Tomasz Filipczak, Institute of Mathematics, Łódź University, ul. Stefana Banacha 22, 90-238 Łódź, Poland

MONOTONICITY THEOREMS FOR SOME LOCAL SYSTEMS

Let A be a subset of the real line \mathbb{R} . Then $|A|^i$ denotes the inner Lebesgue measure of A and put

$$\underline{d}_{-}^{i}(A,x) = \liminf_{h \to 0^{+}} \frac{|A \cap (x-h, x)|^{i}}{h}$$

$$\underline{d}^i_+(A,x) = \liminf_{h \to 0^+} \frac{|A \cap (x,\,x+h)|^i}{h}$$

D. N. Sarkhel and A. K. De proved the following theorem [2, Lemma 2.3].

Theorem A Let $A \subset [a,b]$ and $B = [a,b] \setminus A$. If

- (a) $a \in A$,
- (b) $\underline{d}^i_+(A,x) > 0$ for $x \in A \setminus \{b\}$,
- (c) $\underline{d}_{-}^{i}(B,x) > 0 \text{ for } x \in B.$

Then $B = \emptyset$.

As a consequence, they established a monitonicity theorem [2, Theorem 4.3]. In this paper their theorem is generalized and a result equivalent to Theorem 55.13 in B. Thomson's book [3] is proved.

By a local system we mean a family $\mathbb{S} = \{\mathbb{S}(x); x \in \mathbb{R}\}$ of nonempty collections of subsets of the real line such that for every $x \in \mathbb{R}$

- (i) $\{x\} \notin \mathbb{S}(x)$,
- (ii) if $S \in \mathbb{S}(x)$, then $x \in S$,
- (iii) if $S \in \mathbb{S}(x)$ and $S' \supset S$, then $S' \in \mathbb{S}(x)$,

Mathematical Reviews subject classification: 26A48 Received by the editors September 2, 1992

(iv) if
$$S \in \mathbb{S}(x)$$
 and $\delta > 0$, then $S \cap (x - \delta, x + \delta) \in \mathbb{S}(x)$.

If a local system S is bilateral (i.e. x is a bilateral accumulation point of any set from S(x)), then we put

$$\mathbb{S}^{-}(x) = \{A; \ A \cup (x, \infty) \in \mathbb{S}(x)\}$$

$$\mathbb{S}^{+}(x) = \{A; \ A \cup (-\infty, x) \in \mathbb{S}(x)\}.$$

Clearly, \mathbb{S}^- and \mathbb{S}^+ are local systems such that $S \cap [x, \infty) \in \mathbb{S}^+(x)$ when $S \in \mathbb{S}^+(x)$ and $\mathbb{S} \cap (-\infty, x] \in \mathbb{S}^-(x)$ when $S \in \mathbb{S}^-(x)$. Moreover, if a system \mathbb{S} is filtering (i.e. $S_1 \cap S_2 \in \mathbb{S}(x)$ for any S_1 , S_2 from $\mathbb{S}(x)$), then $\mathbb{S}(x) = \mathbb{S}^+(x) \cap \mathbb{S}^-(x)$ for every x.

Definition 1 We say that a local system \mathbb{S} fulfils condition (SD) if \mathbb{S} is bilateral and for any closed interval [a,b] and any sets $A \subset [a,b]$, $B = [a,b] \setminus A$, the following conditions

- (a) $a \in A$,
- (b) $A \in \mathbb{S}^+(x)$ for $x \in A \setminus \{b\}$,
- (c) $B \in \mathbb{S}^-(x)$ for $x \in B$

imply that $B = \emptyset$.

Notice that Theorem A guarantees that the local system $\mathbb{S}(x) = \{A; x \in A, \underline{d}^i_+(A,x) > 0 \text{ and } \underline{d}^i_-(A,x) > 0\}$ satisfies condition (SD).

We quote a few definitions from Thomson's book [3] which are necessary to formulate the announced theorems.

