Aleksander Maliszewski, Mathematics Department, Pedagogical University, ul. Chodkiewicza 30, 85-064 Bydgoszcz, Poland
e-mail: wspb05@pltumk11.bitnet

ALGEBRA GENERATED BY A.E. CONTINUOUS DERIVATIVES OF INTERVAL FUNCTIONS

Abstract

In this paper it is proved that each a.e. continuous Baire one function $u: \mathbb{R}^{m} \rightarrow \mathbb{R}$ can be written as $u=f \cdot g+h$, where f, g and h are a.e. continuous derivatives (with respect to the ordinary differentiation basis).

In 1982 D. Preiss proved the following theorem [7].
Theorem 1 Whenever $u: \mathbb{R} \rightarrow \mathbb{R}$ is a function of the first class there are derivatives $f, g, h: \mathbb{R} \rightarrow \mathbb{R}$ such that $u=f \cdot g+h$. Moreover one can find such a representation that g is bounded and h is Lebesgue and in case u is bounded such that f and h are also bounded.

Generalizations of this theorem for derivatives of interval functions (with respect to the ordinary differentiation basis) can be found in [1] and [4]. Another generalization of Preiss's theorem was published in 1990 [3].

Theorem 2 Whenever $u: \mathbb{R} \rightarrow \mathbb{R}$ is a function of the first class which is continuous almost everywhere there are derivatives f, g and h which are continuous almost everywhere such that g is bounded and $u=f \cdot g+h$ and in case u is bounded such that f and h are also bounded.

In this paper I prove an analogous theorem for derivatives of interval functions (with respect to the ordinary differentiation basis). The method of the proof is a modification of that of [3].

[^0]First we need some notation. The real line $(-\infty, \infty)$ is denoted by \mathbb{R}, the set of integers by \mathbb{Z} and the set of positive integers by \mathbb{N}. Throughout this article m is a fixed positive integer. The word function means mapping from \mathbb{R}^{m} into \mathbb{R} unless otherwise explicitly stated. The words measure, almost everywhere (a.e.), summable etc. refer to the Lebesgue measure and integral in \mathbb{R}^{m}. We denote by $a \vee b(a \wedge b)$ larger (smaller) of the real numbers a and b. The Euclidean metric in \mathbb{R}^{m} will be denoted by ϱ. For every set $A \subset \mathbb{R}^{m}$, let $\operatorname{diam} A$ be its diameter (i.e. $\operatorname{diam} A=\sup \{\varrho(x, y): x, y \in A\}$), χ_{A} its characteristic function and $|A|$ its outer Lebesgue measure. The symbol $\int_{A} f$ will always mean the Lebesgue integral. We say that f is a Baire one function, if it is the pointwise limit of a sequence of continuous functions. For any function f we write $\|f\|$ for $\sup \left\{|f(t)|: t \in \mathbb{R}^{m}\right\}$ (f needn't be bounded), and we denote by $\mathcal{D}(f)$ the set of points of discontinuity of f.

The word interval (cube) will always mean non-degenerate compact interval (cube) in \mathbb{R}^{m}, i.e. the Cartesian product of m non-degenerate compact intervals (compact intervals of equal length) in \mathbb{R}. We denote by Γ the family of all intervals.

For each interval $I=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$, we set

$$
I^{\circ}=\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{m}, b_{m}\right) .
$$

Let $n \in \mathbb{N}$. We say that I is a basic cube of order n, if

$$
I=\left[\frac{k_{1}}{2^{n}}, \frac{k_{1}+1}{2^{n}}\right] \times \ldots \times\left[\frac{k_{m}}{2^{n}}, \frac{k_{m}+1}{2^{n}}\right]
$$

for some $k_{1}, \ldots, k_{m} \in \mathbb{Z}$. The family of all basic cubes of order n will be denoted by Γ_{n}. Elements of $\bigcup_{n=1}^{\infty} \Gamma_{n}$ will be called simply basic cubes.

Remark. Observe that for any two basic cubes I and J, either I and J do not overlap (i.e. $I \cap J \notin \Gamma$), or $I \subset J$, or $J \subset I$.

