r -regular
 open.

 Proof. Let A € E. Obviously, S(A) C (otherwise 0 ^ S(A) 'ÃT e
 r, which is contrary to the statement (ii)-(b) of Theorem A, since S (A) ~
 A ). Applying Theorem A and properties of category lower density we obtain
 intrT C S(intrT ) = S(A) C intT A and therefore S(A) = intT~& .

 Consequently, since S(S(A)) = S(A ), we have 5(^4) is r-regular.

 Part 1

 Let us start with the theorem which has motivated and inspired this work.

 Theorem B (cf. [2]). Let (P^g) be a Baire topological space and let r be a
 topology on P which is S-related to g. Then the topology t* is a category
 density topology on (P, g) and r* = {G ' N : G is T-open} N is of the g-first
 category}.

 The next theorem shows that in the case of a regular topological space (i.e.
 a space such that between every point and a neighborhood of it some closed
 neighborhood can be inserted; but not necessarily a Hausdorff space) and a fine
 category density topology, the converse of Theorem B is also true. Otherwise
 stated, in a regular Baire space, to every fine category density topology there
 exists a primitive topology.

 Theorem 2. Let (P, g) be a Baire regular topological space and let lo be a
 category density topology on (P, g) which is finer than g. Then the topology
 < J + is the coarsest of all topologies primitive to u. Moreover , g Cw+.

 Corollary. If in addition each singleton in (P, g) is of the g-first category ,
 then the a.e.-modification of cj is the finest of all topologies primitive to u.
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 Proof of Theorem 2. Denote by S the category lower density correspond-
 ing to the topology u, by E the family of all subsets of P with the ^-Baire
 property and by AÍ the cr-ideal of all £-first category sets. Note that it follows
 from Proposition 1. that the set {S(G) : G G g} is a basis for the topology
 u;+.

 Now prove that and g are 5-related. Let 0 ^ T e Then T can be
 written in the form T = Uae.4 where Ga G g for any a G A. Since
 T ^ 0, there exists ao G A such that Gao ^ 0. Prom the assumption g C uj it
 follows that Gao C S(Gao) C T.

 For the converse, we shall prove that g C uj+. Let 0 ^ G G g. It follows
 from the regularity of the space (P, g) that for any x G G there exists U x G g
 such that x G Ux C Uxe C G. For every such UXi x G Ux C S(£/x) C C
 Uxe C G by Proposition 1. and the assumption of g C uj. Consequently,
 G = UxGG and SO G e

 Now we give the proof that (a;"1")* = uj. According to Theorem B, we have
 (o;+)* = {T'N :T G N G A/*}. It sufBces to realize that = {5(G) ' AT :
 G e g, N e A/"}, CJ+ C a; and that the members of M are unclosed sets.

 We have proved that the topology u;+ is primitive to uj. It remains to prove
 that is the coarsest of all topologies primitive to u. Let r be a primitive
 to u. It suffices to prove that S(G) G r for every Geg. Let G G £ be given.
 Clearly, r C r* = u. Since S(G) G cj, there exist sets Ter and N of the
 £-first category such that S(G) = T 'N. In view of this and properties of
 category lower density, we obtain T c S(T) = S(T'N) = S(S(G)) = S(G) =
 T'N CT. Consequently, T = S(G) and S(G) G r.
 Proof of Corollary. We begin with the proof that ua and g are S-related.
 One direction of this statement is clear, for g C va. To prove the converse,
 assume A C P and int^a A ^ 0. Thus, there exist G e g and x e P such
 that G U {x} G L o and G U {x} C A. Obviously, G ^ 0 (otherwise {x} G u;, so
 {x} G E ' A/*, which is a contradiction), and so 0 ^ G = inte G C int6 A.

 To finish the proof that ua is primitive to u it suffices to verify (cja)* = u.
 Since ua C uj and sets of the ^-first category are unclosed, (u;a)* = {T'N :
 T e uai Ne M} C u. The oppisite inclusion is an easy consequence of the
 fact that for any G e g we have S (G) = Uxg5(G)(^u {x}) ^ ^ ' w^ich follows
 from g C uj and the definition of the topology ua.