Let $\mathbb S$ be a local system, ψ - an interval function, C - a nonempty family of intervals, I - an interval and X - a subset of the real line. We say that C is a $(\mathbb S)$ -cover of X if, for each $x \in X$, there is $S \in \mathbb S(x)$ such that $[x,y] \in C$ for any $y \in S \setminus \{x\}$ ([x,y] denotes the closed interval with endpoints x and y regardless of whether x < y or x > y). We say that a subadditive nonnegative interval function ψ is $(\mathbb S)$ -continuous at x if, for every positive ε , there is a set $S \in \mathbb S(x)$ such that $\psi[x,y] < \varepsilon$ when $y \in S \setminus \{x\}$. Furthermore, put

$$\begin{split} \operatorname{Var}_I(\psi,C) &= \sup \left\{ \sum_{i=1}^n |\psi(I_i)|; \ I_i \in C, \ I_i \subset I, \ \operatorname{int} I_i \cap \operatorname{int} I_j = \emptyset \ \operatorname{for} \ i \neq j \right\} \\ V_I(\psi,\mathbb{S},X) &= \inf \{ \operatorname{Var}_I(\psi,C); \ C \ \operatorname{is an} \ (S)\text{-cover of} \ X \}, \\ V_I(\psi,\mathbb{S}) &= V_I(\psi,\mathbb{S},R). \end{split}$$

Now we prove our lemma which corresponds to Lemma 38.6 from [3].

Lemma 1 Let $\mathbb S$ be a local system satisfying condition (SD) and ψ a nonnegative subadditive interval function. If ψ is $(\mathbb S^-)$ -continuous, then $\psi(I) \leq V_I(\psi, \mathbb S^+)$ for every interval I.

PROOF. Let C be a (\mathbb{S}^+) -cover of the real line and let [a,b] be an interval. Set $B = \{z \in (a,b]; \ \psi[a,z] > \operatorname{Var}_{[a,z]}(\psi,C)\}$ and $A = [a,b] \setminus B$. Let ε be a positive number. Suppose that $x \in A \cap (a,b)$. Then there exist intervals $I_1, I_2, \ldots, I_n \in C$ included in [a,x] for which $\psi[a,x] \leq \sum_{i=1}^n \psi(I_i) + \varepsilon$. Since C is n (\mathbb{S}^+) -cover, there is $S \in \mathbb{S}^+(x)$ such that $[x,y] \in C$ for $y \in S \setminus \{x\}$. Put $S_1 = S \cap [x,b)$. Then $S_1 \in \mathbb{S}^+(x)$ and for any $y \in S_1 \setminus \{x\}$ and we have

$$\psi[a,y] \le \psi[a,x] + \psi[x,y] \le \sum_{i=1}^n \psi(I_i) + \psi[x,y] + \varepsilon.$$

Thus $\psi[a,y] \leq \operatorname{Var}_{[a,y]}(\psi,C) + \varepsilon$ and by the arbitrariness of ε , $\psi[a,y] \leq \operatorname{Var}_{[a,y]}(\psi,C)$. Hence $y \in A$ and consequently, $S_1 \subset A$. This proves that $A \in \mathbb{S}^+(x)$.

In the case x = a, the condition $A \in \mathbb{S}^+(a)$ is evident.

Now, suppose that $x \in B$. Then $\psi[a,x] > \operatorname{Var}_{[a,x]}(\psi,C) + \varepsilon$ for some positive ε . Since ψ is (\mathbb{S}^-) -continuous, there exists $T \in \mathbb{S}^-(x)$ such that $\psi[z,x] < \varepsilon$ for $z \in T \setminus \{x\}$. Put $T_1 = T \cap (a,x]$. Then $T_1 \in \mathbb{S}^-(x)$ and for any $z \in T_1$, $\psi[a,z] \geq \psi[a,x] - \psi[z,x] > \operatorname{Var}_{[a,x]}(\psi,C) \geq \operatorname{Var}_{[a,z]}(\psi,C)$. Thus $z \in B$ and so, $B \in \mathbb{S}^-(x)$. Since \mathbb{S} fulfils condition (SD), we conclude that $B = \emptyset$ and consequently, $\psi[a,b] \leq V_{[a,b]}(\psi,\mathbb{S}^+)$.

