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 MEASURE SPACES AND DIVISION

 SPACES

 Abstract

 The paper constructs a division space from an arbitery non-atomic
 measure space with a locally compact topology that i^ jmpatible with
 the measure, and defines two equivalent integrals.

 Many non-atomic measure spaces are constructed geometrically from sim-
 ple objects, with division space integrals produced from them, giving a great
 economy. For example, in Euclidean n-dimensional space we use n-dimensional
 rectangles with sides parallel to the co-ordinate axes to construct Lebesgue
 measure; rectangles alone are used for the gauge or Kurzweil-Henstock inte-
 gral, with no need a priori of the measure of any more general set, see [7]. For
 measure we can use the variation or inner variation.

 Recently Lee Peng-Yee asked me to construct a division space from a non-
 atomic measure space given axiomatically, or one for which the original con-
 struction from simple objects is lost or ignored. (A measure space is non-atomic
 if every point has measure zero.) By our construction using [3], more Lebesgue
 theory comes under generalized Riemann theory, usually with simpler proofs.
 Note that Zeev Schuss [13] proved directly that in one dimension the Lebesgue
 integral is included in the gauge integral. R .O. Davies found faults and gave
 a more general accurate proof in [3]. Details in [7], Theorem 3.4, pp. 37-38;
 [8], Theorem 0.1.1, pp. 3-5, are not as full as in [3], so that here I give the
 details for finite real or complex valued functions / Lebesgue integrable over a
 measurable set M of finite ra- measure, with a topology T. For Banach space
 valued / see [8]. Complex valued measures m are by the Radon-Nikodym theo-
 rem replaced by non- negative finitely (or count ably) additive measures ra, the
 complexity being transferred to the integrand. With the Lebesgue integral F
 of /, Davies used open neighborhood G(x) of points x e M, the G depending
 on a given e > 0, and proved that when /i,Ì2, ••• are essentially disjoint (i.e.
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 m(Ij D Ik) = 0,j ^ k) measurable subsets of M with m(M ' Ij) = 0, and
 Xi, £2, ••• are points in M satisfying Xj G Ij Ç G(xj)(j = 1, 2, ...) then

 (1) Ç/foMJf) ~F <£■
 j

 Using this, the Davies integral of f over a measurable N C M is defined as a
 number F such that for each e > 0 an open neighborhood function G : M - ► T
 exists with X G G(x) (allx G M), and if (Ij) is a sequence of essentially disjoint
 measurable subsets with union N less a set of m- measure zero, and (x¿) Ç M
 a sequence with Xj G Jj Ç G(xj) (aZZ j) then (1) is true.

 Given e > 0, a valid definition needs some ( Ij,Xj ) satisfying the conditions,
 with F uniquely defined. For example, if G fi N is m-measurable for every
 open set G, if, omitting empty sets,

 /9x Ji = G(x1)nNìJ2 = G(x2)nN'G(x1)ì
 {¿) /9x Js = G(xs) nN ' (G(xi) U G(x2)), ...,

 we have disjoint measurable Jj Ç G(xj) with union N ' Z, m(Z) = 0. We
 later show F uniquely defined. We have a McShane cover of N ' Z as Xj G Jj
 need not be true for all j. For a Davies cover of N we put Ij = Xj U Jj (j =
 1,2,...), m(xj) = 0, m(Ij ) = m(Jj), and (1) is satisfied with Ij replaced by
 the non-empty Jj.Z is needed as in (1) the G(xj) need not cover all N.

 If, given an arbitrary open cover C of N, an open neighborhood function
 G exists such that for each x G N a C(x) G C has G(x) Ç G(x), then by
 (1) we can say that N is essentially covered by the Ij , by the G(xj), and so
 by the C(xj ), and that every open cover of N contains a countable essential
 subcover. Division space theory uses finite collections of (/, x) for easy proofs
 of various integral properties. Then in (1) the sum is finite, every open cover
 of N contains a finite essential subcover, and we can say that N is essentially
 compact ; a priori the set of m-measure zero varies with G. [4], [5] use countable
 collections of (/,x).

