R. Henstock, Department of Mathematics, University of Ulster, Coleraine, Northern Ireland, BT 52 1 SA

MEASURE SPACES AND DIVISION SPACES

Abstract

The paper constructs a division space from an arbitrary non-atomic measure space with a locally compact topology that is empatible with the measure, and defines two equivalent integrals.

Many non-atomic measure spaces are constructed geometrically from simple objects, with division space integrals produced from them, giving a great economy. For example, in Euclidean n-dimensional space we use n-dimensional rectangles with sides parallel to the co-ordinate axes to construct Lebesgue measure; rectangles alone are used for the gauge or Kurzweil-Henstock integral, with no need $a\ priori$ of the measure of any more general set, see [7]. For measure we can use the variation or inner variation.

Recently Lee Peng-Yee asked me to construct a division space from a nonatomic measure space given axiomatically, or one for which the original construction from simple objects is lost or ignored. (A measure space is non-atomic if every point has measure zero.) By our construction using [3], more Lebesgue theory comes under generalized Riemann theory, usually with simpler proofs. Note that Zeev Schuss [13] proved directly that in one dimension the Lebesgue integral is included in the gauge integral. R.O. Davies found faults and gave a more general accurate proof in [3]. Details in [7], Theorem 3.4, pp. 37-38; [8], Theorem 0.1.1, pp. 3-5, are not as full as in [3], so that here I give the details for finite real or complex valued functions f Lebesgue integrable over a measurable set M of finite m-measure, with a topology T. For Banach space valued f see [8]. Complex valued measures m are by the Radon-Nikodym theorem replaced by non-negative finitely (or countably) additive measures m, the complexity being transferred to the integrand. With the Lebesgue integral F of f, Davies used open neighborhood G(x) of points $x \in M$, the G depending on a given $\varepsilon > 0$, and proved that when $I_1, I_2, ...$ are essentially disjoint (i.e.

Mathematical Reviews subject classification: Primary:26A42 Secondary: 28A25 Received by the editors September 15, 1992

 $m(I_j \cap I_k) = 0, j \neq k$) measurable subsets of M with $m(M \setminus \bigcup_j I_j) = 0$, and $x_1, x_2, ...$ are points in M satisfying $x_j \in I_j \subseteq G(x_j) (j = 1, 2, ...)$ then

(1)
$$\left|\sum_{j} f(x_{j}) m(I_{j}) - F\right| < \varepsilon.$$

Using this, the Davies integral of fover a measurable $N \subseteq M$ is defined as a number F such that for each $\varepsilon > 0$ an open neighborhood function $G: M \to T$ exists with $x \in G(x)$ (all $x \in M$), and if (I_j) is a sequence of essentially disjoint measurable subsets with union N less a set of m-measure zero, and $(x_j) \subseteq M$ a sequence with $x_j \in I_j \subseteq G(x_j)$ (all j) then (1) is true.

Given $\varepsilon > 0$, a valid definition needs some (I_j, x_j) satisfying the conditions, with F uniquely defined. For example, if $G \cap N$ is m-measurable for every open set G, if, omitting empty sets,

(2)
$$J_1 = G(x_1) \cap N, J_2 = G(x_2) \cap N \setminus G(x_1), \\ J_3 = G(x_3) \cap N \setminus (G(x_1) \cup G(x_2)), ...,$$

we have disjoint measurable $J_j\subseteq G(x_j)$ with union $N\setminus Z$, m(Z)=0. We later show F uniquely defined. We have a McShane cover of $N\setminus Z$ as $x_j\in J_j$ need not be true for all j. For a Davies cover of N we put $I_j=x_j\cup J_j$ (j=1,2,...), $m(x_j)=0$, $m(I_j)=m(J_j)$, and (1) is satisfied with I_j replaced by the non-empty $J_j.Z$ is needed as in (1) the $G(x_j)$ need not cover all N.

If, given an arbitrary open cover C of N, an open neighborhood function G exists such that for each $x \in N$ a $C(x) \in C$ has $G(x) \subseteq C(x)$, then by (1) we can say that N is essentially covered by the I_j , by the $G(x_j)$, and so by the $C(x_j)$, and that every open cover of N contains a countable essential subcover. Division space theory uses finite collections of (I,x) for easy proofs of various integral properties. Then in (1) the sum is finite, every open cover of N contains a finite essential subcover, and we can say that N is essentially compact; a priori the set of m-measure zero varies with G. [4], [5] use countable collections of (I,x).

