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 A CATEGORY BASE FOR MYCIELSKI'S

 IDEALS

 Given sets S C 2W and K C a;, the infinite game of perfect information
 r(5, K) is played as follows: Players I and II choose consecutive terms of a
 sequence x = (xo,Xi,X2, • • •) G 2W, player I choosing for i G Kc , player II
 choosing Xi for i G K. Player I wins if x G 5, player II otherwise.

 Now let M = ( Ks : 5 G 5g) be a system of subsets of cu such that Ks o U
 Ks 1 C and ifao H ATai = 0. (5g is the set of finite sequences of O's and
 l's). We further assume that each Ks is infinite and has infinite complement.
 In [1], J. Mycielski defined the translation-invariant a- ideal Im on by
 putting S e Im if> for all s G 5ç, player II has a winning strategy for the game
 T(S,-KË).

 Our purpose here is to try to solve the equation

 BAIRE PROPERTY ?

 FIRST CATEGORY ~ 7¡/

 In other words, if we think of the Im- sets as being, in some sense, of the
 first category, then which sets have the Baire property in this sense? More
 precisely, we want to find a cr-algebra B on which contains the Borei sets
 and includes Im, such that the quotient algebra B/Im is a complete Boolean
 algebra and a regular subalgebra of the Boolean algebra V(2 u)/Im> (This is
 an analogue of a well-known theorem of Birkhoff and Ulam of general topology.
 See section 1.1.)

 As we shall see, no such B exists. We therefore modify the problem. Do
 there exist a a-ideal M, and a cr-algebra B on 2^ such that M contains the
 same Borei sets as Im, B contains the Borei sets and includes M, and B/M
 is a complete Boolean algebra and a regular subalgebra of V(2UJ)/M?

 Assuming the continuum hypothesis, there does. (We don't know the an-
 swer in ZFC alone.) Our construction uses J. Morgan's theory of category
 bases. (We give a brief introduction to the theory of category bases in the
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 next section. For a real introduction, see [2] or [3].) Category bases generalize
 the topological theory of category. We shall introduce a category base C*M on
 2W. Our B and M will be, respectively, the Baire property and meager sets
 with respect to this new category base.

 1. Preliminaries

 We write Sq to mean the set of finite sequences (xo, £i, . . . , xn ) of O's and Ts,
 and 6 for the empty sequence. As usual, is the set of infinite sequences of
 O's and l's, endowed with the product topology based on the discrete topology
 on {0, 1}. The notions open, closed, Gó, Borei, nowhere dense, and first and
 second category are to be understood as being with respect to this topology.
 (However, Baire property and meager are not.)

 1.1 Category Bases

 The definitions in this subsection, and Proposition 1, are due to J. Morgan.
 (Cf. [2] or [3]).

 A category base is a pair (X, C) such that X is a nonempty set and C is
 a class of subsets of X such that the nonempty sets in C (the regions) satisfy
 the axioms:

 (1) * = l)C;

 (2) Let C be a region, and let Pbea nonempty family of disjoint regions
 that has power less than the power of C.

 (a) If C D (J *D contains a region, then there exists De V such that
 C C' D contains a region.

 (b) If C D 'JD contains no region, then C ' [ļfD contains a region.

 The most common examples of category bases are (i) all topological spaces,
 and ii) the pair ( X , C), where C is the class of sets of positive measure with
 respect to a fixed finite measure on X.

 Definition 1 Let A C X. A is said to be

 C -singular if, for every region C there exists a region C' C C such that
 C' DA = <p;

 C -meager if A is a countable union of

 C- singular sets ;
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 C-abundant if A is not C-meager;

 have the C-Baire property if, for every region C there exists a region
 C' C C such that either C' D A is C-meager or C' ' A is C-meager.

 We write 5(C), M(C), and 13(C), respectively, for the classes of C-singular,
 C-meager, and C-Baire property sets.

 Proposition 1 (Morgan) Let ( X , C) be a categorij base.

 (i) M(C) is a a -ideal on X.

 (ii) B(C) is a a-algebra on X.

 (Hi) (The generalized Banach category theorem) Let Ac X. Suppose that for
 every region C there exists a region C' C C such that C' D A is meager.
 Then A is meager.