We recall the definitions of lower and upper (S)-limits, lower and upper (S)-derivates and Theorem 54.5 from Thomson's book [3]. Set

$$\begin{split} (\mathbb{S}) - & \liminf_{y \to x} f(y) &= \sup\{t; \ \{x\} \cup f^{-1}(t, \infty) \in \mathbb{S}(x)\}, \\ (\mathbb{S}) - & \limsup_{y \to x} f(y) &= \inf\{t; \ \{x\} \cup f^{-1}(-\infty, t) \in \mathbb{S}(x)\}, \\ (\mathbb{S}) - & \underline{D}f(x) &= (\mathbb{S}) - \liminf_{y \to x} \frac{f(y) - f(x)}{y - x}, \\ (\mathbb{S}) - & \overline{D}f(x) &= (\mathbb{S}) - \limsup_{y \to x} \frac{f(y) - f(x)}{y - x} \end{split}$$

Theorem B Let \mathcal{T} be a collection of nonnegative subadditive interval functions, and let \mathbb{S} be a local system such that $\psi(I) \leq V_I(\psi, \mathbb{S})$ for every interval I and any $\psi \in \mathcal{T}$. Let f be a real function with the following properties:

(i)
$$\Delta f^- \in \mathcal{T}$$
 (where $\Delta f^-[a,b] = \max\{f(a) - f(b), 0\}$),

(ii)
$$(S) - \underline{D}f \ge 0$$
 almost everywhere,

(iii) (S) $-\underline{D}f > -\infty \nu_f$ -almost everywhere (where $\nu_f(E) = V(\Delta f^-, S, E)$). Then f is nondecreasing.

Theorem 2 Let S be a local system satisfying condition (SD) and let f be a real function with the following properties:

- (a) $(\mathbb{S}^-) \limsup_{y \to x} f(y) \le f(x)$ for every x,
- (b) $(S^+) \underline{D}f \ge 0$ almost everywhere,
- (c) $(\mathbb{S}^+) \underline{D}f > -\infty$ everywhere except possibly at points of a denumerable set, every point x of which satisfies the inequality $f(x) \leq (\mathbb{S}^+) \liminf_{y \to x} f(y)$.

Then f is nondecreasing.

PROOF. Put $\psi[a,b] = \Delta f^-[a,b] = \max\{f(a) - f(b),0\}$. Then ψ is a nonnegative subadditive interval function. We will show that the assumptions of Theorem B are satisfied (for the collection $\mathcal{T} = \{\psi\}$ and the local system \mathbb{S}^+). From (a) it follows that, for every x and each positive ε , there is $S \in \mathbb{S}^-(x)$ such that $f(y) < f(x) + \varepsilon$ for $y \in S$. Let $S_1 = S \cap (-\infty, x]$. Then $S_1 \in \mathbb{S}^-(x)$ and $\psi[y,x] < \varepsilon$ whenever $y \in S_1$. Thus ψ is (\mathbb{S}^-) -continuous and the lemma guarantees that $\psi(I) \leq V_I(\psi, \mathbb{S}^+)$ for every interval I. This means that condition (i) of Theorem B holds. As (b) implies (ii), it suffices to show that (iii) results from (c).

Let $\varepsilon > 0$ and let x be a point of the set $E = \{x; (\mathbb{S}^+) - \underline{D}f(x) = -\infty\}$. (If $E = \emptyset$, then there is nothing to prove.) Since $f(x) \leq (\mathbb{S}^+) - \liminf_{y \to x} f(y)$, there exists $S \in \mathbb{S}^+(x)$ such that $f(x) - \varepsilon < f(y)$ for $y \in S$. Put $S_1 = S \cap [x, \infty)$. Evidently, $S_1 \in \mathbb{S}^+(x)$. Moreover, because the family $C = \{[x,y]; y \in S_1 \setminus \{x\}\}$ is an (\mathbb{S}^+) -cover of $\{x\}$, and each family of nonoverlapping intervals from C is one-element. Therefore

$$\nu_f(\{x\}) = V(\Delta f^-, \mathbb{S}^+, \{x\}) \le \text{Var}(\psi, C) = \sup\{\psi[x, y]; \ y \in S_1\} \le \varepsilon.$$

By the arbitrariness of ε , we get $\nu_f(\{x\}) = 0$. As E is denumerable, condition (iii) of Theorem B holds. This completes the proof because Theorem B implies that f is nondecreasing.