These preliminary remarks may suggest improvements of the rest of the paper, which begins with a McShane type fully decomposable division space from a non-atomic measure space of finite m-measure with a locally compact topology. The Alexandrov one-point compactification gives a compact topology T and an extra point ∞ that can be included in M; then M is a compact set relative to T. Let $G: M \to T$ be an open neighborhood function (so with $x \in G(x)$ for all $x \in M$). For a non-empty m-measurable $J \subseteq M$ and $x \in M$, the generalized interval-point pair (J,x) is G-fine if $J \subseteq G(x)$. A division \mathcal{D} of an m-measurable $N \subseteq M$, is a finite collection (J_j, x_j) $(1 \le j \le n)$ with disjoint J_j of union N, and $x_j \in M$. For example, use the compactness and

(2). The corresponding collection of J_j is called a partition \mathcal{P} of N. \mathcal{D} is G-fine if every $(J_j,x_j)\in \mathcal{D}$ is G-fine. A partition \mathcal{P}_1 of N refines a partition \mathcal{P}_2 of N if for each $J\in \mathcal{P}_1$, $J\subseteq I$ for some $I\in \mathcal{P}_2$. Let the finite valued $f:M\to \mathbb{R}$ (or \mathbb{C}). A number F is the Davies- McShane integral of f (or fdm) over N if, given $\varepsilon>0$, an open neighborhood function $G:M\to T$ exists and, for all G-fine divisions \mathcal{D} of N, $|(\mathcal{D})\sum f(x)m(I)-F|<\varepsilon$. As in [8], pp. 40–43 we have a division system for N. For if $G_j:M\to T$ (j=1,2) are two open neighborhood functions, $G_1\wedge G_2$ is also, where $x\in G_1\wedge G_2(x)=G_1(x)\cap G_2(x)$ (all $x\in M$). Hence we have a division system for N. If $G_1=G$, G_2 the G for (1), $G_1\wedge G_2$ satisfies (1), the collection of divisions is a subset of the arrangements just before (1), and if the Davies integral exists, so does the Davies-McShane integral with the same value. If $F=F_j$ using $G=G_j$ (j=1,2) for the Davies-McShane integral, a $G_1\wedge G_2$ -fine division \mathcal{D} of N satisfies

$$|(\mathcal{D})\sum f(x)m(I)-F_j|<\varepsilon(j=1,2),|F_1-F_2|<2\varepsilon,$$

true for all $\varepsilon > 0$, $F_1 = F_2$, and the Davies-McShane integral is uniquely defined; therefore so is the Davies integral when it exists. If an open neighborhood function $G_x: M \to T$ exists, for each $x \in M$, and $G_3(x) = G_x(x)$ $(x \in M)$ M), then G_3 is an open neighborhood function, and the division system is fully decomposable. N and each non-empty measurable subset $N_1 \subset N$ are partial sets of N. For $N \setminus N_1$ is not empty, and so, reverting to the earlier open neighborhood function G, there are G-fine divisions \mathcal{D}_1 of N_1 , \mathcal{D}_2 of $N \setminus N_1$, and $\mathcal{D}_1 \cup \mathcal{D}_2$ is a G-fine division of N, N_1 being the union of I from the $(I,x) \in \mathcal{D}_1$. As the G are given for all $x \in M$, not just for $x \in N$, the division space has the restriction property. For $N_1, ..., N_n$ partial sets of N, they are non-empty measurable sets, every non-empty $N_j \cap N_k$ is measurable and so a partial set, and the $N_1, ..., N_n$ are co-partitional. Thus we have a division space, previously called a non-additive division space. It is not always additive as the simple McShane example of [8], section 1.6, p. 54, and the example of [8], section 1.4, pp. 50–52, show. This is no barrier to proving that the Lebesgue integral exists when the Davies-McShane integral exists, as m is at least finitely additive.