The following lemma is a slightly modified version of Lemma 2.1 of [5].
Lemma 3 Let $A \subset \mathbb{R}^{m}$ be closed and let v be a function such that $\mathcal{D}(v) \subset A$. Then there exists a family \mathcal{J} of non-overlapping basic cubes such that the following conditions are satisfied:
i) $\cup \mathcal{J}=\mathbb{R}^{m} \backslash A$,
ii) each $x \notin A$ belongs to the interior of the union of some finite subfamily of \mathcal{J},
iii) $\operatorname{diam} J \leq \varrho(A, J)$ for each $J \in \mathcal{J}$,
iv) for each $\tau>0$, there exists an $\eta>0$ such that

$$
\left\|v \cdot \chi_{J}\right\| \leq \tau \cdot \varrho(A, J) \cdot|J|^{-1 / m}
$$

whenever $J \in \mathcal{J}$ and $\varrho(A, J)<\eta$.
Proof. Let \mathcal{I} be a family of basic cubes such that $\bigcup \mathcal{I}=\mathbb{R}^{m} \backslash A$ and each $x \notin A$ belongs to the interior of the union of some finite subfamily of \mathcal{I} [5, Lemma 2.1]. For each $I \in \mathcal{I}$, since I is compact and $v \mid I$ is continuous, $C_{I}=\left\|v \cdot \chi_{I}\right\|<\infty$. Write I as the union $I=\bigcup_{i=1}^{k_{I}} J_{I, i}$ of non-overlapping basic cubes of diameter less than

$$
\varrho(A, I) \wedge \frac{[\varrho(A, I)]^{2}}{C_{I}+1}
$$

and define $\mathcal{J}=\left\{J_{I, i}: I \in \mathcal{I}, i \in\left\{1, \ldots, k_{I}\right\}\right\}$. Then clearly the requirements of the lemma are satisfied.

By an interval function we will mean a mapping from Γ into \mathbb{R}.
We say that intervals I, J are contiguous, if they do not overlap and $I \cup J$ is an interval. We say that an interval function F is additive, if $F(I \cup J)=$ $F(I)+F(J)$ whenever I and J are contiguous intervals.

We say that a sequence of intervals $\left\{I_{n}: n \in \mathbb{N}\right\}$ is

- s-convergent to a point $x \in \mathbb{R}^{m}$, if
i) $x \in \bigcap_{n=1}^{\infty} I_{n}$,
ii) $\lim _{n \rightarrow \infty} \operatorname{diam} I_{n}=0$.
- o-convergent to a point $x \in \mathbb{R}^{m}$, if the conditions i) and ii) above are fulfilled and moreover,
iii) $\limsup _{n \rightarrow \infty} \frac{\left(\operatorname{diam} I_{n}\right)^{m}}{\left|I_{n}\right|}<\infty$.

We will write $I_{n} \stackrel{s}{\Rightarrow} x$ and $I_{n} \stackrel{o}{\Rightarrow} x$, respectively. (Cf. e.g. [5].)
Let F be an arbitrary interval function and $x \in \mathbb{R}^{m}$. We define

$$
s-\limsup _{I \Rightarrow x} F(I)=\sup \left\{\limsup _{n \rightarrow \infty} F\left(I_{n}\right): I_{n} \stackrel{s}{\Rightarrow} x\right\}
$$

In similar way we define $o-\limsup _{I \Rightarrow x} F(I), s-\liminf _{I \Rightarrow x} \inf F(I)$ etc.

We say that function f is an o-derivative, if there exists an additive interval function F (called the primitive of f) such that

$$
o-\lim _{I \Rightarrow x} \frac{F(I)}{|I|}=f(x)
$$

holds for each $x \in \mathbb{R}^{m}$. Recall that o-derivatives are Baire one functions (cf. [3, Lemma 2.1, p. 151] and [5, Lemma 3.1]).

We say that $x \in \mathbb{R}^{m}$ is an o-Lebesgue point of function f, if f is locally summable at x and

$$
\underset{I \Rightarrow x}{o-\lim _{I}} \frac{\int_{I}|f-f(x)|}{|I|}=0 .
$$

We say that f is an o-Lebesgue function, if each $x \in \mathbb{R}^{m}$ is an o-Lebesgue point of f.

