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 Abstract

 In this paper it is proved that each a.e. continuous Baire one function
 u : IRm -► R can be written as it = f • g + h, where /, g and h are
 a.e. continuous derivatives (with respect to the ordinary differentiation
 basis).

 In 1982 D. Preiss proved the following theorem [7].

 Theorem 1 Whenever u : M - > E is a function of the first class there are
 derivatives /, g, h : M - ► M such that u = / • g + h. Moreover one can find such
 a representation that g is bounded and h is Lebesgue and in case u is bounded
 such that f and h are also bounded.

 Generalizations of this theorem for derivatives of interval functions (with
 respect to the ordinary differentiation basis) can be found in [1] and [4]. An-
 other generalization of Preiss's theorem was published in 1990 [3].

 Theorem 2 Whenever u : M - > M is a function of the first class which is
 continuous almost everywhere there are derivatives f, g and h which are con-
 tinuous almost everywhere such that g is bounded and u = f • g + h and in case
 u is bounded such that f and h are also bounded.

 In this paper I prove an analogous theorem for derivatives of interval func-
 tions (with respect to the ordinary differentiation basis). The method of the
 proof is a modification of that of [3] .
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 First we need some notation. The real line (- 00,00) is denoted by M,
 the set of integers by % and the set of positive integers by N. Throughout
 this article m is a fixed positive integer. The word function means mapping
 from Mm into M unless otherwise explicitly stated. The words measure, almost
 everywhere (a.e.), summable etc. refer to the Lebesgue measure and integral
 in Mm. We denote by a V 6 (a A 6) larger (smaller) of the real numbers a
 and 6. The Euclidean metric in Mm will be denoted by g. For every set
 A c Mm, let diamA be its diameter (i.e. diamA = sup {g(x,y) : x,y e A }),
 Xa its characteristic function and 'A' its outer Lebesgue measure. The symbol
 fA f will always mean the Lebesgue integral. We say that / is a Baire one
 function, if it is the pointwise limit of a sequence of continuous functions. For
 any function / we write ||/|| for sup{|/(£)| : t e Mm} (/ needn't be bounded),
 and we denote by V (/) the set of points of discontinuity of /.

 The word interval (cube) will always mean non-degenerate compact inter-
 val (cube) in Mm, i.e. the Cartesian product of m non-degenerate compact
 intervals (compact intervals of equal length) in R. We denote by T the family
 of all intervals.

 For each interval I = [ai, 61] x . . . x [am, 6m], we set

 1 = [ai,6i) x ... x [ûm,f)m).

 Let n e N. We say that / is a basic cube of order n, if

 j
 2 n ' 2 n ' ' ' 2 71 ' 2n

 for some fci, . . . , km G Z. The family of all basic cubes of order n will be
 denoted by Tn. Elements of (J^=i will be called simply basic cubes.

 Remark. Observe that for any two basic cubes I and J, either I and J do
 not overlap (i.e. I D J ^ T), or I C J, or J C I.

 The following lemma is a slightly modified version of Lemma 2.1 of [5].

 Lemma 3 Let A C Mm be closed and let v be a function such that V(v) C A.
 Then there exists a family J of non- overlapping basic cubes such that the
 following conditions are satisfied:

 i) 'JJ = Rm'A,

 ii) each x A belongs to the interior of the union of some finite subfamily
 of J,

 Hi) diam J < g(A , J) for each J G J,
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 iv) for each r > O, there exists an t) > O such that

 IIV-XJII <T-g(A,J)-'J'~1/m

 whenever J e J and g(A , J) < 77.