Next we use two ideas, first, one common to all division systems. Generalized intervals I are used to construct partitions of N, points x associated with them being used to find which (I,x) are relevant in Riemann sums. If I is so connected with both x and y, (I,x) or (I,y) can be used in the division without altering the partition. The second idea is special to McShane-type division spaces. If $I \supseteq J$ are two generalized intervals and (I,x) is fine, so is (J,x). Given two divisions \mathcal{D}_1 , \mathcal{D}_2 of N, a division \mathcal{D}_3 exists for which the corresponding partition refines the partitions from \mathcal{D}_1 and \mathcal{D}_2 . If $(J,t) \in \mathcal{D}_3$ there are $(I_j,x_j) \in \mathcal{D}_j$ with $J \subseteq I_j$ (j=1,2) and t can be x_1 or x_2 . J runs

through all non-empty intersections $I_1 \cap I_2$.

Theorem 1 Given $\varepsilon > 0$, for $G: M \to T$ let every two G- fine divisions \mathcal{D}_1 , \mathcal{D}_2 of N satisfy

(3)
$$|(\mathcal{D}_1) \sum f(x_1) m(I_1) - (\mathcal{D}_2) \sum f(x_2) m(I_2)| < \varepsilon.$$

Then for the corresponding \mathcal{D}_3 , and k = 1 (f real valued), 2(f complex valued),

(4)
$$(\mathcal{D}_3) \sum |f(x_1) - f(x_2)| m(J) < k\varepsilon.$$

PROOF. For real valued f, $(J,t) \in \mathcal{D}_3$, $J = I_1 \cap I_2$, and f(t) the greater of $f(x_1)$, $f(x_2)$, we have a division \mathcal{D}_4 , say. \mathcal{D}_5 is for f(t) the smaller of $f(x_1)$, $f(x_2)$. As \mathcal{D}_4 , \mathcal{D}_5 are like \mathcal{D}_1 , \mathcal{D}_2 , with the I_1 , I_2 replaced by J, (4) follows from (3). For complex valued f, split into real and imaginary parts and use [8], Theorem 2.3.3(2.3.8), p. 77.

Theorem 2 |f| dm is integrable.

PROOF. In Theorem 1, as $m \ge 0$ is finitely additive and f is real or complex valued,

$$igg|(\mathcal{D}_1) \sum |f(x_1)| m(I_1) - (\mathcal{D}_2) \sum |f(x_2)| m(I_2)igg| = \ igg|(\mathcal{D}_3) \sum \{|f(x_1)| - |f(x_2)|\} m(J)igg| \le (\mathcal{D}_3) \sum |f(x_1)| - |f(x_2)| m(J) \le (\mathcal{D}_3) \sum |f(x_1)| - |f(x_2)| m(J) < k\varepsilon,$$

a Cauchy-type convergence condition for integrability, proving the result. Taking real and imaginary parts, and (|f|+f)/2, $(|f|-f)/2(f \ real)$ we need only have $f \ge 0$.

Theorem 3 For a number q > 0, $f : M \to \mathbb{R}_+$, and χ the indicator of the set $X(f \ge q)$ of points where $f \ge q$, if f dm is Davies-McShane integrable over N, then χ dm is Davies-McShane integrable over N.

PROOF. For arbitrary real numbers x_j , y_j (j = 1, 2),

$$(5)^{\min(x_1, x_2)} \leq x_j = (x_j - y_j) + y_j \leq |x_1 - y_1| + |x_2 - y_2| + y_j \ (j = 1, 2), \\ \min(x_1, x_2) - \min(y_1, y_2) \leq |x_1 - y_1| + |x_2 - y_2|.$$

(6)
$$\min(x_1, x_2) + \min(y_1, y_2) \le x_j + y_j \ (j = 1, 2), \\ \min(x_1, x_2) + \min(y_1, y_2) \le \min(x_1 + y_1, x_2 + y_2).$$

Result (5) gives, for F the indefinite integral of f dm and

$$\Delta \equiv \min(fm, qm) - \min(F, qm), |\Delta| \le |fm - F| + 0,$$

and the Davies-McShane variation of Δ is 0. $\min(F,qm)$ is finitely superadditive, $\min(F(I),qm(I)) \geq \min(F(I_1),qm(I_1)) + \min(F(I_2,qm(I_2))$ $(I=I_1 \cup I_2,\ I_1 \cap I_2\ empty)$ by (6) and the finite additivity of F and m. By refinements of partitions, sums of $\min(F,qm) \geq 0$ are monotone decreasing to a refinement limit, say L. This with the zero variation of Δ gives $\min(f,q)\ dm$ integrable by refinements plus Davies-McShane integration. To remove the refinements, given $\varepsilon > 0$, let $\mathcal P$ be a partition of N with n generalized intervals, such that