Paper [5] introduced the notion of an o-point and the notion of an o-integral which is proper for integrating of o-derivatives. We will say that a function f is integrable on an interval I, if the o-integral of f on I exists. We will say that f is locally integrable at a point $x \in \mathbb{R}^{m}$, if there exists an $\eta>0$ such that f is integrable on every interval $I \ni x$ of diameter less than η. The value of the o-integral of function f on an interval I will be denote by $\mathcal{S}_{o}(f, I)$.

We will say that $x \in \mathbb{R}^{m}$ is an o-point of the function f, if f is locally integrable at x and

$$
\underset{I \Rightarrow x}{s-\lim } \frac{\mathcal{S}_{o}(f, I)-f(x) \cdot|I|}{(\operatorname{diam} I)^{m}}=0 .
$$

Remark. In the above definition we have the s-limit, which is much simpler than the o-limit, since we can express it in a Cauchy-like manner.

The notion of an o-point is a local characterization of an o-derivative.
Theorem 4 Let f be an arbitrary function. Then f is an o-derivative if and only if each $x \in \mathbb{R}^{m}$ is an o-point of f. [5, Theorem 5.4]

Remark. It is easy to prove the following assertions:

- If a function f is locally summable and continuous at $x \in \mathbb{R}^{m}$, then x is an o-Lebesgue point of f.
- If $x \in \mathbb{R}^{m}$ is an o-Lebesgue point of a function f, then it is an o-point.

The following theorems are proved in [5].
Theorem 5 Assume that $A \subset \mathbb{R}^{m}$ is closed, $\mathcal{J}=\left\{J_{n}: n \in \mathbb{N}\right\}$ is a family of non-overlapping cubes and $\left\{f_{n}: n \in \mathbb{N}\right\}$ is a family of summable functions such that the following conditions are satisficd:
i) each $x \notin A$ belongs to the interior of the union of some finite subfamily of \mathcal{J},
ii) $\left|J_{n}\right| \leq\left[\varrho\left(A, J_{n}\right)\right]^{m}, n \in \mathbb{N}$,
iii) $f_{n}(x)=0$, if $x \notin J_{n}, n \in \mathbb{N}$,
iv) for each $x \in A$ and each $\tau>0$, there exists an $\eta(x, \tau)>0$ such that for each $n \in \mathbb{N}$, if $\varrho\left(x, J_{n}\right)<\eta(x, \tau)$, then

$$
\begin{aligned}
& \text { a) }\left|\int_{J_{n}} f_{n}\right| \leq \tau \cdot\left|J_{n}\right| \text {, and } \\
& \text { b) } \sup \left\{\left|\int_{K} f_{n}\right|: K \in \Gamma\right\} \leq \tau \cdot \varrho\left(x, J_{n}\right) \cdot\left|J_{n}\right|^{1-1 / m} .
\end{aligned}
$$

Put $f=\sum_{n=1}^{\infty} f_{n}$. Then for each interval I, f is integrable on I, the series $\sum_{n=1}^{\infty} \int_{I} f_{n}$ is absolutely convergent, its sum equals $\mathcal{S}_{o}(f, I)$ and moreover, each $x \in A$ is an o-point of f. [5, Theorem 6.1]

Theorem 6 Whenever $A \subset \mathbb{R}^{m}$ is a closed set of measure zero and u is a Baire one function there exists an o-Lebesgue function φ such that $\mathcal{D}(\varphi) \subset A$ (so φ is continuous a.e.) and $\varphi(x)=u(x)$ for $x \in A$. Moreover one can choose φ such that $\|\varphi\| \leq\left\|u \cdot \chi_{A}\right\|$. [5, Corollary 7.9]

Theorem 7 Assume that the functions f_{1}, f_{2} are such that for all $y \in \mathbb{R}^{m-1}$, $(0, y)$ is an o-point for both f_{1} and f_{2}, and $f_{1}(0, y)=f_{2}(0, y)$. For $t \in \mathbb{R}$ and $y \in \mathbb{R}^{m-1}$ let

$$
h(t, y)= \begin{cases}f_{1}(t, y) & \text { if } t \geq 0 \\ f_{2}(t, y) & \text { if } t<0\end{cases}
$$

Then for each $y \in \mathbb{R}^{m-1},(0, y)$ is an o-point of h. [5, Theorem 7.1]
The proof of the following lemma is a repetition of arguments used to prove an analogous result in [3].

