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 INVERSION OF THE CROFTON

 TRANSFORM FOR SETS IN THE PLANE

 Abstract

 The genesis of this paper goes back to a question posed years ago by
 the late H. Steinhaus, "About two plane arcs both of finite lengths it is
 known that every line in the plane meets both at the same number of
 points (which may be zero or oo). Must the arcs be identical ?" This
 question in answered in this paper using the Crofton transform. For
 a fixed set in the plane the Crofton transform for that set is defined
 as the number of points in which the set meets a variable line in the
 plane. In this paper we construct an inversion of the Crofton transform
 within a certain class of plane Borei sets, a somewhat weak form of
 inversion retrieving from the Crofton transform (actually from the cross-
 integral function, which is somewhat stronger) the closure of the set
 rather than the set (or the set modulo a set of linear measure zero)
 itself. We also establish uniqueness (or rather a degree of uniqueness) of
 two plane sets from the same class, whose Crofton transforms coincide
 over certain families of lines. This answers a stronger version of the
 original Steinhaus question.

 1 . P r eliminar ies

 The setting of our considerations is R2 which for convenience is assumed to
 be the complex plane. Throughout the paper we adhere to the following
 customary notation and terminology for sets A, E C M2 and z G M2.

 E + z denotes the z translate of E .

 6 (z, E) denotes the distance from z to a set E.

 Ô(A,E) denotes the distance between A and E.
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 diam (E) denotes the diameter of E.

 U(z,r) denotes {w G M2 : 'w - z' < r}.

 C denotes the unit circle, C = dU( 0, 1) = {v G R2 : 'v' = 1}.

 dom$ denotes the domain of the function

 We shall casually use the same notation 'E'k for k dimensional, k =
 0,1,2,... (Hausdorff, in particular Lebesgue) measure of a set E regardless
 of the particular space in which the measure is considered. (For k = 0 the
 measure is the so-called counting measure.)

 Also it is necessary to adopt some additional notation, which is listed here.

 Bor (X) denotes the class of Borei subset of a (topological) space X.

 If D C A x B and if a G A, b G -B, then the a- section and b- section of D
 are the sets Da = {y : (a, y) G D} and Db = {x : (x, 6) G D}.

 L denotes the set of all the straight lines in M2.

 I denotes an individual line from L.

 Z[¿i, ¿2] denotes the smaller of the angles formed by the two lines ¿1, £2 G
 L. Note that 0 < Z[¿i,¿2] < 7r/2.

 L° denotes the subset of L consisting of lines passing through 0.

 t° denotes an individual line from L°. In particular the same notation is
 used for the line from L° which is parallel to a given l G L (the projection
 of t into L°).

 £{E, z) denotes the line tangent to a set E C M2 at a point z e E if the
 tangent line exists at z.

 i1- denotes the line from L° which is perpendicular to £ G L.

 w(£) G M2 denotes the point of intersection of (^0)-1 and £.

 For :Gl2 and v G C we write £(z, v) for the line through z in the direction
 v. Note that £(z,is) = £(z,-v) and L° = {£(Q,v) : v G C}. The set L°
 can be metrized by letting Z'£,£') be the distance between the lines £ and
 £' . The product L° x M2 (which is locally M3) carries the measures of M3,
 I . 'ki k = 0,1,2,3. We have a one-to-one mapping £ - ► (£°,w(£)) of L into
 L° x M2. The image of L in this product is a two dimensional surface (actually,
 a Möbius strip) M. Let £ € LP. It is easy to see that the fiber {£ G L : £° = £}
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 of M is the straight line Í xi1 cL° xR2. The one-to-one mapping between
 L and M can now be used to induce a metric and measures, | - |fc; fc = 0, 1, 2,
 on L from M . Note that convergence limn_*oo in = £ in the induced metric is
 convergence in the set theoretical sense. A sequence, {An}, of sets converges
 in the set theoretic sense to the set A means if an E An for each n e N and if
 limn_>oo ûn = a, then a e A and conversely every a e A is the limit of such a
 sequence.

 Next we recall the following result due to Besicovitch concerning the struc-
 ture of a linearly measurable subset of the plane of finite linear measure. (See
 [2] and [3].)

 Such a set can be decomposed into two disjoint parts , a regular part and an
 irregular part. The regular part is a subset of a union of at most a countable
 family of arcs each two of which are disjoint except possibly for their endpoints
 and the sum of whose lengths is finite. The irregular part projects in almost
 every direction onto a set of linear measure zero and also intersects with any
 arc of finite length in a set of linear measure zero.

 Note that since a subset of linear measure zero can be freely moved from
 the regular to the irregular part, this decomposition is unique only up to sets
 of linear measure zero.

 A set identical with its regular part shall be referred to as B-regular, when
 identical with its irregular part, as B-irregular. For regular and irregular parts
 of E we use the notation:^ (E) and 3 (E).

 We apply the following special terminology for a set E C M2.

 * E is linear if it is a subset of a line called its carrier , denoted by £{E).