(7)
$$L \leq (\mathcal{P}) \sum \min(F, qm) < L + \varepsilon/2.$$

By the zero variation of Δ , for each $I \in \mathcal{P}$ let $G_I : M \to T$ be an open neighborhood function such that every G_I -fine division \mathcal{D}_I of I satisfies

(8)
$$(\mathcal{D}_I) \sum |\Delta| < \varepsilon/(2n).$$

For each $x \in M$ let G(x) be the intersection of $G_I(x)$ for the finite number of $I \in \mathcal{P}$, and let \mathcal{D} be a G-fine division of N. Then the

$$(J \cap I, t) \ (I \in \mathcal{P}, \ (J, t) \in \mathcal{D}, J \cap I \ non-empty)$$

form a G-fine division of N. As m is finitely additive the split of J into the $J\cap I$ leaves the value of the Riemann sum unaltered. $\mathcal D$ becomes a union of divisions $\mathcal D_I$, so that (8) and (7) give $L-\varepsilon<(\mathcal D)\sum\min(f,q)m< L+\varepsilon$, the integrability of $\min(f,q)m$ to L without refinements. Similarly, for numbers $p,q,0\leq p< q$, and $f_{pq}\equiv\max(\min(f,q),p), f_{pq}m$ is Davies-McShane integrable. So is $(f_{pq}-p)m/(q-p)$. The multiplier of m is $0(f\leq p),1(f\geq q)$, lies between 0 and 1 if p< f< q, and as $p\to q-$, is monotone decreasing to χ , the indicator of $X(f\geq q)$. The refinement division space is not decomposable but the Davies -McShane division space is fully decomposable, so that [8], Theorem 3.2.1, p. 126, applies and χ dm is Davies-McShane integrable.

Measures are assumed non-negative and countably additive, with a third axiom to deal with Borel sets. Carathéodory [2], p. 239, axiom IV, and Saks [12], p. 43, (C_3) , depend on a metric in the space and Bourbaki [1] generalized them. Thomson [14], p. 291, Definition 4 and further remarks, defined compatibility with a topology, and Henstock [6], pp. 74, 75, gave an equivalent axiom:-cl denoting closure, if there are disjoint open sets G_1 , G_2 with $\operatorname{cl} X \subseteq G_1$, $\operatorname{cl} Y \subseteq G_2$, then $m(X) + m(Y) = m(X \cup Y)$. The Davies-McShane variation satisfies this; an open neighborhood function $G: M \to T$ exists with $G(t) \subseteq G_1(t \in \operatorname{cl} X)$, $G(t) \subseteq G_2(t \in \operatorname{cl} Y)$, simply by replacing G(t)

by $G(t) \cap G_j$ for j = 1, 2 in the two cases. The Lebesgue integral of each closed set in M exists, and by [3] the Davies-McShane integral exists, so that for the indicator of $Y \subseteq M$,

(9)
$$(D - McSh) \int_{M} \chi(Y;.) dm = m(Y)$$

for closed Y, and so for all Borel sets Y, and all m-measurable sets Y.

Theorem 4 If f is m-measurable and fdm Davies-McShane integrable over N, it is Lebesgue integrable there.

PROOF. For $f \geq 0$, and numbers $0 \leq p < q$, the set where $p \leq f < q, X(p \leq f < q) = X(f \geq p) \setminus X(f \geq q)$, and its indicator, times m, is Davies-McShane integrable over N, say to Q(p,q). The indicator is also Lebesgue integrable as f is m-measurable, to Q(p,q) by [3]. For $p = 0, 1/n, 2/n, \ldots$ and q = p + 1/n, the two sums

(10)
$$\sum_{j=1}^{\infty} jQ(j/n, (j+1)/n)/n, \sum_{j=0}^{\infty} (j+1)Q(j/n, (j+1)/n)/n$$

lie below and above the Davies-McShane integral of fdm, with difference $\sum_{j=0}^{\infty}Q(j/n,(j+1)/n)/n=Q(0,+\infty)/n\to 0 (n\to\infty)(0\leq Q(0,+\infty)=m(N)\leq m(M)<+\infty)$. Thus both sums in (10) tend to the Davies-McShane integral of fdm. These sums are the Lebesgue way of integrating fdm, with an extension for unbounded non-negative functions, since Q(p,q) is the value of the Lebesgue integral of the indicator of $X(p\leq f< q)$.