Lemma 8 Whenever u is an a.e. continuous Baire one function there exist a.e. continuous Baire one functions u_{1}, u_{2}, \ldots such that
i) the sets $\mathcal{D}\left(u_{1}\right), \mathcal{D}\left(u_{2}\right), \ldots$ are closed,
ii) $\left\|u_{k}\right\|<2^{-k}$ for $k \geq 2$,
iii) $u=\sum_{k=1}^{\infty} u_{k}$.

Lemma 9 Assume that $I=\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{m}, b_{m}\right]$ is a cube, the functions $\psi, \tilde{f}, \tilde{g}, \bar{f}$ and \bar{g} are summable on I and $\left\|\psi \cdot \chi_{I}\right\|=C<\infty$. Then there exist continuous functions f and g such that
i) $f(x)=g(x)=0$, if $x \notin I$,
ii) $\int_{I} f=\int_{I} g=\int_{I}(\psi-f \cdot g)=\int_{I}(g \cdot \tilde{f})=\int_{I}(f \cdot \tilde{g})=\int_{I}(g \cdot \bar{f})=\int_{I}(f \cdot \bar{g})=0$,
iii) $\|f\| \leq 25 \cdot 2^{m} \cdot(\sqrt{C} \vee C),\|g\| \leq \sqrt{C} \wedge 1$.

Proof. For $i \in\{1, \ldots, 5\}$, let e_{i} be the function defined by

$$
e_{i}\left(x_{1}, \ldots, x_{m}\right)=\sin \frac{2 \pi i\left(x_{1}-a_{1}\right)}{b_{1}-a_{1}} \cdot \ldots \cdot \sin \frac{2 \pi i\left(x_{m}-a_{m}\right)}{b_{m}-a_{m}}
$$

for $\left(x_{1}, \ldots, x_{m}\right) \in \mathbb{R}^{m}$. The following system of equations

$$
\left\{\begin{array}{l}
z_{1} \cdot \int_{I}\left(e_{1} \cdot \tilde{f}\right)+\ldots+z_{5} \cdot \int_{I}\left(e_{5} \cdot \tilde{f}\right)=0 \\
z_{1} \cdot \int_{I}\left(e_{1} \cdot \tilde{g}\right)+\ldots+z_{5} \cdot \int_{I}\left(e_{5} \cdot \tilde{g}\right)=0 \\
z_{1} \cdot \int_{I}\left(e_{1} \cdot \bar{f}\right)+\ldots+z_{5} \cdot \int_{I}\left(\epsilon_{;} \cdot \bar{f}\right)=\cdot \\
z_{1} \cdot \int_{I}\left(e_{1} \cdot \bar{g}\right)+\ldots+z_{5} \cdot \int_{I}\left(e_{5} \cdot \bar{g}\right)=0
\end{array}\right.
$$

is linear, homogeneous and the number of unknown quantities exceeds the number of equations, so it has a non-zero solution, say $\beta_{1}, \ldots, \beta_{5}$. Set

$$
\gamma=\sqrt{\frac{2^{m} \cdot\left|\int_{I} \psi\right|}{\left(\beta_{1}^{2}+\ldots+\beta_{5}^{2}\right) \cdot|I|}}
$$

and $\alpha_{i}=\gamma \cdot \beta_{i}(i \in\{1, \ldots, 5\})$. Let $e=\alpha_{1} \cdot e_{1}+\ldots+\alpha_{5} \cdot e_{5}$. Then for $i \in\{1, \ldots, 5\}$,

$$
\alpha_{i}^{2} \cdot|I| / 2^{m} \leq\left(\alpha_{1}^{2}+\ldots+\alpha_{5}^{2}\right) \cdot|I| / 2^{m}=\left|\int_{I} \psi\right| \leq C \cdot|I|,
$$

