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Abstract
In this paper it is proved that each a.e. continuous Baire one function
u : R™ — R can be written as u = f - g + h, where f, g and h are
a.e. continuous derivatives (with respect to the ordinary differentiation
basis).

In 1982 D. Preiss proved the following theorem [7].

Theorem 1 Whenever u : R — R is a function of the first class there are
derivatives f,g,h : R — R such that u = f-g+ h. Moreover one can find such
a representation that g is bounded and h is Lebesgue and in case u is bounded
such that f and h are also bounded.

Generalizations of this theorem for derivatives of interval functions (with
respect to the ordinary differentiation basis) can be found in [1] and [4]. An-
other generalization of Preiss’s theorem was published in 1990 [3].

Theorem 2 Whenever u : R — R is a function of the first class which is
continuous almost everywhere there are derivatives f, g and h which are con-
tinuous almost everywhere such that g is bounded and uw = f-g+h and in case
u is bounded such that f and h are also bounded.

In this paper I prove an analogous theorem for derivatives of interval func-
tions (with respect to the ordinary differentiation basis). The method of the
proof is a modification of that of [3].
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First we need some notation. The real line (—oo,00) is denoted by R,
the set of integers by Z and the set of positive integers by N. Throughout
this article m is a fixed positive integer. The word function means mapping
from R™ into R unless otherwise explicitly stated. The words measure, almost
everywhere (a.e.), summable etc. refer to the Lebesgue measure and integral
in R™. We denote by a V b (a A b) larger (smaller) of the real numbers a
and b. The Euclidean metric in R™ will be denoted by p. For every set
A C R™, let diam A be its diameter (i.e. diam A = sup{o(z,y) : z,y € A}),
XA its characteristic function and |A| its outer Lebesgue measure. The symbol
J4 f will always mean the Lebesgue integral. We say that f is a Baire one
function, if it is the pointwise limit of a sequence of continuous functions. For
any function f we write || f|| for sup{|f(t)| : t € R™} (f needn’t be bounded),
and we denote by D (f) the set of points of discontinuity of f.

The word interval (cube) will always mean non-degenerate compact inter-
val (cube) in R™, i.e. the Cartesian product of m non-degenerate compact
intervals (compact intervals of equal length) in R. We denote by I' the family
of all intervals.

For each interval I = [a1,b1] X ... X [am, by], We set

I° =[a1,b1) X ... X [@m, bm).
Let n € N. We say that I is a basic cube of order n, if

ki ki1+1 km km+1
I=[2—7;, on :IXX[F,z—n:I

for some ki,...,kn € Z. The family of all basic cubes of order n will be
denoted by T',. Elements of (J;-, ', will be called simply basic cubes.

Remark. Observe that for any two basic cubes I and J, either I and J do
not overlap (ie. INJ ¢gT),or I C J,or JCI.
The following lemma is a slightly modified version of Lemma 2.1 of [5].

Lemma 3 Let A C R™ be closed and let v be a function such that D (v) C A.
Then there exists a family J of non-overlapping basic cubes such that the
following conditions are satisfied:

i) UJ =R™\ 4,
it) each z & A belongs to the interior of the union of some finite subfamily
of 7,

iii) diam J < o(A, J) for each J € J,
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) for each T > 0, there exists an n > 0 such that
lo-xall < 7 e(A,J) - |J|7H/™
whenever J € J and o(A,J) < 7.

PROOF. Let T be a family of basic cubes such that JZ = R™ \ A and
each £ & A belongs to the interior of the union of some finite subfamily of
T [5, Lemma 2.1]. For each I € Z, since I is compact and v|] is continuous,
Cr = ||v- x1l| < co. Write I as the union I = Uf;l J1: of non-overlapping
basic cubes of diameter less than

[o(4, 1)
o(A,I) A Oril

and define J = {Jr;: I €Z,i€{1,...,kr}}. Then clearly the requirements
of the lemma are satisfied. O

By an interval function we will mean a mapping from I' into R.

We say that intervals I, J are contiguous, if they do not overlap and TU J
is an interval. We say that an interval function F is additive, if F(IU J) =
F(I) + F(J) whenever I and J are contiguous intervals.

We say that a sequence of intervals {I, : n € N} is

e s-convergent to a point x € R™, if

[ o]
i) ze ﬂ I,
n=1
ii) lim diam I, = 0.
n—0o0
e o-convergent to a point x € R™, if the conditions i) and ii) above are
fulfilled and moreover,
(diam I,)™

iii) limsup ———"— < 00.
n—oo | In]

We will write I, = z and I,, = , respectively. (Cf. e.g. [5].)
Let F be an arbitrary interval function and z € R™. We define

s-limsup F(I) = sup {limsupF(In) g N z} .
I=zx

n—oo

In similar way we define o-limsup F(I), s-liminf F'(I) etc.
I=z Iz
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We say that function f is an o-derivative, if there exists an additive interval
function F (called the primitive of f) such that

o-lim Fléf) = f(z)

holds for each z € R™. Recall that o-derivatives are Baire one functions (cf.
(3, Lemma 2.1, p. 151] and [5, Lemma 3.1]).
We say that £ € R™ is an o-Lebesgue point of function f, if f is locally

summable at z and

e M= 1@

Iz II I
We say that f is an o-Lebesgue function, if each x € R™ is an o-Lebesgue point
of f.