If the Lebesgue integral of the m-measurable f (or f dm) exists with a finite value, so does the Davies integral, by [3]. If the Davies integral of f dm exists, earlier remarks show that the Davies-McShane integral exists. By Theorem 4, if the Davies-McShane integral of f dm exists with f m-measurable, the Lebesgue integral exists. Thus when f is m-measurable all three integrals of f dm are equivalent. It is not proved that f is m-measurable when f dm is Davies-McShane integrable.

It might be thought that T should be replaced by the *intrinsic topology* ([8], pp. 103–112). To find it we take m-measurable subsets N of M. Let $G: M \to T$ be an open neighborhood function with N_{G^*} the set of t with $G(t) \cap N$ not empty. Then $N^* \equiv \bigcap_G (N_G)^* = \operatorname{cl} N$. For if $t \notin \operatorname{cl} N$, t is in an open set G_4 with $G_4 \cap N$ empty. For $G(t) \subseteq G_4$, $t \notin (N_G)^*$. Hence $N^* \subseteq \operatorname{cl} N$. Conversely, if $t \in \operatorname{cl} N$, every $G(t) \cap N$ is not empty, and $N^* = \operatorname{cl} N$. For all $(I,t), t \in M$. Thus the intrinsic topology is the empty set, M, and all complements $M \setminus N^* = M \setminus \operatorname{cl} N \in T$. Conversely, if $G_5 \in T$, $G_5 \subseteq M$ and is m-measurable, and G_5 is a generalized interval. Hence G_5 is the intrinsic topology.

References

- [1] N. Bourbaki, Sur un théorème de Carathéodory et la mesure dans les espaces topologiques, C. r. Acad. Sci., Paris **201** (1935), 1309–1311, Zbl. 13. 155.
- [2] C .Carathéodory, Vorlesungen uber reele Funktionen. 2 Aufl. (1927), Leipzig-Berlin.
- [3] R. O. Davies and Z. Schuss, A proof that Henstock's integral includes Lebesgue's, Journal London Math.Soc.(2) 2 (1970), 561-562, MR 42#435.
- [4] W. Erben and G. Grimeisen, Integration by means of Riemann sums in Banach spaces I, Zeitschrift für Analysis und ihre Anwendungen, 9 (1990), 481–501.
- [5] W. Erben and G. Grimeisen, Integration by means of Riemann sums in Banach spaces II, Zeitschrift für Analysis und ihre Anwendungen, 10 (1991), 11–26.
- [6] R. Henstock, Integration, variation and differentiation in division spaces,
 Proceedings Royal Irish Academy 78A, 10 (1978), 69–85, MR 80d:26011.
- [7] R. Henstock, Lectures on the theory of Integration, World Scientific, Singapore (1988), MR 91a:28001.
- [8] R. Henstock, The general theory of Integration, Clarendon Press, Oxford, (1991).
- [9] E. J. McShane, A Riemann type integral that includes Lebesgue- Stieltjes, Bochner and stochastic integrals, Memoirs American Math.Soc. 88 (1969), MR 42#436.
- [10] E. J. McShane, A unified theory of Integration, American Math. Monthly, 80 (1973), 349–359, MR 47#6981.
- [11] E. J. McShane, Unified Integration, Academic Press, New York, (1983), MR 86c:28002.
- [12] S. Saks, Theory of the Integral (2nd. English edition), Warsaw (1937), Zbl. 17 .300, MR 29#4850.
- [13] Z. Schuss, A new proof of a theorem concerning the relationship between the Lebesgue and RC-integral, Journal London Math.Soc., 44 (1969), 365–368, MR 38#6020.

[14] B. S. Thomson, Construction of measures and integrals, Trans Amer Math.Soc., 160 (1971), 287–296, MR 43#6385.