Corollary 3 Let S be a local system satisfying condition (SD) and let f be a real function with the following properties:

- (a) $(S^-) \limsup_{y \to x} f(y) \le f(x)$ for every x,
- (b) $(S^+) \underline{D}f \ge 0$ almost everywhere,

(c)
$$(S^+) - \underline{D}f > -\infty$$
 everywhere.

Then f is nondecreasing.

Corollary 4 Let S be a local system satisfying condition (SD) and let f be a real function with the following properties:

(a)
$$(\mathbb{S}^-) - \limsup_{y \to x} f(y) \le f(x) \le (\mathbb{S}^+) - \liminf_{y \to x} f(y)$$
 for every x ,

(b)
$$(S^+) - \underline{D}f \ge 0$$
 almost everywhere,

(c)
$$(S^+) - \underline{D}f > -\infty$$
 nearly everywhere.

Then f is nondecreasing.

Corollary 5 Let \mathbb{S} be a local system satisfying condition (SD) and let f be a real function such that $(\mathbb{S}) - \underline{D}f(x) \geq 0$ for every x. Then f is nondecreasing.

PROOF. Let $\varepsilon > 0$ let $g(x) = f(x) + \varepsilon x$. Then $(\mathbb{S}) - \underline{D}g(x) \ge \varepsilon > 0$ and hence there is $S \in \mathbb{S}(x)$ with $\frac{g(y) - g(x)}{y - x} > 0$ for $y \in S \setminus \{x\}$. Put $S_1 = S \cap (-\infty, x]$. Then $S_1 \in \mathbb{S}^-(x)$ and g(x) > g(y) whenever $y \in S_1 \setminus \{x\}$. Thus $(\mathbb{S}^-) - \lim \sup_{y \to x} g(y) \le g(x)$ and since $(\mathbb{S}^+) - \underline{D}g \ge (S) - \underline{D}g > 0$, Theorem 2 implies that g is nondecreasing. Consequently, by the arbitrariness of ε , it follows that f is nondecreasing.

Now we formulate a generalization of Theorem 4.3 from paper [2]. Our proof is almost identical with that in [2].

Theorem 6 Let S be a local system satisfying condition (SD) and let f be a real function with the following properties:

(a)
$$(\mathbb{S}^-) - \limsup_{y \to x} f(y) \le f(x) \le (\mathbb{S}^+) - \liminf_{y \to x} f(y)$$
 for every x ,

(b) f(E) has void interior, where

$$E = \{x; \ (\mathbb{S}^+) - \underline{D}f(x) \le 0 \ and \ (\mathbb{S}^-) - \underline{D}f(x) \le 0\}.$$

Then f is nondecreasing.

PROOF. Suppose to the contrary that f(a) > f(b) for some points a and b where a < b. Since f(E) has empty interior, we can choose a point $k \notin f(E)$ for which f(a) > k > f(b). Put

$$A = \{x \in [a, b]; f(x) > k \text{ or } f(x) = k \text{ and } (\mathbb{S}^+) - \underline{D}f(x) > 0\},\ B = [a, b] \setminus A.$$

First of all, observe that (b) implies $(\mathbb{S}^-) - \underline{D}f(x) > 0$ whenever $x \in B$ and f(x) = k. Let $x \in A$. If f(x) > k, then by (a) it follows that $(\mathbb{S}^+) - \lim \inf_{y \to x} f(y) \ge f(x) > k$. Hence there is $S \in \mathbb{S}^+(x)$ such that f(y) > k for $y \in S$. Thus $S \subset A$ and therefore, $A \in \mathbb{S}^+(x)$. On the other hand, if f(x) = k, then $(\mathbb{S}^+) - \underline{D}f(x) > 0$. Thus there is $S \in \mathbb{S}^+(x)$ such that $S \subset [x, b]$ and $\frac{f(y) - f(x)}{y - x} > 0$ for $y \in S \setminus \{x\}$. So we have f(y) > f(x) = k. Hence $S \subset A$ and consequently, $A \in \mathbb{S}^+(x)$ in that case also.

Analogously we prove that $B \in \mathbb{S}^-(x)$ whenever $x \in B$. Since, evidently, $a \in A$ and $b \in B$, we arrive at a contradiction to condition (SD) which completes the proof.

