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MONOTONICITY THEOREMS FOR SOME
LOCAL SYSTEMS

Let A be a subset of the real line R. Then |A|* denotes the inner Lebesgue
measure of A and put

' - i

d (Az)= liminfM
h—0t+ h

v —liming AN @ 4B

D. N. Sarkhel and A. K. De proved the following theorem [2, Lemma 2.3].

Theorem A Let A C [a,b] and B = [a,b] \ A. If
(a) a € A,
(b) &', (A,z) >0 forz e A\ {b},
(c) & (B,z) >0 forz € B.

Then B = 0.

As a consequence, they established a monitonicity theorem [2, Theorem
4.3]. In this paper their theorem is generalized and a result equivalent to
Theorem 55.13 in B. Thomson’s book [3] is proved.

By a local system we mean a family S = {S(z); z € R} of nonempty
collections of subsets of the real line such that for every z € R

(i) {z} ¢ S(z),
(ii) if S € S(z), thenz € S,
(iii) if S € S(z) and S’ O S, then S’ € S(z),

Mathematical Reviews subject classification: 26A48
Received by the editors September 2, 1992

114



MONOTONICITY THEOREMS FOR SOME LOCAL SYSTEMS 115

(iv) if S € S(z) and 6 > 0, then SN (z — 6, z + 6) € S(x).

If a local system S is bilateral (i.e. z is a bilateral accumulation point of
any set from S(z)), then we put

S (z) = {4; AU (z,00) € S(z)}

S*(z) = {4; AU (~o0,z) € S(z)}.
Clearly, S~ and S* are local systems such that S N [z,00) € S*(z) when
S € S*(z) and SN (—o0,z] € S™(z) when S € S™(z). Moreover, if a system
S is filtering (i.e. Sy N Sz € S(z) for any S;, S2 from S(z)), then S(z) =
S*(z) NS~ (z) for every z.

Definition 1 We say that a local system S fulfils condition (SD) if S is bi-
lateral and for any closed interval [a,b] and any sets A C [a,b], B = [a,b] \ A4,
the following conditions

(a) a € A4,

(b) A€ S*(z) forze A\ {b},

(¢) BeES™(z) forze B
imply that B = 0.

Notice that Theorem A guarantees that the local system S(z) = {4; z €
A, d\(A,z) >0 and d' (A,z) > 0} satisfies condition (SD).

We quote a few definitions from Thomson’s book [3] which are necessary
to formulate the announced theorems.

Let S be a local system, v - an interval function, C - a nonempty family
of intervals, I - an interval and X - a subset of the real line. We say that C
is a (S)-cover of X if, for each z € X, there is S € S(z) such that [z,y] € C
for any y € S\ {z} ([z,y] denotes the closed interval with endpoints z and y
regardless of whether £ < y or > y). We say that a subadditive nonnegative
interval function % is (S)-continuous at z if, for every positive ¢, there is a set
S € S(z) such that ¢[z,y] < € when y € S\ {z}. Furthermore, put

Var 1 (3, C) = sup {Z [W(L)|; I;eC, I;CI, int; Nint I; = O for 3 #j}

i=1
Vi(%,S,X) = inf{Var ;(¢,C); C isan (S)-cover of X},
Vi(¥,S) = Vi(¥,S,R).

Now we prove our lemma which corresponds to Lemma 38.6 from (3.
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Lemma 1 Let S be a local system satisfying condition (SD) and ¢ a non-
negative subadditive interval function. If 1 is (S~ )-continuous, then ¥(I) <
Vi(¥,St) for every interval I.

PROOF. Let C be a (S*)-cover of the real line and let [a,b] be an interval.
Set B = {z € (a,b]; ¥a,z] > Var[, ;(¥,C)} and A = [a,b] \ B. Let € be
a positive number. Suppose that £ € AN (a,b). Then there exist intervals
Ii,I,..., I € C included in [a,z] for which ¥[a,z] < Y7, ¥(I;) + €. Since
C is n (St )-cover, there is S € S*(z) such that [z,y] € C for y € S\ {z}.
Put S; = SN |[z,b). Then S; € S*(z) and for any y € S; \ {z} and we have

¥la,y] < Yla, ] + Y[z, y] < ZIIJ(Ii) + Yz, y] + €.

i=1

Thus 9[a,y] < Varyy(¥,C) + € and by the arbitrariness of ¢, ¥[a,y] <
Var [4,4(#,C). Hence y € A and consequently, S; C A. This proves that
A e St(z).

In the case z = a, the condition A € S*(a) is evident.