so $\left|\alpha_{i}\right| \leq 2^{m / 2} \cdot \sqrt{C}$ and $\|e\| \leq 5 \cdot 2^{m / 2} \cdot \sqrt{C}$.
Define functions f and g by

$$
f(x)=5 \cdot 2^{m / 2} \cdot(\sqrt{C} \vee 1) \cdot e(x) \cdot \chi_{I}(x)
$$

and

$$
g(x)=\frac{e(x) \cdot \operatorname{sgn} \int_{I} \psi}{5 \cdot 2^{m / 2} \cdot(\sqrt{C} \vee 1)} \cdot \chi_{I}(x)
$$

It is easy to prove that conditions i$)$-iii) are satisfied.

Theorem 10 Whenever $u: \mathbb{R}^{m} \rightarrow \mathbb{R}$ is an a.e. continuous Baire one function there exist a.e. continuous o-derivatives f, g and h such that g is bounded and $u=f \cdot g+h$, and in case u is bounded such that f and h are also bounded.

Proof. First use Lemma 8 to find a.e. continuous Baire one functions u_{1}, u_{2}, \ldots such that the sets $\mathcal{D}\left(u_{1}\right), \mathcal{D}\left(u_{2}\right), \ldots$ are closed, $\left\|u_{k}\right\|<2^{-k}$ for $k \geq 2$ and $u=\sum_{k=1}^{\infty} u_{k}$. Put $A_{0}=\emptyset$ and $\mathcal{J}_{0}=\Gamma_{1}$. For $k \in \mathbb{N}$, we define functions f_{k} and g_{k} by induction as follows.

Let $A_{k}=A_{k-1} \cup \mathcal{D}\left(u_{k}\right)$. By Theorem 6, there exists an o-Lebesgue function φ_{k} such that

- $\mathcal{D}\left(\varphi_{k}\right) \subset A_{k}$,
- $\varphi_{k}(x)=u_{k}(x)$ for $x \in A_{k}$, and
- $\left\|\varphi_{k}\right\| \leq\left\|u_{k} \cdot \chi_{A_{k}}\right\|$.

Set $\psi_{k}=u_{k}-\varphi_{k}$. Use Lemma 3 with $A=A_{k}$ and $v=v_{k}=\left|\psi_{k}\right| \vee \sqrt{\left|\psi_{k}\right|}$ and find a family $\mathcal{J}_{k}=\left\{J_{k, n}: n \in \mathbb{N}\right\}$ of non-overlapping basic cubes such that

- $\bigcup \mathcal{J}_{k}=\mathbb{R}^{m} \backslash A_{k}$,
- each $x \notin A_{k}$ belongs to the interior of the union of some finite subfamily of \mathcal{J}_{k},
- $\operatorname{diam} J_{k, n} \leq \varrho\left(A_{k}, J_{k, n}\right)$ for each $n \in \mathbb{N}$,
- for each $\tau>0$, there exists an $\eta>0$ such that if $n \in \mathbb{N}$ and $\varrho\left(A_{k}, J_{k, n}\right)<$ η, then

$$
\left\|v_{k} \cdot \chi_{J_{k, n}}\right\| \leq \tau \cdot \varrho\left(A_{k}, J_{k, n}\right) \cdot\left|J_{k, n}\right|^{-1 / m}
$$

We may also assume that \mathcal{J}_{k} is a refinement of \mathcal{J}_{k-1}, i.e. each element of \mathcal{J}_{k} is contained in one of elements of \mathcal{J}_{k-1} (cf. Remark on p. 147). Put

- $\tilde{f}_{k}=\tilde{g}_{k}=\bar{f}_{k}=\bar{g}_{k}=0$, if $k=1$,
- $\tilde{f}_{k}=f_{1}, \tilde{g}_{k}=g_{1}, \bar{f}_{k}=f_{2}+\ldots+f_{k-1}, \bar{g}_{k}=g_{2}+\ldots+g_{k-1}$, if $k>1$.