 * E is multilinear if it is a union of finitely many disjoint linear sets, its
 subsets components.

 * E is metrically dense (in linear measure) at a point z if 'U(z, r)DE'i >0
 for every r > 0. (Also see [1].)

 * E is metrically dense in itself 'i it is metrically dense at each of its points.
 (Thus 0 is metrically dense in itself.) (In the linear case, see [1].)

 * E is rectifiable if it is linearly measurable with |i5|i < oo, and B-regular.
 It is strongly rectifiable if in addition 'cl(E)'2 = 0.

 (Note that a strongly rectifiable set is nowhere dense in M2.)
 The result of this paper applies to the class of those Borei subsets of finite

 linear measure in the plane whose B-regular parts are strongly rectifiable.
 (However, in what follows no assumptions are made beyond what is actually
 needed to prove each particular assertion.)
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 For a rectifiable set, E, recall that for almost every (in linear measure)
 point z e E the tangent t(E,z) exists. (Again see [2] and [3].) Accordingly
 almost every point of E falls into exactly one of the following three sets:

 * SL(E) = {z G E : |í7(z,r) D £(E,z) ' E'i = 0 for some r > 0}. Such
 points are called strongly linear.

 * NL(E) = {z G E : |ř7(z,r) D £(E,z) '£|i = 2 r for some r > 0}. Such
 points are called non-linear.

 * WL(E) = {z G E : 0 < 'U(z,r) (M{E,z) 'i£|i <2 r for all r > 0}. Such
 points are called weakly linear.

 In addition

 * z e E is said to be metńcally laterally non-isolated if the set E ' £( E , z)
 is metrically dense at z; otherwise, it is metńcally laterally isolated.

 Write SLN ( E ) and SLI (E) for the two complementary subsets of SL(E) made
 of metrically laterally non-isolated and metrically laterally isolated points.

 Definition 1 Let E C M2 be a measurable rectifiable set and let 6(z, E) > 0.
 The tangential support set, Ts(Eiz), of E at z is defined by

 Ts(E, z) = G E i z G ^(.£/, t¿) }.

 It is not hard to see that

 Ts ( E , z) = {u G E : z - u is parallel to £[E , u)}.

 Definition 2 Let E C M2 be measurable. Then the spectrum of E, Sp{E), is
 defined by Sp(E) = {z G M2 : |ís(i£, z)'' > 0}.

 Note: Let E be a rectifiable set. Then SL(E) U WL(E) C E D Sp(.E) and
 U{¿ : '£ n E'i >0} C Sp(E). Also Sp(£) contains at most countable many
 lines.

 Definition 3 A regular multidomain is a finite union of bounded closed do-
 mains whose boundaries consist of piecewise smooth arcs not containing a
 straight line segment.
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 2. A Few Preparatory Lemmas

 Lemma 2.1 A linearly measurable set E is a union of a set metrically dense
 in itself and a set of (linear) measure zero . (Compare to [1], page 138.)

 PROOF. If E is not metrically dense at z, then there is a r > 0 such that
 E fi U(zir) is of linear measure zero. Select a rational z' G M2 and a rational
 r' > 0 for which z G U(z',r') C ř7(z,r). Then E Pi U (z' , r') is of linear
 measure zero. The (countable) union of all such portions, E D [/(z',r'), is
 of linear measure zero. After removal of this part from E what remains is a
 subset of E which is metrically dense at each of its points. □

 Observe that to an E which has a closed B-regular part one may uniquely
 assign a B-regular part which is metrically dense in itself. By Lemma 2.1 it
 suffices to delete from that closed part the non dense in itself subset of linear
 measure zero (moving it to the B-irregular part) and subsequently close again
 what remains.

 In the sequel we shall make use of the following lemma dealing with a
 property of measurable subsets of the real line

 Lemma 2.2 Let E C M be measurable and let J = (a, b). Suppose both E
 and its complement are of positive measure in J; that is, 0 < | J D E'' < Mi.

 l t

 PROOF. Let #o, 2/o £ (ß»&) have metric density one and zero respectively
 in E. Without loss of generality assume that £o < 2/o- Let e > 0. There
 is h G (0,£o - a) so small that |(xo - £/2,xo + t/2) D E' > (1 - e)t and
 '(y0 - ¿/2,2/o + ¿/2) H E' < et for 0 < t < h. Select n G N so large that
 (yo-xo) < ¿ _ (yo-xo) an(j se£ = xq - ^ + kt îov k = 0, 1, ..., n + 1 thus
 partitioning the interval J* = [xo~t/21yo+t/2) into n+1 subintervals of equal
 length t. The interval [qo^qi) = [xo - t/2ixo + 1/2) is the first and [qn,qn+ 1) =
 [: 2/0 - t/2, t/o + t/2) is the last of them. Add an extra interval [q-',qo) at
 the beginning by setting q-' = qo - t. Accordingly J* fi E is partitioned
 into the n + 1 subportions E^ = [qk,qk+i) H E; k = 0, 1, ...,n. Add the extra
 subportion, E-' = [q-iiqo)r'E. We have J*C'E = U k=oEk and J*n(E + t) =
 U£~ii (Ek + 1) = Uļ=0(Ek-i + 1) and for their difference J* fi ((E + t) ' E) =
 Wļ=0((Ek-i +í) 'Ek). For each k = 1 ,...,n shift [qk,qk+ 1), so that it will
 overlap with the last interval [yo - 1/2, 2/0 + 1/2). The portions (Ek- 1 + h) ' Ek
 shifted along with the intervals containing them become subsets of the last
 interval and actually, jointly with the last portion En (which remained in
 place) they form a partition of the (shifted) first portion Eq into disjoint sets.
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 This fact yields
 n

