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 MONOTONICIT Y THEOREMS FOR SOME

 LOCAL SYSTEMS

 Let A be a subset of the real line M. Then 'A'% denotes the inner Lebesgue
 measure of A and put

 a i a ' i- . £'An(x-h, x)'%
 ~ ď_ a (A, i v a X ) ' 7 = lim i- inf . ~ v 7 /1-0+ h

 d' Ai i A ' liminf 1- • r l^n(X' Z + JOI*
 -+v d' Ai i (A.x) A 7 ' = 1- liminf • r -+v 7 h->0+ h ¡

 D. N. Sarkhel and A. K. De proved the following theorem [2, Lemma 2.3].

 Theorem A Let A C [a, b] and B = [a, 6] ' A. If

 (a) a e A,

 (t>) x) > 0 for X e A ' {6},

 (c) ď_(B,x) > 0 for x € B.

 Then B = 0.

 As a consequence, they established a monitonicity theorem [2, Theorem
 4.3]. In this paper their theorem is generalized and a result equivalent to
 Theorem 55.13 in B. Thomson's book [3] is proved.

 By a local system we mean a family § = {§(x); x G M} of nonempty
 collections of subsets of the real line such that for every iGl

 (i) {x} i S(x),

 (ii) if S e §(x), then x G 5,

 (iii) if 5 G §(x) and S' D 5, then S' G S(x),
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 (iv) if 5 G §(x) and 6 > 0, then S fi (x - ó, x + 6) G §(x).

 If a local system § is bilateral (i.e. x is a bilateral accumulation point of
 any set from §(x)), then we put

 §~ (x) = { A ; A U (x, oo) G §(x)}

 §+(x) = {A' A U (-oo, x) G §(x)}.

 Clearly, §~ and §+ are local systems such that S D [x, oo) G §+(x) when
 S G §+(x) and § fi (- oo,x] G §~(x) when S G §~(x). Moreover, if a system
 § is filtering (i.e. S' D S2 G §(x) for any Si, S2 from §(x)), then §(x) =
 §+(x) PI §~(x) for every x.

 Definition 1 We say that a local system § fulfils condition (SD) if§ is bi-
 lateral and for any closed interval [a, 6] and any sets Ac [a, 6], B = [a, 6] ' A,
 the following conditions

 (a) a G A,

 (b) Ae§+(x) forxe A'{b},

 (c) B G S~(x) for x G B

 imply that B = $.

 Notice that Theorem A guarantees that the local system §(x) = { A ; x G
 A , d!ļ_(A,x) > 0 and d!_(A,x) > 0} satisfies condition (SD).

 We quote a few definitions from Thomson's book [3] which are necessary
 to formulate the announced theorems.

 Let § be a local system, ip - an interval function, C - a nonempty family
 of intervals, I - an interval and X - a subset of the real line. We say that C
 is a (S)-cover of X if, for each x G X, there is S G §(x) such that [x,y' G C
 for any y G S ' {x} ([; x,y' denotes the closed interval with endpoints x and y
 regardless of whether x < y or x > y). We say that a subadditive nonnegative
 interval function ip is (S)-continuous at x if, for every positive £, there is a set
 S G §(x) such that iļ)[x,y] < e when y G S ' {x}. Furthermore, put

 Var/(^,C) = sup ļ^|^(/i)|; Ii G C, Ii Cl, int/¿ D int Ij = 0 for i ± jļ
 Vj(i/>,§,X) = inf {Var/ (-0,(7); C is an (S)-cover of X},

 W,s) = W,S,Ä).

 Now we prove our lemma which corresponds to Lemma 38.6 from [3].
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 Lemma 1 Let S be a local system satisfying condition (SD) and iļ) a non-
 negative subadditive interval function. If x/j is ß~ )- continuous, then tp(I) <
 Vj(^,§+) for every interval I.

 Proof. Let C be a (§+)-cover of the real line and let [a, 6] be an interval.
 Set B = {z G (a, 6]; ip[a,z] > Var [a,z]C0> C)} and A = [a, 6] ' B. Let € be
 a positive number. Suppose that x G An (a, 6). Then there exist intervals
 Ji, J2, . . . , In £ C included in [a, x] for which ^[a, x] < Y%=i + e • Since
 C is n (§+ )-cover, there is 5 € §+(x) such that [x,y] G C for y G S ' {x}.
 Put S' = S O [x, 6). Then Si G §+(x) and for any y G S' ' {x} and we have

 n

 i>[a, y] < i>[a, x } + ý[x, y] < ^ VUi) + ip[x, y] + e.
 i= 1

 Thus ipla^y] < Var [a,y](^, C) + e and by the arbitrariness of £, -0[a, y] <
 Var [cL^iýiC). Hence y e A and consequently, S' C A. This proves that
 A g §+(x).