 PROOF. Let I be a family of basic cubes such that 'JI = Rm ' A and
 each X & A belongs to the interior of the union of some finite subfamily of
 J [5, Lemma 2.1]. For each J G J, since I is compact and v' I is continuous,
 C/ = llu 'Xi II < °°. Write I as the union I = Uf=i ^/,t °f non-overlapping
 basic cubes of diameter less than

 and define J = { : I G J, i G {1, ... , fcj}}- Then clearly the requirements
 of the lemma are satisfied. □

 By an interval function we will mean a mapping from T into M.
 We say that intervals /, J are contiguous , if they do not overlap and J U J

 is an interval. We say that an interval function F is additive , if F(I U J) =
 F(I) + F( J) whenever I and J are contiguous intervals.
 We say that a sequence of intervals {In : n G N} is

 • s-convergent to a point x G Mm, if
 00

 i) X e P| In,
 71=1

 ii) lim diam In = 0.
 71- >00

 • o-convergent to a point x G Mm, if the conditions i) and ii) above are
 fulfilled and moreover,

 (1 iiamln)m
 111) limsup

 n- ► 00 |-Łn|

 We will write In x and In => x, respectively. (Cf. e.g. [5].)
 Let F be an arbitrary interval function and x G Mm. We define

 s-limsupF(J) = sup < limsup F(In) : In x > .
 I=> x I n- >00 J

 In similar way we define olim sup F(7), s-lim inf F (I) etc.
 /=*.* 1=>x
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 We say that function / is an o- derivative, if there exists an additive interval
 function F (called the primitive of /) such that

 fJi?Tr=/w
 holds for each x G Mm. Recall that o-derivatives are Baire one functions (cf.
 [3, Lemma 2.1, p. 151] and [5, Lemma 3.1]).

 We say that x G Mm is an o-Lebesgue point of function /, if / is locally
 summable at x and

 I=>X |J|
 We say that / is an o-Lebesgue function , if each x G Mm is an o-Lebesgue point
 off .

 Paper [5] introduced the notion of an o-point and the notion of an o-integral
 which is proper for integrating of o-derivatives. We will say that a function /
 is integrable on an interval J, if the o-integral of / on I exists. We will say
 that / is locally integrable at a point x G Mm, if there exists an 77 > 0 such
 that / is integrable on every interval I 3 x of diameter less than 77. The value
 of the o-integral of function / on an interval I will be denote by S0(f , I).

 We will say that x G Mm is an o-point of the function /, if / is locally
 integrable at x and

 i=>x (diami)171

 Remark. In the above definition we have the s-limit, which is much simpler
 than the o-limit, since we can express it in a Cauchy-like manner.

 The notion of an o-point is a local characterization of an o-derivative.

 Theorem 4 Let f be an arbitrary function. Then f is an o-derivative if and
 only if each x G Mm is an o-point of f. [5, Theorem 5.4]

 Remark. It is easy to prove the following assertions:

 • If a function / is locally summable and continuous at x G Mm, then x is
 an o-Lebesgue point of /.

 • If x G Mm is an o-Lebesgue point of a function /, then it is an o-point.

 The following theorems are proved in [5].

 Theorem 5 Assume that A C Mm is closed , J = {Jn : n G N} is a family
 of non- overlapping cubes and {fn : n G N} is a family of summable functions
 such that the following conditions are satisfied :



 150 Aleksander Maliszewski

 i) each x £ A belongs to the interior of the union of some finite subfamily
 of J,

 a) |Jn| < [e{A,Jn)'m, neN,

 Hi) fn(x) = 0 , if x & Jn, n € N,

 iv) for each x € A and each r > 0, there exists an T]{x, t) > 0 such that for
 each n € N, if g(x, Jn ) < r](x, t), then

 a) / /„ <T-'Jn', and
 'Jjn I

 b) sup ||jf_ /„ : Ä" € r| < r • q(x, Jn) ■ |Jn|1_1/m.
 Put f = fn - Then for each interval I, f is integrable on 7, the series
 Y^=i ii fn is absolutely convergent, its sum equals «S0(/, I) and moreover ,
 each x G A is an o-point of f. [5, Theorem 6.1]

 Theorem 6 Whenever A C Mm is a closed set of measure zero and u is a
 Baire one function there exists an o-Lebesgue function ip such that V (</?) C A
 (so (f is continuous a.e.) and <p(x) = u(x) for x e A. Moreover one can
 choose (p such that ||</?|| < ||u - Xa''- [5, Corollary 7.9]

 Theorem 7 Assume that the functions f', /2 are such that for all y € Mm_1,
 (0,y) is an o-point for both f' and /2, and /1(0,2/) = /2(0,2/). For t e M and
 y e Mm_1 let

 v ( ift>0,
 hlt.y) = <

 1 h(t,y) ift< 0.
 Then for each y G Mm_1, (0,y) is an o-point of h. [5, Theorem 7.1]

 The proof of the following lemma is a repetition of arguments used to prove
 an analogous result in [3].