For each $n \in \mathbb{N}$, apply Lemma 9 with $I=J_{k, n}, \psi=\psi_{k}, \tilde{f}=\tilde{f}_{k}, \tilde{g}=\tilde{g}_{k}$, $\bar{f}=\bar{f}_{k}$ and $\bar{g}=\bar{g}_{k}$, and find continuous functions $f_{k, n}, g_{k, n}$ such that, setting $C_{k, n}=\left\|\psi_{k} \cdot \chi_{J_{k, n}}\right\|$, we have

- $f_{k, n}(x)=g_{k, n}(x)=0$, if $x \notin J_{k, n}$,
- $\int_{J_{k, n}} f_{k, n}=\int_{J_{k, n}} g_{k, n}=\int_{J_{k, n}}\left(\psi_{k}-f_{k, n} \cdot g_{k, n}\right)=\int_{J_{k, n}}\left(g_{k, n} \cdot \tilde{f}_{k}\right)$ $=\int_{J_{k, n}}^{J_{k, n}}\left(f_{k, n} \cdot \tilde{g}_{k}\right)=\int_{J_{k, n}}\left(g_{k, n} \cdot \bar{f}_{k}\right)=\int_{J_{k, n}}\left(f_{k, n} \cdot \bar{g}_{k}\right)=0$,
- $\left\|f_{k, n}\right\| \leq 25 \cdot 2^{m} \cdot\left(\sqrt{C_{k, n}} \vee C_{k, n}\right),\left\|g_{k, n}\right\| \leq \sqrt{C_{k, n}} \wedge 1$, and set $h_{k, n}=\psi_{k} \cdot \chi_{J_{k, n}^{\circ}}-f_{k, n} \cdot g_{k, n}$.

Let

$$
f_{k}=\sum_{n=1}^{\infty} f_{k, n}, \quad g_{k}=\sum_{n=1}^{\infty} g_{k, n} \text { and } h_{k}=\varphi_{k}+\sum_{n=1}^{\infty} h_{k, n}
$$

Observe that $\left\|g_{1}\right\| \leq 1$ and for $k \geq 2$,

$$
\begin{aligned}
\left\|f_{k}\right\| & \leq 25 \cdot 2^{m} \cdot \sup \left\{\sqrt{C_{k, n}} \vee C_{k, n}: n \in \mathbb{N}\right\} \\
& \leq 25 \cdot 2^{m} \cdot\left(\sqrt{\left\|\psi_{k}\right\|} \vee\left\|\psi_{k}\right\|\right) \leq 2^{m+5+(1-k) / 2}
\end{aligned}
$$

and $\left\|g_{k}\right\| \leq 2^{(1-k) / 2}$. Hence for $k \geq 2$,

$$
\begin{gathered}
\left\|h_{k}\right\| \leq\left\|\varphi_{k}\right\|+\left\|\psi_{k}\right\|+\left\|f_{k}\right\| \cdot\left\|g_{k}\right\| \leq 2^{m+7-k} \\
\left\|f_{k} \cdot \tilde{g}_{k}\right\| \leq 2^{m+6-k / 2} \\
\left\|g_{k} \cdot \bar{f}_{k}\right\| \leq 2^{m+5} \cdot(\sqrt{2}+1) \cdot\left\|g_{k}\right\| \leq 2^{m+7-k / 2} \\
\left\|f_{k} \cdot \bar{g}_{k}\right\| \leq 2^{m+7-k / 2}
\end{gathered}
$$

Consequently all of the series below converge uniformly and

$$
\begin{aligned}
u= & \sum_{k=1}^{\infty} u_{k}=\sum_{k=1}^{\infty}\left(f_{k} \cdot g_{k}+h_{k}\right)=\sum_{k=1}^{\infty} f_{k} \cdot \sum_{k=1}^{\infty} g_{k} \\
& -f_{1} \cdot \sum_{k=2}^{\infty} g_{k}-\sum_{k=2}^{\infty}\left(f_{k} \cdot g_{1}\right)-\sum_{k=2}^{\infty}\left(f_{k} \cdot \bar{g}_{k}\right)-\sum_{k=2}^{\infty}\left(g_{k} \cdot \bar{f}_{k}\right)+\sum_{k=1}^{\infty} h_{k} .
\end{aligned}
$$