 These preliminary remarks may suggest improvements of the rest of the
 paper, which begins with a McShane type fully decomposable division space
 from a non-atomic measure space of finite m-measure with a locally compact
 topology. The Alexandrov one-point compactification gives a compact topol-
 ogy T and an extra point 00 that can be included in M; then M is a compact
 set relative to T. Let G : M - ► T be an open neighborhood function (so with
 x G G(x) for all x G M). For a non-empty m-measurable J Ç M and x G M,
 the generalized interval-point pair (J,x) is G-fine if J Ç G(x). A division V
 of an m-measurable N Ç M, is a finite collection ( Jj,Xj ) (1 < j < n) with
 disjoint Jj of union iV, and Xj G M. For example, use the compactness and
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 (2). The corresponding collection of Jj is called a partition V of N. V is G-fine
 if every ( Jj,Xj ) G V is G-fine. A partition V' of N refines a partition V2 of N
 if for each J G Vu J Q I for some I e V 2. Let the finite valued / : M - > M
 (or C). A number F is the Davies- McShane integral of f (or f dm) over N if,
 given e > 0, an open neighborhood function G : M - > T exists and, for all G-
 fine divisions V of N , '(D) ^ f(x)m(I) - F ' < e. As in [8], pp. 40-43 we have
 a division system for N. For if Gj : M - ► T (j = 1, 2) are two open neighbor-
 hood functions, G' A G2 is also, where x G G' A = G i(x) D G2(x) ( all
 X G M). Hence we have a division system for N. If G' = G, G 2 the G for (1),
 G 1 AG2 satisfies (1), the collection of divisions is a subset of the arrangements
 just before (1), and if the Davies integral exists, so does the Davies-McShane
 integral with the same value. If F = Fj using G = Gj (j = 1,2) for the
 Davies-McShane integral, a G' A G2-fine division V of N satisfies

 |(D) £/(s)m(/) - Fj' < e(j = 1,2), |FX - F2' < 2e,

 true for all e > 0, Fi = F2, and the Davies-McShane integral is uniquely
 defined; therefore so is the Davies integral when it exists. If an open neighbor-
 hood function Gx : M - ► T exists, for each x G M, and Gs(x) = Gx(x) (x G
 M), then G3 is an open neighborhood function, and the division system is
 fully decomposable. N and each non-empty measurable subset N' C N are
 partial sets of N. For N ' Ni is not empty, and so, reverting to the earlier
 open neighborhood function G, there are G-fine divisions V' of Nu V2 of
 N'Nu and V' U V2 is a G-fine division of iV, N' being the union of I from
 the (/, x) G Pi. As the G are given for all x G M, not just for iG JV, the
 division space has the restriction property. For Nu...,Nn partial sets of N ,
 they are non-empty measurable sets, every non-empty Nj D N^ is measurable
 and so a partial set, and the Nu...,Nn are co-partitional. Thus we have a
 division space , previously called a non- additive division space. It is not always
 additive as the simple McShane example of [8], section 1.6, p. 54, and the
 example of [8], section 1.4, pp. 50-52, show. This is no barrier to proving that
 the Lebesgue integral exists when the Davies-McShane integral exists, as m is
 at least finitely additive.

 Next we use two ideas, first, one common to all division systems. Gener-
 alized intervals I are used to construct partitions of ¿V, points x associated
 with them being used to find which (/, x) are relevant in Riemann sums. If I
 is so connected with both x and y , (7, x) or (/, y) can be used in the division
 without altering the partition. The second idea is special to McShane- type
 division spaces. Ii I D J are two generalized intervals and (7, x) is fine, so is
 (J, x). Given two divisions Di, V2 of Nì a division V 3 exists for which the
 corresponding partition refines the partitions from V' and V 2. If (J, t) G V3
 there are ( Ij,Xj ) G Vj with J Ç Ij (j = 1,2) and t can be x' or X2 • J runs
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 through all non-empty intersections I' fl /2.