 Now consider the quotient Boolean algebra V(X)/M(C), and its important
 subalgebra, the category algebra B(C)/M(C). For A C X, let [A] be the
 equivalence class of A 'mod M(C).y We have

 Proposition 2 (The generalized Birkhoff-Ulam theorem) For all category
 bases (X,C), B(C)/M(C) is a complete Boolean algebra, and a regular subal-
 gebra ofV(X)/M(C).

 In detail: For all £ C ß(C), supAee[A] exists in the algebra V(X)/M(C),
 and is an element of the algebra B(C)/M(C). It follows from the general theory
 of Boolean algebras that sup Aes[Ä' also exists in the algebra B(C)/M{C), and
 the two suprema coincide.
 For proof see [3], Theorem C15. For the case where (X,C) is a topological

 space, this is a classic theorem of Birkhoff and Ulam. (Cf. [5], p. 75.)

 1.2 A Bit More about Games

 We shall require a few more definitions related to the games described in the
 introduction.

 For K C cj, we define a if -strategy to be a function r with domain the set
 of sequences (xo,xi, . . . ,x^_i) G Sq where k e K, and range {0, 1}. Given a
 K°- strategy a and a if -strategy r, a * r is the element x of 2 w defined by

 _/ <t(x0, . . • ,£fc_i) if k G Kc,
 Xk~ X t(xq, ■ ■ . ,Xfc_i) if k € K.
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 Let r be a if-strategy. We define P(r), the set of possible outcomes of r, to
 be the set {a * r : a is a ifc-strategy }.

 Thus, with respect to the game T(5, K) of the introduction, we have: a
 winning strategy for player I is a if c-strategy a such that P(a) C S. A winning
 strategy for player II is a AT-strategy r such that P(r) fi S = 0.

 A if-strategy contains much superfluous information, namely the moves
 which the player using it would make in situations which can never arise
 during a game in which it is employed. The following proposition may clarify
 this situation somewhat, and will in any event be useful.

 Lemma 3 Suppose that a is a K -strategy and a' is an L-strategy.

 (i) If a C a', then P(a) D P(a').

 (ii) If P(a) D P(a'), then there exists an L-strategy a" such that a C a"
 and P(a") = P(cr '). (In particular, K C L.)

 (Hi) If L'K is infinite, then P((t') is nowhere dense in P(cr), where the latter
 is endowed with the topology induced as a subspace of 2".

 The proof of (i) is entirely straightforward; to prove (ii), let a"{x o, . . . , Xk-i)
 = cr(xo, • • • ixk- 1) if k e K, and <t'(xo , • • • if k e L ' K. To prove (iii),
 observe that, if (xo, . . . ,Xjt) is any finite sequence in which play has followed
 the strategy cr, then we may choose n G L'K such that n > fc, and extend
 (xo,...,Xfc) to a sequence (xo, . . . , xn) which still follows a but not cr', by
 taking xn ^ <r'(xo, . • • , xn- 1).

 We conclude this section with some basic results of Mycielski [1] about the
 ideal Im-

 Proposition 4 (Mycielski) .

 (i) Im is a translation-invariant a -ideal on 2" .

 (ii) Im contains all singletons (and so, by (i), all countable sets).

 (Hi) If S e Im, then there exists a Qs set S' such that S' D S and S' e Im-

 2. The Trouble with IM-

 We first prove the negative result mentioned in the introduction.

 Theorem 5 There does not exist a a-algebra B on 2U which contains the
 Borei sets and includes Im, for which B/Im is a complete Boolean algebra
 and a regular subalgebra ofV{2UJ)/lM •



 102 Kenneth Schilling

 Proof. This is an application of the technique of 21.4 of [5]. It suffices
 to find a collection of Borei sets with no supremum in the Boolean algebra
 V(2 ^/Im- To this end, let (x$ ģ. £ < 2Ho) be an enumeration of 2K%, and let
 (Bç : £ < 2n°) be an enumeration of the Qs sets which are elements of Im- Set
 Aç = {xf} X 2Ke ; thus the sets Aç are closed, disjoint, and not elements of
 Im> Now the set £ = {[j4¿] : f < 2K°} has no supremum in V(2(jJ)/Im • Indeed,
 suppose that A is a subset of 2W such that [A] > [Ą] for £ < 2H°. Choose
 yç e (Aí) Aç) ' B$. Then Y = {y^ : £ < 2**°} (ļi Bv for all 77, so by 4(iii),
 Y £ Im- On the other hand, Y D A$ = {2^} e Im , so [A] > [A - Y] > [A^],
 i.e., A is not the supremum of £ in V(2uj)/Im - The proof is complete.