Set $f=\sum_{k=1}^{\infty} f_{k}, g=\sum_{k=1}^{\infty} g_{k}$ and

$$
h=-f_{1} \cdot \sum_{k=2}^{\infty} g_{k}-\sum_{k=2}^{\infty}\left(f_{k} \cdot g_{1}\right)-\sum_{k=2}^{\infty}\left(f_{k} \cdot \bar{g}_{k}\right)-\sum_{k=2}^{\infty}\left(g_{k} \cdot \bar{f}_{k}\right)+\sum_{k=1}^{\infty} h_{k} .
$$

Then $u=f \cdot g+h$ and clearly f, g and h are continuous ©. ${ }^{\triangleright m} \backslash \bigcup_{k=1}^{\infty} A_{k}$. So they are a.e. continuous. For all $k \in \mathbb{N}$, use Theorem 5 w: $: ~ A=A_{k}, \mathcal{J}=\mathcal{J}_{k}$ and families of the functions $\left\{f_{k, n}: n \in \mathbb{N}\right\},\left\{g_{k, n}: n \in \mathbb{Z}\right\},\left\{h_{k, n}: n \in \mathbb{N}\right\}$, $\left\{f_{k, n} \cdot \tilde{g}_{k}: n \in \mathbb{N}\right\},\left\{f_{k, n} \cdot \bar{g}_{k}: n \in \mathbb{N}\right\}$ and $\left\{g_{k, n} \cdot \bar{f}_{k}: n \in \mathbb{N}\right\}$. We get that each $x \in A_{k}$ is an o-point of functions f_{k}, g_{k}, h_{k}, and, if $k \geq 2$, of $f_{k} \cdot g_{1}$, $f_{k} \cdot \bar{g}_{k}$ and $g_{k} \cdot \bar{f}_{k}$. On the other hand, observe that each $x \notin A_{k}$ is a point of continuity of these functions and consequently also a o-point.

Since the limit of a uniformly convergent series of o-derivatives is again an o-derivative, we need only show that $f_{1} \cdot \sum_{k=2}^{\infty} g_{k}$ is an o-derivative to
complete the proof. We will use once more Theorem 5 with $A=A_{1}, \mathcal{J}=\mathcal{J}_{1}$ and the family of functions $\left\{f_{1, n} \cdot \sum_{k=2}^{\infty} g_{k}: n \in \mathbb{N}\right\}$. Since the product of a continuous function with a bounded o-derivative is again an o-derivative (cf. [2], [5] or [6]), for each $n \in \mathbb{N}, f_{1, n} \cdot \sum_{k=2}^{\infty} g_{k}$ is an o-derivative. The other conditions are also fulfilled. So each $x \in A_{1}$ is also an o-point of $f_{1} \cdot \sum_{k=2}^{\infty} g_{k}$. On the other hand, by Theorem 7, each $x \notin A_{1}$ is an o-point of this function.

References

[1] A.M. Bruckner, Differentiation of real functions, Lect. Notes in Math. \#659, Springer-Verlag 1978.
[1] R. Carrese, On the algebra generated by derivatives of interval functions, Real Analysis Exchange 14 (2), (1988-89), 307-320.
[2] Z. Grande, Sur le produit de deux derivees, Demonstratio Mathematica 9 (1976), 321-332.
[3] A. Maliszewski, The algebra generated by derivatives which are continuous almost everywhere, Real Analysis Exchange 15 (2), (1989-90), 470-482.
[4] A. Maliszewski, Algebra generated by non-degenerate derivatives, Real Analysis Exchange 18 (2) (1992-93), 599-611.
[5] A. Maliszewski, Integration of derivatives of additive interval functions, submitted to Analysis.
[6] A. Maliszewski, Products of derivatives of interval functions with continuous functions, Real Analysis Exchange, 18 (2) (1992-93), 590-598.
[7] D. Preiss, Algebra generated by derivatives, Real Analysis Exchange 8 (1982-83), 208-216.

[^0]: *Supported by a KBN Research Grant 2114491 01, 1992-94
 Key Words: Baire 1 function, derivative of interval function
 Mathematical Reviews subject classification: Primary 28A15 Secondary 26B05 26A21
 Received by the editors October 28, 1992