Paper [5] introduced the notion of an o-point and the notion of an o-integral
which is proper for integrating of o-derivatives. We will say that a function f
is integrable on an interval I, if the o-integral of f on I exists. We will say
that f is locally integrable at a point x € R™, if there exists an n > 0 such
that f is integrable on every interval I 5 z of diameter less than 7. The value
of the o-integral of function f on an interval I will be denote by S,(f,I).

We will say that z € R™ is an o-point of the function f, if f is locally

integrable at z and ( @]
. SofaI)_fx)'Il_
A Gam D

0.

0.

Remark. In the above definition we have the s-limit, which is much simpler
than the o-limit, since we can express it in a Cauchy-like manner.
The notion of an o-point is a local characterization of an o-derivative.

Theorem 4 Let f be an arbitrary function. Then f is an o-derivative if and
only if each € R™ is an o-point of f. [5, Theorem 5.4]

Remark. It is easy to prove the following assertions:

o If a function f is locally summable and continuous at z € R™, then z is
an o-Lebesgue point of f.

e If € R™ is an o-Lebesgue point of a function f, then it is an o-point.
The following theorems are proved in [5].

Theorem 5 Assume that A C R™ is closed, J = {J, : n € N} is a family
of non-overlapping cubes and {f, : n € N} is a family of summable functions
such that the following conditions are satisfied:
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i) each z & A belongs to the interior of the union of some finite subfamily

of J,
1) |Jn] < [0(4, Jn)]™, n €N,
iii) fa(z) =0, fz & Jp, n €N,

i) for each x € A and each T > 0, there exists an n(z,7) > 0 such that for
each n € N, if o(z, J,) < n(z,T), then

o |[ #
b) sup{’/xfn

Put f =30 | fn. Then for each interval I, f is integrable on I, the series
Yome1 J; fn is absolutely convergent, its sum equals S,(f,I) and moreover,
each € A is an o-point of f. [5, Theorem 6.1]

<7 |J’n|J and

: Ke r} <70z, Jp) - |Jn |t Y™,

Theorem 6 Whenever A C R™ is a closed set of measure zero and u is a
Baire one function there exists an o-Lebesgue function ¢ such that D (p) C A
(so ¢ is continuous a.e.) and p(z) = u(z) for £ € A. Moreover one can
choose ¢ such that ||| < ||u- xall. [5, Corollary 7.9]

Theorem 7 Assume that the functions f, f2 are such that for ally € R™ 1,
(0,y) is an o-point for both fi and f2, and f1(0,y) = f2(0,y). Fort € R and

y € R™1 [et
fl(tvy) zftZOJ
h’(t’y) = .
f2(t)y) 1’ft<0'
Then for each y € R™~1, (0,y) is an o-point of h. [5, Theorem 7.1]

The proof of the following lemma is a repetition of arguments used to prove
an analogous result in [3].

Lemma 8 Whenever u is an a.e. continuous Baire one function there erist
a.e. continuous Baire one functions uy,us, ... such that

i) the sets D (u1),D (uz),... are closed,

i) ||lukl < 27 for k > 2,

oo
W) u=Y u.
k=1
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Lemma 9 Assume that I = [a1,b1] X ... X [am,bm] s a cube, the functions
Y, f, g, f and § are summable on I and ||¢ - x1|| = C < 0o. Then there exist
continuous functions f and g such that

i) f(z) =g(x) =0, ifz &1,

i) [1= [o= [w-t9= [@h= [t9= [@D= [9-0,

i) |fI <25-2™- (VEVC), gl S VO AL

PROOF. For i € {1,...,5}, let e; be the function defined by

2mi —a omi —a
ei(zl,...,l‘m) =Sinm . _‘..Sinm
bl —ax bm — am
for (z1,...,Zm) € R™. The following system of equations

zl-fI(el-f) +...+ 25 fi(es- f) =0
z1-[ier-g) +...+ z5-[i(es-§) =V
2 filer- f) 4.+ oz [i(es ) =
z1- [i(e1-9) +...+ 25 [i(es-g) =0

is linear, homogeneous and the number of unknown quantities exceeds the
number of equations, so it has a non-zero solution, say 8;,...,0s. Set

’Y=\/ 2m'|f1¢’|
BZ+ ... +6%) [

and o; = v-06; (1 € {1,...,5}). Let e = a;-€1 + ...+ as-es. Then for
ie{1,...,5},

a?-|1|/2'"s(a%+..'+a§)-|1|/2"*=\/fw} <c.1,

50 |oy| < 2™/2.y/C and |le|| < 5-2™/2./C.
Define functions f and g by

f(z)=5-2m/2. (\/6V 1) -e(z) - x1(x)

and

_ e(z) - sgn [} ¢ '
9(@) 5.2m/2.(\/5\/1)

It is easy to prove that conditions i)-iii) are satisfied. O

x;(:z:).
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Theorem 10 Whenever u : R™ — R is an a.e. continuous Baire one function
there ezist a.e. continuous o-derivatives f, g and h such that g is bounded and
u=f-g+h, and in case u is bounded such that f and h are also bounded.