 Lemma 8 Whenever u is an a.e. continuous Baire one function there exist
 a.e. continuous Baire one functions i¿i,ii2, • • • such that

 i) the sets V (i¿i), V (i¿2), ... are closed ,

 ii) ||ufc|| < 2"fc for k> 2,
 00

 m) u = i¿fc.
 k= 1
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 Lemma 9 Assume that I = [ai, 61] x . . . x [am,6m] is a cube , the functions
 fy 9> f and 9 are summable on I and ''ip - xi'' = C < 00. Then there exist

 continuous functions f and g such that

 i) f{x) = g(x) = 0, ifx I,

 ») Í f= Í 9= f ty-f-g) = [ ( 9-f ) = Í (f-9) = [ Í9-f) = Í ( f-9 ) = 0, JI JI JI JI JI Ji JI

 ni) II/II <25-2m- (VC VC), ''g'' < VČAl.

 Proof. For i G {1, . . . , 5}, let be the function defined by

 . 2m{xi-ai) . 2tt i(xm-am)
 6i(x 1, . . . , xm) = Sin . -

 Ol Ü 1 um Q*m

 for (xi, . . . , Xm) G Mm. The following system of equations

 ' 2i-/,(ei •/) + ••• + «5-//(c5-/) =0
 +•••+ zs-fj(e s- 9) =0

 zi-Jj(ei-f) +...+ ¿5 •//(< >•/) -
 . zi-fiiei-S) +•••+ Z5-fi(e 5-9) =0

 is linear, homogeneous and the number of unknown quantities exceeds the
 number of equations, so it has a non-zero solution, say ßi, . . . , ß$. Set

 I 2™- l/fV»

 7 y (#+•••+# D-'I'

 and = 7 • ßi (i G {1, . . . , 5}). Let e = ai • e' + . . . + <25 • es. Then for
 ¿ G {1, . . . , 5},

 ai ■ |/|/2m < (a? + . . . + ag) • |/|/2m = | jf v| < C • |J|,

 so 'oti' < 2m/2 • VC and ||e|| < 5 • 2m/2 • y/C.
 Define functions / and g by

 /(x) = 5 • 2m/2 • (VC V l) • e(x) • X/(x)

 and

 gM= e(x).
 5 • 2m/2 • (VČ V lj

 It is easy to prove that conditions i)- iii) are satisfied. □
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 Theorem 10 Whenever u : Mm - > M is an a. e. continuous Baire one function
 there exist a.e. continuous o-derivatives f, g and h such that g is bounded and
 u = f • g 4- h, and in case u is bounded such that f and h are also bounded.

 Proof. First use Lemma 8 to find a.e. continuous Baire one functions u' , t¿2, . . .
 such that the sets V (ui), V (i^), • • • are closed, ||i¿k|| < 2~k for k > 2 and
 u = YlkLi uk- = 0 and Jo = T'. For k e N, we define functions fk
 and gk by induction as follows.
 Let Ak = Ak-i^V ( Uk ). By Theorem 6, there exists an oLebesgue function

 < fk such that

 • V(ipk)cAki

 • <Pk(x) = Uk(x) for X e Ak, and

 • M < IN -xaJ-

 Set iļ)k = Uk~ fk- Use Lemma 3 with A - Ak and v = Vk = |V*fc| V y/'ipk' and
 find a family Jk = {Jk,n - n G N} of non-overlapping basic cubes such that

 • I )Jk=Rm'Aki

 • each X ^ Ak belongs to the interior of the union of some finite subfamily
 of Jk,

 • diamJk,n < q{M, Jk,n) for each n e N,

 • for each r > 0, there exists an rj > 0 such that if n e N and g(Aki Jk,n) <
 rj, then

 ''vk • XJjk.JI < T ■ e(M,Jk,n ) ■ I Jk,n'~1/m-

 We may also assume that Jk is a refinement of Jk-i, i.e. each element of Jk
 is contained in one of elements of Jk-i (cf. Remark on p. 147). Put

 • fk = 9k = fk = 9k = 0, if k = 1,

 • fk = fi, 9k = 9i, fk = /2 4- . • . 4 fk- 1, 9k = 92 4 . . . 4 9k-ii if k > 1.

