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 ON LIMITS WITHOUT EPSILONS

 Abstract

 In a recent paper "Limits without epsilons" by Darwin E. Peek,
 the concept of the convergence of real sequences has been completely
 characterized by six properties of a relation on sequences (determining
 Cauchy sequences). With the exception of the third property, called the
 "Squeezing Theorem", the characterization is shown to be minimal in
 the sense that each of the other five conditions is necessary to preserve
 the characterization. We answer in the positive the question whether
 also the remaining property is necessary and hence independent of the
 other five. Our construction is based on the properties of vector Cq-
 groups.

 1. INTRODUCTION

 £q As a rule, N, Z, M will denote the natural numbers, integers and real num-
 bers, respectively. The set of all strictly monotone maps of N into N is denoted
 by MON.

 Let AcMn and let "=" be a relation on MN. Assume that the following
 conditions are satisfied:

 Al. If X = (xn) G A and a G M, then aX = (axn) G A ;

 A2. If X,y,V,W,X + + W G A, X = Y and V EE W, then Y + W =
 X + V ;

 A3. If X, Y e A, V e MN, X = Y and xn < vn < yn, ne N, then V e A and

 A4. If X e A and 17, V are subsequences of X , then U,V G A and U = V;
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 A5. ((-1)") i A-,

 A6. If X A and X is bounded, then X has two subsequences U,V G A
 such that U ^ V.

 Then (A, =) is called a convergence system (on MN).
 Let X be a nonempty set. For S = ( S(n )) G X^ and s G MON, S o
 s = ( S(s(n ))) denotes the corresponding subsequence of S. The constant
 sequence generated by x G X is denoted by ( x ). We say that L C XN x X
 is an ¿-convergence if ((x),x) G L for all x G X and if (5, x) G L implies
 (5 o 5, x) G I/ for all s G MON. If (5, x) G L, then we say that S L- converges
 to x. We speak of an ¿o-convergence if each S G X^ L- converges to at most
 one limit and we speak of an £* -convergence if L satisfies the Urysohn axiom
 (i.e. (5, x) G L whenever for each s G MON there exists t G MON such that
 (S o s o t, x) G L). If ail four conditions are satisfied, then L is said to be an
 ¿¿-convergence. If X is a group and L is compatible with the group structure
 of X (i.e. ((xn - yn),x - y) G L whenever ((xn),x), ((yn>,2/) £ L), then we
 speak of an £-group (£¡$-grouP if £ is a compatible £o-convergence)- If -X" is a
 vector space over a scalar field F and L is a group £o-convergence suc^ that
 ((axn),ax) G L whenever a e F and ((xn),x) G L, then we speak of a vector
 £o-grouP- £o~rinSs> vector £o"sPaces> etc-> are defined analogously.
 Let L be an ¿-convergence on X. Define L* as follows: (£,x) G L* when-
 ever for each 5 G MON there exists t G MON such that (Sosoi,x) G L. It
 is known that L* is an C* -convergence; it is called the Urysohn modification
 of L. Recall that the Urysohn modification preserves the uniqeness of limits
 and the compatibility with all algebraic operations mentioned before. Instead
 of the ¿-notation the so called FLUSH-notation is used in the literature (cf.
 [5]).

 Further information about ¿-structures can be found in [1], [2], [3], [4], [5],
 [7], [8], [9], [10], [11], and the references therein.

 Topological vector groups are dealt with in [6] and [13].
 Denote M the usual convergence of sequences on the real line. In [12]

 it has been proved that the only convergence system (on Mw) consists of all
 M-convergent sequences equipped with an equivalence relation (xn) = ( yn ) iff
 lim(xn - yn) = 0.

 2. THE INDEPENDENCE OF THE SQUEEZING
 THEOREM

 Let L be a vector group ¿^-convergence on M. Let Al be the set of all L-
 convergent sequences. Let (xn) =l (yn) mean that L-lim(xn - yn) = 0.
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 Proposition 2.1 The following assertions are true, (i) '=l" is an equiva-
 lence relation, (ii) The system (Al,=l) satisfies conditions Al, A2, A4, A5.
 (iii) Let MdL. Then (Al,=l) satisfies condition A6.

 Proof. Assertions (i) and (ii) are easy consequences of the properties of L.
 (iii) Observe that a bounded sequence L-converges iff it M- converges. Thus

 A6 is trivial. This completes the proof. □
 Clearly, to construct a system (Al,=l) satisfying all conditions Ai but

 A3, it suffices to construct a vector group ^-convergence L on R such that
 M C L and some unbounded sequence L-converges to 0.

 It is known that a group /^-convergence L is homogeneous (L-lim xn = x
 iff L-lim(xn - x) = 0) and that the sequences L-converging to 0 form a special
 subgroup M{L) of the group of all sequences. Further, L has unique limits
 iff M{L) does not contain any constant sequence except (0). In this case the
 Urysohn modification L* of L has unique limits, too.

 Finally, to guarantee that L is a vector £-group it suffices to assume that
 M{L) contains ( axn ) for each scalar a and each (xn) in M(L) (cf. [7]).