 Now let r be a primitive topology to u and Ter. To finish the proof it
 is sufficient to show that T G uja. We already know that g Cuj^ Cr. Further
 T e uj, since r* = uj. Now T C inteTe since otherwise 0 ^ T ' int6Te and
 because of the assumption that the topologies r and g are 5-related, there
 exists a nonvoid £-open set U satisfying U C T' int6 Te C T ' inte T, which
 is impossible. Now using the properties of category lower density we obtain

 S(inteT) C S(T) C S(inte Te) = S(inteT). (1)



 All Fine Category Density Topologies 169

 Since T = 'JxeT(intQ T U {x}) and since int6 T U {x} C 5(T) for each x e T
 (T e u>), it follows that Tg/, according to (1). □

 Proposition 3. describes another way of obtaining the coarsest (the finest,
 respectively) primitive topology under the assumption that some primitive
 topology is already at our disposal.

 Proposition 3. Let (P, g) be a regular Baire topological space and let t be a
 topology finer than g such that t and g are S -related. Then (t*)+ =

 Corollary 1. If in addition we assume that every singleton in (P, g) is of the
 g-first category , then moreover ( ť)a = ((ť*)*)a = ta.

 Corollary 2. If in addition, t is regular , then (t*)+ = = t.

 Proof of Proposition 3. We will carry out the proof by establishing the
 equality of the bases of the topologies (ż*)+ and ie. by showing {S(G) : G e

 g} = {G e t : G = intt G } (by 5 a category lower density is again denoted,
 this time the one determined by the topology ť). First of all, note that
 5(G) = intt G* for every Get. (Let Get. Owing to the 5-relation between
 the topologies g and £, G* ' G is a £-first category set and so 5(G) = S(Gt).
 Applying Proposition 1. we get 5(G) = S(Gt) = intt • C* from which it follows

 that intt G % C S(G). Conversely, it follows from Theorem 2. that S(G) e t.

 Moreover, since S(G) C Gť, we have S(G) C intt G* .)
 Lastly, we give the promised proof of equality of the bases. Let Geg.

 Then Get. Consequently S(G) = intt G*. But also S(G) e £, so intt S(G)ť =
 S(S(G)) = S(G). For the converse, let G e t, G = inttG* . Then S(G) =
 G which completes the proof, since from the properties of category density
 topologies it follows that {5(G) : G e g} = {¿>(j4) : A has the p-Baire
 property}.
 Proof of Corollary 1. First, prove the equality ( ta )* = ť.

 The inclusion t* C ( ta )* is clear, for t C ta. Conversely let T e ta , i.e. there
 exist sets Bet and N ¿-nowhere dense such that T = B'N. Thus, Tet * and
 it is sufficient to realize that sets of the £-first category are £*-closed. Since the
 topologies t and ta are obviously S-related, it is sufficient to prove ( ť)a C ta
 (in view the Corollary to Theorem 2.). Note that for any G e g (C t) and
 x e 5(G), G C G U {x} C S (G) C G*. Since G* ' G is a t-nowhere dense
 set, S (G) ' (G U {x}) is t- nowhere dense also. Using the definition of ta and
 Theorem 2. we obtain G U {x} = S(G) ' (5(G) '(GU {x})) e ta. Noting that
 the family {G U {x} : G e g, x e 5(G)} constitutes a basis for the topology
 (ť)a completes the proof
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 Proof of Corollary 2. We already know that = (ť)+ c t. Thus,
 it remains to prove t C Let U G t. It follows from the regularity
 of the topology t that for every x G U there exists a set Gx G t such that
 X G Gx C Gx C U . If we use Proposition 1. and the fact that t C £*, then

 for each of these sets we obtain Gx S(GX) = intt* Gx C C Gx* C t/.
 Hence, U = Uxgc/ Sfâx) € (£*)+, which was to be proved.

 Part 2

 This part is devoted to applications of the preceding results to some well-
 known fine topologies in (M, e) ("e" means the Euclidean topology). Recall
 their definitions and notations.

 The density topology (denoted here by d) consists of all measurable (with
 respect to the Lebesgue measure A) sets M such that

 Vx G M : lim -ļ-A(M 2/1 D (x - /i, x + h)) = 1 h- ►()+ 2/1

 (cf. [1]).
 The r-modification (cf. [1]) of the topology d (denote it by dr) is a topology,

 whose basis is the family of all subsets of M that are d-open as well as Fa and
 G s (with respect to e).