 Corollary 6 There is no category base (2^,0) such that all Borei sets have
 the C-Baire property , and the class of C-meager sets coincides with Im-

 3. The Category Base (2 u,Cm)

 Prom here on, we assume the continuum hypothesis.
 Recall that, for a strategy a, P(cr) is the set of all possible outcomes of

 games played according to a. We define the category base (2^, C*M) by putting

 C*m = {PfoiW a ^-strategy for some s e Sq}.

 In other words, a region in C*M is the set of possible outcomes of some strategy
 for player I in one of the games T(5, Ks).

 Remarks:

 1. Because we assumed that Ks is infinite for all s G Sq , every region in
 C*M is a perfect set. In fact, (2u>iC*M) is a perfect base in the sense of [3].

 2. Clearly, if S contains a region, then S & Im- A partial converse holds.
 Call a set S M -determined if, for all s G Sq, the game T(Sy Ks) is determined.
 (In particular, by the theorem of D. A. Martin that all Borei games are deter-
 mined, every Borei subset of 2 w is M-deter mined.) If S is an M-determined
 set, then S contains a region if, and only if, S £ Im-

 We first show that we in fact have a category base.

 Theorem 7 (2U ,C*M) is a category base.

 Proof. Condition (1) in the definition of category base is obvious. Let C
 be a region in C*M , and let D be a nonempty family of disjoint regions of
 power less than the power of C*M. Since C*M has the power of the continuum
 and we have assumed the continuum hypothesis, must be countable. (By
 the way, we shall have occasion to invoke the continuum hypothesis only one
 other time, in the proof of theorem 13.)
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 2(i). Suppose that, for all D G 2?, C fi D contains no region. Since each
 C n D is a closed set, by the remark above we have C D D G Im- Since D is
 countable and Im is a cr-ideal, Cfl 'JD g/m,soCD 'JfD contains no region.
 2(ii). Suppose that C D 'JD contains no region. Since C D (JP is a Borei

 set (an Ta set, in fact), by another use of the remark above, C D [jV G Im-
 Now suppose for contradiction that C ' [JfD contains no region. C ' (J *D

 is a Qs set, and soC ' 'JT> G Im- But then C = (Cr I (JT>) U (C' (J T>) G Im ,
 contrary to the hypothesis that C is a region. The proof of the theorem is
 complete.

 Corollary 8 The Boolean algebra B(C*M)/ M(C*m) is a complete Boolean al-
 gebra, and a regular subalgebra of V(X) / M (C*M ).

 Lemma 9 Let S C 2W. The following are equivalent:

 i) S is C*M -singular.

 ii) If g is a Kg -strategy, then there exists a K¿, -strategy a' D a such that
 P(a') nS = (ļ).

 This follows immediately from 3 and the definition of singular sets.
 A category base is called a Baire base if no region is meager.

 Theorem 10 (2 u ,C*M) is a Baire base.

 Proof. Suppose for contradiction that C is a region, and that C = U¿^o ^
 where each Ai is C*M -singular. Say C = P(c r), where a is a if^-strategy.
 Applying 9 repeatedly, we obtain a sequence of strategies a C 0' C cr2 C • • -,
 where o* is a Ä^.-strategy and P(ctí) D Aí = <p. Now consider the (JSi ^Si~
 strategy à - (JSi 0i • Then we have, by 3,

 oo oo

 4> í P(â) c P(c j) n p| p{0i) c c' (J Ai
 i=l i= 1

 which contradicts our initial hypothesis.
 We can now characterize the exact relationship between Im and the C*M-

 meager sets.