 Thus, it suffices to prove that the set N(M) of all sequences converging in
 the real line to 0 can be enlarged to a subgroup of RN such that it contains the
 unbounded sequence T = (2n), it is closed with respect to subsequences and
 the multiplication by constants, and it does not contain any constant sequence
 except (0).

 Lemma 2.2 Let + U(n) = r for all n G N , where k G N,
 r,ai G R, üí 0, U G MON, i = 1, . . . , k, U G RN, limř7(n) = 0. Then
 r = 0.

 PROOF. Contrariwise, suppose that r ^ 0.

 CASE A. Assume that for all n e N we have t'(n) > t2(n) > ... > tk(n).
 Clearly, J2i= 'ai{T ° U)(n) = 2tl<^n'ai + Y1ì=2 n e N. There
 are two possibilities.

 1. There exists t G MON such that all sequences t? o i - t' ot, . . . ,tk ot -
 ti ot are strictly decreasing. Since lim(ai + ¿JL2 ai2ti^n^~tl^n^) = ai and
 lim U(n) = 0, the sequence ^2i=i(a>i)T oti + U is unbounded, a contradiction.

 2. There is t G MON such that for some i G {2, . . . , k} the sequence
 ti o t - t' o t is constant. Then choose t in such a way that 0 ^ K = {i G
 {2, . . . , fc}; tiot- t'ot is a constant sequence} and for each i G {2, ... , k}'K the
 sequence Uot - ti ot is strictly decreasing. If a' +YlieK ai2ti^n^~tl^n^ ^ 0,
 then lim(ai + J2i=i ai2u^n^~tl^n^) = a' 4- ^2ieK ai2ti^n^~tl^n^ . Since
 lim U(n) = 0 the sequence 5Zf=1(a¿)To¿¿o¿ + £/ is unbounded, a contradiction.
 If ûi + Eie* a^'W»»-41 W»» = 0, then (r) = £¿6{2,...,fe}'K<ai>T o U o t +
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 ř7, 0 ^ K C {2, . . . , fc}, {2, . . . , k} ' K ± 0. Repeating steps 1 and 2, we reduce
 the complexity of Case A or arrive to a contradiction with r ± 0.

 CASE B. By a suitable choice of 5 G MON, passing to subsequences U o s,
 permuting the index set {1, . . . , k} and reducing the index set (if hos = tjos),

 the equation (r) = Yii= i(ai)T °U + U can be modified so that it will satisfy
 the assumptions of CASE A. Now proceed as in CASE A.

 This completes the proof. □

 Corollary 2.3 Let L be the smallest vector group C^-convergence on R such
 that M C L and L-lim2n = 0 (unique limits of L are guaranteed by Lemma
 1.2). Then the system (Al,=l) satisfies conditions Al, A2, A4, A5, A6, but
 does not satisfy condition A3.

 This solves the problem posed in [12]. Independently, the same problem
 has been solved in [8]. Observe that the underlying set A of the system ( A , =)
 constructed there is in a certain sense minimal; it is not closed with respect
 to the addition of sequences.

 3. REMARKS

 The sequential continuity of algebraic operations has been studied since the
 early stages of Topological Algebra (cf. [14]). Usually the convergence is
 understood as a relation between sequences and points. If the underlying set
 is equipped with an order, then it is natural to define the convergence in terms
 of the order. As already mentioned in Section 1, a homogeneous compatible
 sequential convergence on a set X equipped with some algebraic operations
 can be identified with a suitable substructure of XN consisting of "small"
 sequences. Usually, four types of axioms are considered:

 1. Some distinct sequences are, or are not, "small";

 2. "Small" sequences are closed with respect to some pointwise algebraic
 operations in XN ;

 3. Each "smaller" sequence is "small" ;

 4. "Small" sequences determine an invariant and we are interested in the
 largest set of "small" sequences determining the same invariant (e.g. for
 £o-space the Urysohn axiom is determined by the topological adherence).

 Along these lines the convergence of sequences on the real line can be
 characterized, e.g., as follows.

 Consider a set «S C RN satisfying the following axioms:
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 51. (1/n) G 5 , (1) i S;

 52. «S is a Z-module;

 53. Let ( xn ) G S. Then (x'n) G S whenever either

 (i) ( x'n ) is a subsequence of (xn);
 or

 (ii) Q<x'n<xn for all n G N'

 54. If each subsequence ( x'n ) of (xn) contains a subsequence (x'¿) G «S, then
 (Xn) € «5.

 If (xn -x) G <S, then we say that (xn) <S-converges to x. Then S is exactly
 the set of all sequences converging on the real line to 0 and hence a sequence
 (xn) S- converges to x iff it does on the real line. (Hint. If a sequence (xn) M-
 converges to 0, then each of its subsequences ( x'n ) contains a subsequence (x^)
 such that 'xn' < 1/n for all n G N. It follows from S4 that ( xn ) 5-converges
 to 0. The converse is trivial.)
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