 For each n G N, apply Lemma 9 with I = Jk,n, = ýk, f = fk, 9 = 9k,
 f = fk and ģ = ģk, and find continuous functions fk,n, 9k, n such that, setting

 Cfc,n = ''ipk 'XJkJl we bave

 • fk,n(%) = 9k,n{p¿) = 0, if X Jk,n,

 • I fk,n = I 9k, n = I {ipk ~ fk,n ' 9k, n) = I (,9k, n ' fk)
 J Jk%n * Jk,n * Jk,n ** Jk,rt

 = I ( fk,n ' 9k) = I Ì9k,n ' fk) = I ( fk,n ' 9k) = 0,
 J Jk,n J Jk,n J Jk,n
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 • ||/fe,n|| < 25 • 2m • iy'JCk,n v Cfc,n), llsfe.nll < ì/Ck,n A 1,

 and set hk,n = i>k • XJ%n ~ fk,n • 9k, n-
 Let

 OO OO OO

 fk = ^ ^ fk,ni 9k = ^ ^ 9k,n and h k = (fk + ^ ^ ^fc,n-
 n= 1 n=l n=l

 Observe that ||^i|| < 1 and for k > 2,

 ||/fc|| < 25 • 2m • sup I '/Ck^i V Cjt)n : n € n|

 < 25 • 2m • (v/ÍT0fclí V ll^fell) < 2m+5+(1"fc)/2

 and ļl^fcll < 2^1-fc^2. Hence for k > 2,

 IIM < ll^fcll + HV'fcll + ll/fell • llfffell < 2m+7_fc,

 ||/fc-flfcll <2m+6"fe/2,

 II 9k • All < 2m+5 • (v/2 + 1) • M < 2m+7-fc/2,

 ||/fc-Šfc|| <2m+7~k/2.

 Consequently all of the series below converge uniformly and

 OO OO OO OO

 u = ^ ^ uk - ^ :(A • 9k + ^/c) = /fc • 9k
 k= 1 fc=l fc=l fc=l

 OO OO OO OO OO

 - h'Y^gk- ^(/fc • ^i) - 5Z(/fc • &) - • Ā) + hk'
 k= 2 k=2 k=2 k-2 k= 1

 Set / = £2^ /*, g = J2T=i 9k and
 OO OO OO OO OO

 h = -fi-^gk- £(/* ' si) ~ ' šfc) - ^2(9k ■ fk) + ^2 hk ■
 k= 2 fc=2 /c=2 /c=2 /c=l

 Then u = / • g 4- h and clearly /, g and h are continuous r- ' 11)771 ' UfcLi ^k- So
 they are a.e. continuous. For all k G N, use Theorem 5 wi. ' A = Ak, J = Jk
 and families of the functions {//t,n : n G N}, {gk,n > n G 1^}, {/ifc,n : n G N},
 {fk,n '9k'- n G N}, {/fc,n • <7* : n G N} and {^,n • Ā : n G N}. We get that
 each X G Ajt is an o-point of functions fk , 9k, hk , and, if k > 2, of fk'9i,
 fk - ģk and gk - fk- On the other hand, observe that each x £ Ak is a point of
 continuity of these functions and consequently also a o-point.
 Since the limit of a uniformly convergent series of o-derivatives is again

 an o-derivative, we need only show that fi • Y^k=2 9^ ls an o-derivative to
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 complete the proof. We will use once more Theorem 5 with A = A', J = J'
 and the family of functions {/ii7l • Y^k=29k : n ^ ^}. Since the product of a
 continuous function with a bounded oderivative is again an o-derivative (cf.
 [2], [5] or [6]), for each n e N, /i)7l • Ylb=2 9k 1S an o-derivative. The other
 conditions are also fulfilled. So each x E Ai is also an o-point of f' • YH£=2 9k-
 On the other hand, by Theorem 7, each x £ A' is an o-point of this function.
 □
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