Now, suppose that £ € B. Then 9[a,z] > Var s ;(%,C) + ¢ for some
positive €. Since 9 is (S™)-continuous, there exists T € S™(z) such that
Ylz,z] < € for z € T\ {z}. Put Ty = T N (a,z]. Then T1 € S~ (z) and for
any z € 11, ¢[aa z] 2 1/:[a,:1:] - "/}[Za 1,’] > Var [a,z] ("p’ C) > Var [a,2] (¥, C) Thus
2z € B and so, B € S™(z). Since S fulfils condition (SD), we conclude that
B = 0 and consequently, ¥[a,b] < Vjq,4)(¥,ST). O

We recall the definitions of lower and upper (S)-limits, lower and upper
(S)-derivates and Theorem 54.5 from Thomson’s book [3]. Set

(8) - liminf /) = sup{t; {z}U f(t,00) € S@)},
(6) - limsup f(y) = inf{t; {x}Uf(~o0,) € S(a)},
f(y) o)

(S)-Df(z) = (§)- lim nf £ —1
(S)=Df(z) = (S)- limsup ~—=2 f(y) f(:l:)

y—z —T

Theorem B Let T be a collection of nonnegative subadditive interval func-
tions, and let S be a local system such that Y(I) < Vi(v,S) for every interval
I and any iy € T. Let f be a real function with the following properties:

(i) Af~ € T (where Af~[a,b] = max{f(a) — f(b),0}),
(ii) (S) — Df > 0 almost everywhere,
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(ili) (S) — Df > —oo vs-almost everywhere (where vs(E) = V(Af~,S,E)).
Then f is nondecreasing.

Theorem 2 Let S be a local system satisfying condition (SD) and let f be a
real function with the following properties:

(a) (57) — limsup, ., £(s) < £(z) for every a,
(b) (St) — Df >0 almost everywhere,

(c) (St) — Df > —oo everywhere except possibly at points of a denumer-
able set, every point T of which satisfies the inequality f(z) < (St) —
liminf, ¢ f(y).

Then f is nondecreasing.

PROOF. Put ¢[a,b] = Af~[a,b] = max{f(a) — f(b),0}. Then 9 is a non-
negative subadditive interval function. We will show that the assumptions of
Theorem B are satisfied (for the collection 7 = {1} and the local system S+).
From (a) it follows that, for every = and each positive ¢, there is S € S™(z)
such that f(y) < f(z) +efory € S. Let S; = SN (—00,z]. Then S; € S™(z)
and ¥y, z] < € whenever y € S;. Thus ¢ is (S™)-continuous and the lemma
guarantees that ¥(I) < Vi(¥,S*) for every interval I. This means that con-
dition (i) of Theorem B holds. As (b) implies (ii), it suffices to show that (iii)
results from (c).

Let € > 0 and let = be a point of the set E = {z; (S*)—Df(z) = —oo}. (If
E = 0, then there is nothing to prove.) Since f(z) < (S*) — liminf,_,; f(y),
there exists S € S*(z) such that f(z)—e < f(y) fory € S. Put S; = SN[z, 00).
Evidently, S; € S*(z). Moreover, because the family C = {[z,y]; y € S1\{z}}
is an (S*)-cover of {r}, and each family of nonoverlapping intervals from C is
one-element. Therefore

Vf({m}) = V(Af-7S+v {I}) < Var (¢7C) = Sup{*/J[l‘,y]; AS Sl} <e.

By the arbitrariness of €, we get v¢({z}) = 0. As E is denumerable, condition
(iii) of Theorem B holds. This completes the proof because Theorem B implies
that f is nondecreasing. O

Corollary 3 Let S be a local system satisfying condition (SD) and let f be a
real function with the following properties:

(a') (S_) —lim Supy—oz f(y) < f(.’l:) fO’I‘ every z,
(b) (S*) — Df > 0 almost everywhere,
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(c) (S*) — Df > —oo everywhere.
Then f is nondecreasing.

Corollary 4 LetS be a local system satisfying condition (SD) and let f be a
real function with the following properties:

(a) (S7) = limsup,_,, f(y) < f(z) < (S*) —liminfy_.; f(y) for every z,
(b) (S*) — Df > 0 almost everywhere,
(c) (S*) — Df > —oo nearly everywhere.

Then f is nondecreasing.

Corollary 5 Let S be a local system satisfying condition (SD) and let f be a
real function such that (S) — Df(z) > 0 for every x. Then f is nondecreasing.
PROOF. Let € > 0 let g(x) = f(z) + ez. Then (S) — Dg(z) > € > 0 and
hence there is S € S(z) with g_(%z%(w_) >0fory € S\ {z}. Put S =

SN (—o0,z]. Then S; € S™(z) and g(z) > g(y) whenever y € Sy \ {z}. Thus
(S7) —limsup,_,, g(y) < g(z) and since (S*) — Dg > (S) — Dg > 0, Theorem
2 implies that g is nondecreasing. Consequently, by the arbitrariness of ¢, it
follows that f is nondecreasing. a

Now we formulate a generalization of Theorem 4.3 from paper [2]. Our
proof is almost identical with that in [2].