 Theorem 11 Let A C 2W. Then the following are equivalent:
 (i) A e Im-
 (ii) A is M -determined and C*M- singular.
 (Hi) A is M -determined and C*M- meager.
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 Proof.

 (i) - ► (ii): Let A e Im- It is immediate from the definition of Im that
 A is M-determined. To see that A is also C^-singular, suppose s e Sq and
 <j, a if£-strategy, are given. Let r be a winning strategy for player II in the
 game r(A, Kso). Since K¿nK3 o = <j> and K ^ D K^UKgo, there exists a
 strategy a' such that c' D a U r. Therefore P(cr') c P(cr) fl P(r) C P(cr) ' A ,
 which completes this part of the proof.

 (ii) - > (iii) is trivial.
 (iii) - ► (i): Let A C be M-determined and CJ^-meager. Since (2W, C*M)

 is a Baire base, A cannot contain a region. By M- determinacy and the remark
 above, A G Im-

 The proof of 11 is complete.

 Corollary 12 Every Im -set is C*M -meager. Every Borei C*M -meager set is in
 Im-

 Theorem 13 The inclusions Im C S(C*m) C M(C*m) hold and are stńct.

 PROOF. The inclusions are given by 11. Now suppose for the purpose of
 contradiction that Im = S(C*M). That makes S(C*M) a <r-ideal, so in fact Im
 = S(C*M) = M(C*m). But from 5 and 8, it is clear that M(C*m) ± Im, and
 the first part of the proof is complete.

 It remains to show that S(C*M) ^ To this end, let ( P(a ¿) : f <
 2No) be an enumeration of the C^-regions. We will define by recursion a
 function / : 2**° - ► u and, for £ < 2H° and n e u, a K^-strategy ag and
 xç e 2" such that, for all £,£' < 2No, n e u,

 (1) aļ? D g £ , and erg is a ^-strategy for some s G Sq of length > n,

 (2) e P(<7C)

 (3) Iff > £, then x( £ P(er£), and

 (4) If f f and /(£) = n, then <1 P(cr^f).

 Assuming for the moment that we have done so, let An = {x$ : /(£) = n}.
 Then for all regions P(<7¿), by (2), e P(cr ¿) D (jn An, so |Jn An is not C*M-
 singular. However, for all n € u) and all regions P(cr{), by (1), (3) and (4),
 P(a£) C P(<rç)'An, so An is C^-singular. Thus |J nAn e M(C*m)'S{C*m),
 which completes the Proof.

 To carry out the construction, suppose rj < 2H(), and /(£), erg and xç
 have been defined for £ < rj and n G u so as to satisfy (l)-(4). Say is
 a ^-strategy. Since K¿0 ' Kcs is infinite, it is easy to see that there are
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 2No K%0- strategies a D such that the regions P(cr) are pairwise disjoint.
 Temporarily take crn, n e u, to be any lj of these strategies a having the
 additional property that x f & P(&) for all £ < rj. Finally, choose a™ to be
 some KcSn strategy where sn is of length > n and a™ D an. Thus (1) and (3)
 hold for £, f ' < 77.

 Next, choose n E u greater than the length of the given sequence s, and

 let /(77) = n. By 3, P(c r^,) is nowhere dense in P(c r^) for £' < rj. As we are
 assuming the continuum hypothesis, rj is countable, so U^'Ctj ^^e
 first category in P((Jt)), so we choose xv e P(vti)''Jç><ri P(&£>)- Thus (2) and
 (4) are satisfied for £,£; < 77, and the proof of 13 is complete.

 Call a set A strongly M-determined if, for all closed sets F C 2W, A fi F
 is M-determined. The following guarantees an adequate supply of C^-Baire
 property sets.

 Theorem 14 Strongly M-determined sets have the C*M-Baire property. In
 particular, Borei sets have the C*M-Baire property.

 Proof. Let A be a strongly M-determined set, and let C be a region. Then
 C is closed, so C D A is M-determined. Thus either C fi A contains a region
 or C n A G I Mi in which case C fi A is CJ^-meager.

 Corollary 15 Analytic sets have the C*M-Baire pro ^ triy.

 Indeed, it is shown in [4] that B(C) is invariant Uhuer the operation (.4)
 for all category bases C.
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