 The definition of the />-topology (so-called porous topology, cf. [2]) is some-
 what more intricate. Given x G M, R > 0, M C M; by ^(x, iž, M) we mean
 the supremum of the set of all r > 0 for which there exists y G IR such that
 U(y,r) C U(x,R) ' M. If limsupÄ_0+ ip(x,R,M) • R~l >0, then M is said
 to be porous at x. Furthermore, a set E C M is said to be superporous at x
 if E' U F is porous at x for any set F that is porous at x. The p-topology is
 formed of all sets G C M such that M ' G is superporous at each point of G.

 Recall that the topologies da, dT , p, e are regular and S-related to e (cf. [1],
 [8]).

 An easy consequence of this assertion and Corollary 2. to Proposition 3. is
 the following assertion.

 Proposition 4. (p*)+ = p, (e*)+ = e, ((da)*)+ = da, ((dr)*)+ = dr .

 In other words, we have demonstrated that if we define t to be any of the
 topologies da, dr , pì e, then t is the coarsest of all topologies primitive to ť
 on (M, e).

 With the aid of Corollary to Theorem 2., Proposition 5. reveals that in any
 case t is not the finest of all topologies primitive to t*.
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 Proposition 5. Let t be any of the topologies e , da, dr , p. Then t ^ ( ť)a .

 Proof. We already know that t C (i*)a, due to Corollary to Theorem 2.. To
 accomplish the proof it suffices to find a set G € e and a point x G M such
 that G U {x} et* ' t. Let S denote the lower density relevant to topology t *.

 1. Let t = e.

 Set G = (-1, 1) ' ({±¿ : n G N} U {0}). Evidently, Gee and G* = [-1, 1]. It
 follows from the properties of the category lower density S that S((- 1,1)) C
 S((f) = 5(G). Since (-1,1) G e C e*, (-1,1) C 5((-l,l)) C 5(G). In
 prticular, 0 e S(G). Consequently, G U {0} e e*. But obviously, G U {0} ^ e.

 2. Let t = da (t = dr s respectively) .

 Choose an e-open set G such that G C (0, 1), A (G) < b G = [0, 1] (such
 set G is sure to exit). Apparently, (0, 1) C S(G). Thus, G U {x} G t* for any
 x G (0, 1). It suffices to prove that there exists x G (0, 1) with the property
 that G U {x} ^ t. Suppose that no such x exists in (0,1), i.e. G U {x} G
 t for any x G (0,1). This also implies (since t C d) that Vx G (0,1) we
 have lim/l_>o+ n(x-/i,x + /i)) = 1. Prom this we can easily get that
 (Vx G (0, l))(3/io > 0)(V0 < h < ho) : ^;A(G fl (x - h,x + h)) > | and so
 A(G) > A([0, 1] ' G). This is contrary to the choice of the set G, for A (G) <

 3. Let t = v.

 First, choose for k = 1, 2, . . . e-open sets Gk such that

 (i) Gk C (2XTT7 ^r)

 (ii) Gk = [jÀt, 2*]

 (iii) 2k - A(Gjb) < i

 Note that such a choice is possible. Now define the set G by G = (-1,0) U
 UfcLi Obviously, G G e and Gnf^Fr, ^) = Gk for k = 1,2, - Moreover
 (-1, ļļcč6 and hence 0 G 5(G).

 To finish the proof of Proposition 5. it suffices to show that 0 is not a
 p-interior point of the set G U {0}. Suppose G U {0} is p-open. Hence (cf. [3]),
 there exist e > 0 and 6 > 0 such that for each x G (0, 6) there exists an open
 interval I with the length at least e • x, for which

 J C G fl (x - ^x,x). (2)
 Now choose an arbitrary positive integer ko such that and for integers
 k > ko define points Xk = By (2), for every such xjt there exists an
 open interval - denote it by Jk - not shorter than e • Xk such that Jk C
 G fl (xk - ^XkyXk) = G fl (^GTT, ^r) = Gk . Hence, for every integer k > fc0,
 A (Gk) > A (Jk) > s-Xk = s - ^jr-. Thus, for every integer k > ko , 2k - A (Gk) > £,
 which is contrary to condition (iii) for the choice of G^.
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