Theorem 6 Let S be a local system satisfying condition (SD) and let f be a
real function with the following properties:

() (57) - limsup, ., f(¥) < £(2) < (S*) — limin, . f(y) for every
(b) f(E) has void interior, where
E = {z; (5*) — Df(z) <0 and (S7) - Df(z) < 0}.
Then f is nondecreasing.

PROOF. Suppose to the contrary that f(a) > f(b) for some points a and b
where a < b. Since f(E) has empty interior, we can choose a point k ¢ f(FE)
for which f(a) > k > f(b). Put

A = {z€ab]; f(x) >k or f(z)=k and (S*)- Df(z) > 0},
B = [ab\A
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First of all, observe that (b) implies (S™) — Df(z) > 0 whenever z € B
and f(r) = k. Let £ € A. If f(z) > k, then by (a) it follows that (St) —
liminfy_,; f(y) > f(z) > k. Hence there is S € S*(z) such that f(y) > k for
y € S. Thus S C A and therefore, A € S*(z). On the other hand, if f(z) = k,
then (S*) — Df(z) > 0. Thus there is S € S*(z) such that S C [z,b] and

w >0 for y € S\ {z}. So we have f(y) > f(z) = k. Hence SC A
and consequently, A € S*(z) in that case also.

Analogously we prove that B € S™(x) whenever € B. Since, evidently,
a € A and b € B, we arrive at a contradiction to condition (SD) which
completes the proof. a

Thomson showed in his book [3] that many monotonicity theorems hold
for local systems satisfying the intersection condition. Now we prove that this
condition implies condition (SD).

We say that a local system S satisfies the intersection condition if, for any
choice of sets {S;; = € R} with S; € S(z), there is a positive function § on R
such that S; NSy N [z,y] # @ whenever 0 < y — z < min{é(x), 6(y)}.

Theorem 7 If a local system S is bilateral and satisfies the intersection con-
dition, then S fulfils condition (SD).

PROOF. Suppose that S is bilateral and satisfies the intersection condition
but does not satisfy condition (SD). Then there are a closed interval [a, b]
and nonempty sets A C [a,b], B = A [a,b] for which conditions (a) - (c) (of
Definition 1) hold. Without loss of generality we can assume that b € B. For
each z € [a, b], we put

s _{ AU(~o0,z) for z € A,
7| BU(z,00) for z€B.
Obviously, S, € S(z) for any z € [a,b]. Thus we can find a positive function
6 such that S; N Sy N [z,y] # @ whenever 0 < y — z < min{é(z),8(y)}.
Let a; € A be a right-hand accumulation point of B. Such a point exists.
If a does not fulfil this condition, we can choose as a; the right endpoint
of the component of A which contains a. In a similar way we find b; €
BN (ai, a1 + 6(a1)) which is a left-hand accumnulation point of A. Suppose
we have already chosen an increasing sequence {ai,as,...,a,} C A and a
decreasing sequence {b1,...,b,} C B with a, < b,. Then for a,;; we take
a point from A which is a right-hand accumulation point of B and satisfies
the inequalities a, < an41 < b, and b, — ap+1 < min{6(b,), %} Similarly
we choose b,4+1 € B such that b, is a left-hand accumulation point of A,
Ap41 < bn+1 < b, and bn+1 —ap41 < min{é(an+1), H-IT-T}
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Let ¢ = lima, = limb,. Then, for every positive integer n, we have

0<c—an <b, —ap <é(ay),
0<bp —c<bp—ant1 <6b(by).

Since ¢ € (a,b), ¢ belongs either to A or to B. Assume that ¢ € A.
(In case ¢ € B, the proof is similar.) Thus there is a positive integer n
with b, € (¢, ¢+ 6(c)). Hence 0 < b, — ¢ < min{é(b,),8(c)} and, therefore,
Sc N Sy, Ne,by] # 0. So, we have

B # [AU(=00,9]N[BU (n,00)] N[e,ba)
= ANBN[eb)CANB=0.
This contradiction completes the proof. O

It is easy to show that converse to Theorem 7 is not true. This results
from the following example.

Example Let

S(z) ={ACR; z€ 4, d.(4,z) >0 and d' (A4,z) > 0}.
Theorem A implies that S fulfils condition (SD). But from [1, Theorem 2] it
follows that S does not satisfy the intersection condition.
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