 In the case x = a, the condition A G §+(a) is evident.
 Now, suppose that x e B. Then iļ)[a,x] > Var [a xj(^, C) + e for some

 positive e. Since tp is (§~)-continuous, there exists T G §~(x) such that
 iļ)[z,x] < € for z G T ' {x}. Put Ti = T fi (a,x]. Then Ti G §~(x) and for
 any z G Ti, ip[a,z' > ìp[a,x] - ý[z,x] > Var [a,x](^, C) > Var [0|Z] (^,C). Thus
 z G B and so, B G §~(x). Since § fulfils condition (SD), we conclude that
 B = 0 and consequently, < V¡a¿](^,§+). □

 We recall the definitions of lower and upper (S)-limits, lower and upper
 (S)-derivates and Theorem 54.5 from Thomson's book [3]. Set

 (S)-liminf f(y) = sup{£; {x} U oo) G §(x)},
 y - >x

 (S)-limsup f(y) = inf{£; {x} U /_1(- oo, t) G §(x)},
 y-+x

 (§)-Df(x) = (§)-limmîf{y)~f{x),
 y->x y - x

 (S) - DJ{x) = (§) - lim sup ^ ~ ^
 y - *x y~X

 Theorem B Let T be a collection of nonnegative subadditive interval func-
 tions , and let S be a local system such that ip(I) < V/(V>,§) for every interval
 I and any xß G T. Let f be a real function with the following properties:

 (i) A/" G T (where A/~[a,6] = max{/(a) - /(6), 0}J,

 (ii) (§) - DJ > 0 almost everywhere ,
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 (iii) (§) - DJ > -oo Uf -almost everywhere (where Vf(E) = V(A/~, §,£*),).

 Then f is nondecreasing.

 Theorem 2 Let S be a local system satisfying condition (SD) and let f be a
 real function with the following properties:

 (a) (§") - lim sup3/_>x f(y) < f(x) for every x,

 (b) (§+) - Df > 0 almost everywhere,

 (c) (§+) - Df > -oo everywhere except possibly at points of a denumer-
 able set , every point x of which satisfies the inequality f(x) < (§+) -
 liminf y^xf(y).

 Then f is nondecreasing.

 Proof. Put i¡j[a,b' = A/~[a, b] = max{/(a) - /(6), 0}. Then is a non-
 negative subadditive interval function. We will show that the assumptions of
 Theorem B are satisfied (for the collection T = {ip} and the local system §+).
 Prom (a) it follows that, for every x and each positive £, there is 5 G §~(x)
 such that f(y) < f(x) + e for y G S. Let Si = S D (-oo,x). Then Si G §~(x)
 and r/)[y,x] < e whenever y e Si. Thus ip is (§~)-continuous and the lemma
 guarantees that ip(I) < V/(^,§+) for every interval I. This means that con-
 dition (i) of Theorem B holds. As (b) implies (ii), it suffices to show that (iii)
 results from (c).

 Let e > 0 and let x be a point of the set E = {x' (§+) -Df(x) = -oo}. (If
 E = 0, then there is nothing to prove.) Since f(x) < (§+) - liminf^-^ /(y),
 there exists S e §+(x) such that f{x)-e < f(y) for y e S. Put Si = 5fl[x, oo).
 Evidently, Si G §+(x). Moreover, because the family C = {[x,y]; y G Sri'{a;}}
 is an (§+)-cover of {x}, and each family of nonoverlapping intervals from C is
 one-element. Therefore

 "/({*}) = ^(A/",S+,{x}) < Var (i¡), C) = sup{^[x,î/]; y € 5i} < e.

 By the arbitrariness of e, we get v/({x}) = 0. As E is denumerable, condition
 (iii) of Theorem B holds. This completes the proof because Theorem B implies
 that / is nondecreasing. □

 Corollary 3 Let S be a local system satisfying condition (SD) and let f be a
 real function with the following properties :

 (a) (§") - limsup^a. f(y) < f(x) for every x,

 (b) (§+)-£/ > 0 almost everywhere ,
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 (c) (§+) - DJ > -oo everywhere.

 Then f is nondecreasing.

 Corollary 4 Let S be a local system satisfying condition (SD) and let f be a
 real function with the following properties:

 (a) (§") - limsup^ f(y) < f(x) < (§+) - liminf^ f(y) for every x,

 (b) (§+) - DJ > 0 almost everywhere ,

 (c) (§+) - DJ > - oo nearly everywhere.

 Then f is nondecreasing.

 Corollary 5 Let S be a local system satisfying condition (SD) and let f be a
 real function such that (§) - DJ(x) > 0 for every x. Then f is nondecreasing.

 PROOF. Let e > 0 let g(x) = f(x) + ex. Then (§) - Dg(x) > e > 0 and

 hence there is S G S(x) with > q for y € S ' {x}. Put Si =
 y -x

 S fi (- oo, x]. Then S' e S~(x) and g(x) > g(y) whenever y e S' ' {x}. Thus
 (§") - lim supy^x g(y) < g(x) and since (§+) - Dg > ( S ) - Dg > 0, Theorem
 2 implies that g is nondecreasing. Consequently, by the arbitrariness of e, it
 follows that / is nondecreasing. □

 Now we formulate a generalization of Theorem 4.3 from paper [2]. Our
 proof is almost identical with that in [2].