PROOF. First use Lemma 8 to find a.e. continuous Baire one functions u, us, ...
such that the sets D (u;), D (u2),... are closed, |lux| < 27* for k£ > 2 and
U= EZ’;I uk. Put Ag =0 and Jp = T';. For k € N, we define functions f
and gx by induction as follows.

Let Ax = Ax—1UD (ug). By Theorem 6, there exists an o-Lebesgue function
@k such that

e D(pg) C Ay,
e or(z) = uk(z) for z € A, and
® llokll < lluk - xal-

Set ¥ = ur — k. Use Lemma 3 with A = Ay and v = v, = |¢i| V 4/|¢k| and
find a family Jx = {Jk,n : n € N} of non-overlapping basic cubes such that

o UJk =Rm\Aka

e each x & Ay belongs to the interior of the union of some finite subfamily
of \7 ks

o diam Jg n < o(Ak, Jk,n) for each n € N,
e for each 7 > 0, there exists an 7 > 0 such that if n € N and o(Ak, Jk,n) <
7, then

0k - Xaenll <7 0(Ak, Tkin) + [Tl 7™,

We may also assume that Ji is a refinement of Ji_i, i.e. each element of J
is contained in one of elements of J—; (cf. Remark on p. 147). Put

o fi=@k=fe=0k=0,if k=1,
e fi=fLdk=91, fk=fot+ .+ fe-1, Gk =092 +... + gr—1, if k> 1.

For each n € N, apply Lemma 9 with I = Jgn, ¥ = ¢, f=fe, 3= gk
f = fr and § = gk, and find continuous functions fi , gk» such that, setting

Ckn = ||1¥k - XJi. . |, We have
o fin(z) = gkn(z) =0, ifz & Jim,

. Jk'"fk,n—/ gkn—/ (k= frn - Gkin) = /J“(gk,n-fk)

/ (frn - yk)—/ (9k,n - fr) =/Jk'"'(fk,n‘§k)=0a
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o Ifinll <25-2™ - (\/Cim V Cin ), gkl < v/Ciom AL,

and set hgn = Pi - X, ~ fen ke
Let

fk—z.fk,m gk—zgkn and hk—‘Pk"“thn

n=1 n=1

Observe that ||g1]| <1 and for k > 2,

1fel < 25-2™-sup{\/Cen V Ce: n €N}
252 - (VG V ljell) < 2mts+0-0/2

and ||gk| < 2-¥)/2. Hence for k > 2,

IRkl < lloll + Nkl + 1 fell - llgwll < 2m+7-F,
| fi - Gl < 2m+6-k/2,

lge - fiell <2m+5 - (V2 +1) - |lgel| < 2m+7-k/2,
| fi - Gel| < 2m+7-K/2,

IA

Consequently all of the series below converge uniformly and

Zuk=2(fk-gk+hk)=2fk-§jgk
=1
ng—Z(fk 91)—2 i - k) Z(gk i) Z
k=2

Set f=3 e, fkr 9= pe1 9k and

=-fi- ng—Z(fk 91) Z(fk'gk)_zgk fk)"'zhk
k=2 k=2 k=2

Then u = f- g+ h and clearly f, g and h are continuous «.1 *™\ | o=, Ak. So
they are a.e. continuous. For all k € N, use Theorem 5 wi.' 4 = A, J = Jk
and families of the functions {fkn: n € N}, {gk,n: n €11}, {hkn : n €N},
{fe;n-Gk: n €N} {fkn-Gk: n €N} and {gk,n- fr: n € N}. We get that
each r € Aj is an o-point of functions fi, gk, hk, and, if & > 2, of fi - g1,
fx - Gx and g - fi. On the other hand, observe that each = ¢ Ay, is a point of
continuity of these functions and consequently also a o-point.

Since the limit of a uniformly convergent series of o-derivatives is again
an o-derivative, we need only show that f; - 21?;2 gk is an o-derivative to
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complete the proof. We will use once more Theorem 5 with A = A;, J = 71
and the family of functions {fi,n Y pepgk: m € N}. Since the product of a
continuous function with a bounded o-derivative is again an o-derivative (cf.
[2], [5] or [6]), for each n € N, fin - Y pes gk is an o-derivative. The other
conditions are also fulfilled. So each z € A, is also an o-point of fi - Y o, gk-
On the other hand, by Theorem 7, each = ¢ A; is an o-point of this function.
O
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