 Theorem 1 Given e > 0, for G : M - ► T let every two G- fine divisions
 Vi, T>2 of N satisfy

 (3) m)Y,f{xi)m{h)-{V2)Y,i{^)m{I2)'<e.
 Then for the corresponding V3, and k = 1 (/ real valued ), 2 (/ complex valued ),

 (4) (P3) ^2 l/fai) - f(x2)'m(J) < he.
 Proof. For real valued /, (J, t) e V 3, J = I' fi /(¿) the greater
 of f(x 1), f(x 2), we have a division P4, say. P5 is for f(t) the smaller of

 /(^2)- As P4, P5 are like Pi, 2?2> with the Ą, /2 replaced by J, (4)
 follows from (3). For complex valued /, split into real and imaginary parts
 and use [8], Theorem 2.3.3(2.3.8), p. 77. □

 Theorem 2 |/| dm is integrable.

 Proof. In Theorem 1, as m > 0 is finitely additive and / is real or complex
 valued,

 |(p0 S l/(*i)MA) - (D2) 53 l/(x2)|m(J2) =

 |(®3)£{l/(*i)l - 'f(x2)'}m(J)' < (P3)£||/(*i)| - l/(*2)||m(J) <

 (^3) E ~ f(X2)'m(J) < k£>
 a Cauchy-type convergence condition for integr ability, proving the result. Tak-
 ing real and imaginary parts, and (|/| +/)/2, (|/| - /)/2(/ real) we need only
 have f > 0. □

 Theorem 3 For a number q > 0, / : M - > M+, and x the indicator of the set
 X(f > q ) of points where f > q, if f dm is Davies-McShane integrable over
 N, then x dm is Davies-McShane integrable over N.

 Proof. For arbitrary real numbers Xj ,yj (j = 1,2),

 ,5,min(xi,x2) < Xj = ( Xj -yj) + yj < |xj - yi' + |x2 -y2' + yj (j = 1,2),
 min(xi,x2) - min(yi,2/2) < |xi - 2/i| + |x2 - y2|-

 ^ /gN ' min(xi, x2) + minií/!, y2) < Xj + yj ( j = 1, 2), ^ /gN ' min(xx,x2) + min(yi,y2) < min(xi + yi,x2 + y2).
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 Result (5) gives, for F the indefinite integral of / dm and

 A = min ( /m, qm) - min(F, qm), ļ A | < 'fm- F|+0,

 and the Davies-McShane variation of A is 0. min(F, qm) is finitely superad-
 ditive, min (F(/),gm(/)) > min(F(ii), qm(Ii)) + min(F(/2, qmfa))
 (I = Ii U /2, Ji H /2 empty) by (6) and the finite additivity of F and m. By
 refinements of partitions, sums of min(F, qm) > 0 are monotone decreasing to
 a refinement limit, say L. This with the zero variation of A gives min(/, q) dm
 integrable by refinements plus Davies-McShane integration. To remove the re-
 finements, given e > 0, let V be a partition of N with n generalized intervals,
 such that

 (7) L < (V) ^ min(F, qm) < L + e/2.
 By the zero variation of A, for each i E TMet Gj : M -> T be an open
 neighborhood function such that every G/-fine division T>i of I satisfies

 (8) P/)£|A |<e/(2n).
 For each x E M let G(x) be the intersection of Gi(x) for the finite number of
 I e V, and let V be a G-fine division of N. Then the

 (J n /, t) (I e V , (J, t) e P, J fi I non-empty)

 form a G-fine division of N. As m is finitely additive the split of J into the Jill
 leaves the value of the Riemann sum unaltered. V becomes a union of divisions

 Vi, so that (8) and (7) give L- € < (V) ^ min(/, <ļ)m < L +£,the integrability
 of min (/, q)m to L without refinements. Similarly, for numbers p, q, 0 <p<q,
 and fpq = max(min(/, ç),p),/pgmis Davies-McShane integrable. So is ( fpq -
 p)m/{q - p).The multiplier of m is 0(/ < p), 1(/ > <7), lies between 0 and 1
 if p <f<q , and as p - ► q- , is monotone decreasing to the indicator of