 Theorem 6 Let S be a local system satisfying condition (SD) and let f be a
 real function with the following properties:

 (a) (S-) - limsup^s f(y) < f(x) < (§+) - liminfy_x f(y) for every x,

 (b) f(E) has void interior, where

 E = {x; (§+) - Df(x) < 0 and (S') - DJ(x) < 0}.
 Then f is nondecreasing.

 Proof. Suppose to the contrary that f(a) > f(b) for some points a and b
 where a < b. Since f(E) has empty interior, we can choose a point k £ f(E)
 for which /(a) > k > f(b). Put

 A = {x e [a, 6]; f(x) > k or /(x) = k and (§+) - Df(x) > 0},
 B = [a, b] ' A.
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 First of all, observe that (b) implies (§~) - Df(x ) > 0 whenever x e B
 and f(x) = k. Let x G A. If f(x) > fc, then by (a) it follows that (§+) -
 liminfy_>x f(y) > f(x) > k. Hence there is 5 G S+(x) such that f(y) > k for
 y G S. Thus S C A and therefore, A G §+(x). On the other hand, if f(x) = fc,
 then (§+) - Df(x) > 0. Thus there is S G §+(x) such that S C [x,6] and

 - 1^1 > 0 for y G S ' {x}. So we have f(y) > f(x) = k. Hence S C A
 y - x

 and consequently, A G §+(x) in that case also.
 Analogously we prove that B G §~(x) whenever x G B. Since, evidently,

 a G A and 6 G B, we arrive at a contradiction to condition (SD) which
 completes the proof. □
 Thomson showed in his book [3] that many monotonicity theorems hold

 for local systems satisfying the intersection condition. Now we prove that this
 condition implies condition (SD).
 We say that a local system § satisfies the intersection condition if, for any

 choice of sets {5X; xgM} with Sx G §(x), there is a positive function <5 on R
 such that Sxn Syf) [x, y] ^ 0 whenever 0 < y - x < min{6(x), 6(y)}.

 Theorem 7 If a local system § is bilateral and satisfies the intersection con-
 dition , then § fulfils condition (SD).

 Proof. Suppose that § is bilateral and satisfies the intersection condition
 but does not satisfy condition (SD). Then there are a closed interval [a, 6]
 and nonempty sets A C [a, 6], B = A ' [a, 6] for which conditions (a) - (c) (of
 Definition 1) hold. Without loss of generality we can assume that 6 G B. For
 each x G [a, 6], we put

 q _( A U (; - oo, x) for x G A,
 x ' B U (x, oo) for x G B.

 Obviously, Sx G §(x) for any x G [a, 6]. Thus we can find a positive function
 6 such that Sx fi Sy fi [x,y] ^ 0 whenever 0 < y - x < min{<5(x), ô(y)}.
 Let a' G A be a right-hand accumulation point of B. Such a point exists.
 If a does not fulfil this condition, we can choose as a' the right endpoint
 of the component of A which contains a. In a similar way we find b' G
 B fi (ai, a' + 6(a i)) which is a left-hand accumulation point of A. Suppose
 we have already chosen an increasing sequence {ai, Û2, . . . , an} C A and a
 decreasing sequence {6i, . . . ,6n} C B with an < bn. Then for an+i we take
 a point from A which is a right-hand accumulation point of B and satisfies
 the inequalities an < an+i < bn and bn - an+ 1 < min{<5(6n), ^}. Similarly
 we choose 6n+i G B such that 6n+i is a left-hand accumulation point of A,
 an+l < ^n+ 1 < and bn+i - <2.n+l < ïïÛïï{^(ûn+l)j nļ^i } •
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 Let c = liman = limòn. Then, for every positive integer n, we have

 0 c dfi bji elfi < i(ūjļ),
 0 < bn ~ c < bn - Ûn+l < 6(bn).

 Since c G (a, 6), c belongs either to A or to B. Assume that c e A.
 (In case c e B, the proof is similar.) Thus there is a positive integer n
 with bn £ (c, c - f 6(c)). Hence 0 < bn - c < min{<5(6n),<5(c)} and, therefore,
 Sc H Sbn fi [c, bn' ± 0. So, we have

 0 ^ [A U (-00, c)] n[BU (6n, oo)] fi [c, bn)
 = i4nBn[c,6n]Ci4n5 = 0.

 This contradiction completes the proof. □
 It is easy to show that converse to Theorem 7 is not true. This results

 from the following example.

 Example Let

 §(x) = {i C M; X e A, d!,.(^4,x) > 0 and ď_(A,x) > 0}.

 Theorem A implies that § fulfils condition (SD). But from [1, Theorem 2] it
 follows that § does not satisfy the intersection condition.
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