Thomson showed in his book [3] that many monotonicity theorems hold for local systems satisfying the intersection condition. Now we prove that this condition implies condition (SD).

We say that a local system $\mathbb S$ satisfies the intersection condition if, for any choice of sets $\{S_x; \ x \in \mathbb R\}$ with $S_x \in \mathbb S(x)$, there is a positive function δ on $\mathbb R$ such that $S_x \cap S_y \cap [x,y] \neq \emptyset$ whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$.

Theorem 7 If a local system S is bilateral and satisfies the intersection condition, then S fulfils condition (SD).

PROOF. Suppose that $\mathbb S$ is bilateral and satisfies the intersection condition but does not satisfy condition (SD). Then there are a closed interval [a,b] and nonempty sets $A \subset [a,b], B = A \setminus [a,b]$ for which conditions (a) - (c) (of Definition 1) hold. Without loss of generality we can assume that $b \in B$. For each $x \in [a,b]$, we put

$$S_x = \left\{ \begin{array}{ll} A \cup (-\infty, x) & \text{for } x \in A, \\ B \cup (x, \infty) & \text{for } x \in B. \end{array} \right.$$

Obviously, $S_x \in \mathbb{S}(x)$ for any $x \in [a,b]$. Thus we can find a positive function δ such that $S_x \cap S_y \cap [x,y] \neq \emptyset$ whenever $0 < y - x < \min\{\delta(x), \delta(y)\}$. Let $a_1 \in A$ be a right-hand accumulation point of B. Such a point exists. If a does not fulfil this condition, we can choose as a_1 the right endpoint of the component of A which contains a. In a similar way we find $b_1 \in B \cap (a_1, a_1 + \delta(a_1))$ which is a left-hand accumulation point of A. Suppose we have already chosen an increasing sequence $\{a_1, a_2, \ldots, a_n\} \subset A$ and a decreasing sequence $\{b_1, \ldots, b_n\} \subset B$ with $a_n < b_n$. Then for a_{n+1} we take a point from A which is a right-hand accumulation point of B and satisfies the inequalities $a_n < a_{n+1} < b_n$ and $b_n - a_{n+1} < \min\{\delta(b_n), \frac{1}{n}\}$. Similarly we choose $b_{n+1} \in B$ such that b_{n+1} is a left-hand accumulation point of A, $a_{n+1} < b_n$ and $b_{n+1} - a_{n+1} < \min\{\delta(a_{n+1}), \frac{1}{n+1}\}$.

120 Tomasz Filipczak

Let $c = \lim a_n = \lim b_n$. Then, for every positive integer n, we have

$$0 < c - a_n < b_n - a_n < \delta(a_n),$$

$$0 < b_n - c < b_n - a_{n+1} < \delta(b_n).$$

Since $c \in (a,b)$, c belongs either to A or to B. Assume that $c \in A$. (In case $c \in B$, the proof is similar.) Thus there is a positive integer n with $b_n \in (c, c + \delta(c))$. Hence $0 < b_n - c < \min\{\delta(b_n), \delta(c)\}$ and, therefore, $S_c \cap S_{b_n} \cap [c, b_n] \neq \emptyset$. So, we have

$$\emptyset \neq [A \cup (-\infty, c)] \cap [B \cup (b_n, \infty)] \cap [c, b_n] = A \cap B \cap [c, b_n] \subset A \cap B = \emptyset.$$

This contradiction completes the proof.

It is easy to show that converse to Theorem 7 is not true. This results from the following example.

Example Let

$$\mathbb{S}(x) = \{ A \subset \mathbb{R}; \ x \in A, \ \underline{d}_{+}^{i}(A, x) > 0 \ \text{ and } \ \underline{d}_{-}^{i}(A, x) > 0 \}.$$

Theorem A implies that S fulfils condition (SD). But from [1, Theorem 2] it follows that S does not satisfy the intersection condition.

References

- [1] T. Filipczak, Intersection conditions for some density and I-density local systems, Real Analysis Exchange 15 (1989-90), 170-192.
- [2] D. N. Sarkhel, A. K. De The proximally continuous integrals, J. Austral. Math. Soc. (Series A) 31 (1981), 26-45.
- [3] B. S. Thomson, Real Functions, Springer-Verlag, 1985.