 > q). The refinement division space is not decomposable but the Davies
 -McShane division space is fully decomposable, so that [8], Theorem 3.2.1, p.
 126, applies and x dm is Davies-McShane integrable. □

 Measures are assumed non-negative and countably additive, with a third
 axiom to deal with Borei sets. Carathéodory [2], p. 239, axiom IV, and
 Saks [12], p. 43, (G3), depend on a metric in the space and Bourbaki [1]
 generalized them. Thomson [14], p. 291, Definition 4 and further remarks,
 defined compatibility with a topology , and Henstock [6], pp. 74, 75, gave an
 equivalent axiom:-cl denoting closure, if there are disjoint open sets Gi ,G2
 with clX Ç Gi, cl y Ç G2, then m(X) + m(Y) = m(X U Y). The Davies-
 McShane variation satisfies this; an open neighborhood function G : M - ► T
 exists with G(t) Ç G'(t G clX),G(¿) Ç G2{t G clF), simply by replacing G(t)
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 by G(t)C'Gj for j = 1, 2 in the two cases. The Lebesgue integral of each closed
 set in M exists, and by [3] the Davies-McShane integral exists, so that for the
 indicator of Y C M,

 (9) (D - McSh) [ x(Y' .)dm = m(Y)
 J M

 for closed F, and so for all Borei sets y, and all m-measurable sets Y.

 Theorem 4 If f is m- measurable and fdm Davies-McShane integrable over
 N, it is Lebesgue integrable there.

 Proof. For f > 0, and numbers 0 < p < g, the set where p < f < q,X(p <
 f < q) = X(f > p)'X(f > g),and its indicator, times m, is Davies-McShane
 integrable over iV, say to Q(p , q). The indicator is also Lebesgue integrable as
 / is m-measurable, to Q(p , q) by [3]. For p = 0, 1/n, 2/n, ... and q = p + 1/n,
 the two sums

 oo oo

 (10) 51 U + !)/")/«» + 1 )Q(j/n, ( j + 1 )/n)/n
 j= 1 j= 0

 lie below and above the Davies-McShane integral of /dm, with difference
 Eiio Q(J/n . (J + !)/«)/« = Q(°. +oo)/n -> 0(n oo)(0 < <5(0, +00) =
 m(iV) < m(M) < +00). Thus both sums in (10) tend to the Davies-McShane
 integral of / dm. These sums are the Lebesgue way of integrating /dm, with
 an extension for unbounded non-negative functions, since Q(p, q) is the value
 of the Lebesgue integral of the indicator of X(p < f < q). □

 If the Lebesgue integral of the m-measurable / (or / dm) exists with a finite
 value, so does the Davies integral, by [3]. If the Davies integral of / dm exists,
 earlier remarks show that the Davies-McShane integral exists. By Theorem
 4, if the Davies-McShane integral of / dm exists with / m-measurable, the
 Lebesgue integral exists. Thus when / is m-measurable all three integrals of
 / dm are equivalent. It is not proved that / is m-measurable when / dm is
 Davies-McShane integrable.

 It might be thought that T should be replaced by the intrinsic topology
 ([8], pp. 103-112). To find it we take m-measurable subsets N of M. Let
 G : M - y T be an open neighborhood function with No* the set of t with
 G(t) fi N not empty. Then N * = Hg(A^g)* = cliV.For if t ^ cl N,t is in an
 open set G4 with G4 CiN empty. For G(t) Ç G4, t ^ (Nq) * . Hence N * Ç cl N.
 Conversely, if £ E cl AT, every G(t) n N is not empty, and N * = cliV. For
 all (/, £), t G M. Thus the intrinsic topology is the empty set, M, and all
 complements M ' AT* = M ' cl N G T. Conversely, if G5 e T, G5 Ç M and
 is m-measurable, and 'Gs is a generalized interval. Hence T is the intrinsic
 topology.
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