 |^>|l = £|(£fc-l+i)'£*|l + l^,|l-
 k= 1

 Thus we obtain

 'Eo'i-'Enh = 'UÏ=1(Ek-1+t)'Ek'l
 < |J*n((E + t)'£)|! < |Jn((E + /i)'E)|i

 and since |£?o|i _ 'En'i > (1 - č)t - et and |¿?-i|i < t ,

 'Jn((E + t)'E))U . x 2,

 which in view of arbitrariness of e proves the lemma. □

 Definition 4 ^4 function f with with domf open in M2 is d-smooth if at every
 z e domf it has directional derivative in every direction. A function f of the
 form / = / + /' where f is d-smooth and f - 0 1 • I2 almost everywhere in M2
 is d-smooth equivalent.

 For the final lemma of this section we introduce three differential operators
 acting on d-smooth equivalent functions.

 Definition 5 Let f be a function with domf open in M2, let z G M2 and let
 ueC.

 r' Î f(z + tv)~f(z)
 (1) Dvf r' = limť_>0+

 (ii) For i = £(z , v) let S¿f(z) = Duf(z ) + D-Uf(z).

 (iii) For t = £(z , v) let

 Stj(z) = limaup í{z + + 1(z - - í{z + ^ - i(z - 0l/) ,
 *-►0+ t

 where f(z ± Ov) = limť_o+ f(z ± tv).

 Note that if / is differentiable at z, then S¿f{z) = 0 for all ť G L. Also
 Se does not require / to be defined at 2. It suffices that z is a limit point of
 dom / which contains U(z, r) fi i ' {z}.
 Clearly for a d-smooth function Du) is the one sided directional derivative

 operator and S¿ = S¿.
 The kernel function (j> introduced below will play the role of an integral

 kernel in the sequel. It is defined in terms of the function ip introduced next.
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 Definition 6 For z G M2 ' {0} and for fi e C set i/>(z, /¿) = Im (^) .

 Note that ip is harmonic in z with a pole at 0 and vanishes along its
 null line , ¿(0,/i) = {z : z/'z' = ±/i, z ^ 0} = ¿°(0,/i). Moreover iļ)(z, ß) =
 - sin(argz - arg/i)/|z| and ip(z,ß) = - ip(z , -/i).

 Definition 7 Let z G M2 and let £ G L with direction G C. Set

 Kz,e) = «z.ril = |sln(arg'z|"artt')1 = 8l"4<CWI;|),<l

 Clearly </>(z, £) > 0, has the same null line as ip(z, /¿), which for <f> is its line
 of symmetry, is continuous in its domain, is harmonic in z outside its null line
 and 4>(z,i) < |z|_1. The following lemma contains a few more properties of
 both functions, ip and </>.

 Lemma 2.3 Let u,z G M2, let v, fi G C and let £ e L.

 (a) For u e £ <p(u - z, £) is harmonie in z for z £ £.

 (b) Let u ^ z and let £ = £(u, u). Then Dv'àxg{u - z) = ip(u - z,v) and
 I Dv arg(u - z) I = <'){u - z,£).

 y s -r / * r m, , ' zexp(2í(arg(i¿ - z) + arg/z))
 (c) y s Letu -r / z G £ * G L. r ThenVuipiu-z, m, , fi) ' =

 I u - z'¿

 (d) Let u be on the null line with u ^ z. Then

 lim Dv<'>(y! - z,£!) = Dy(j)(u - z,£) (2.3 .d*)
 u'- >u,¿.[¿' yi} - *0

 and

 'Dv(¡){u - z,£) I < ļ - - - ¡z. (2.3 .d* *)
 'u - Z'z

 (e) Let u be on the null line with u ^ z. Then

 n ¡z ß'
 Dy(ļ){u n ¡z z, ß'

 I z - u 12 'z.

 (f) Let u be on the null line with u ^ z. Then for £' G L° S¿>(¡){u - z, £) =
 2 cos /.[£,£'] /T ■ , r, , , 2 N
 - ¡

 'u - z r 'u - z'
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 Proof, (a) Replacing z with u- z one observes that for z ^ £ 0( u-z , ¿(z, /x)) =
 ±'¡)(u - z, /x) where the sign is + or - depending on which side of the null line
 the point u lies. (Note: On the null line <j> is continuous but not differentiate.)
 (b) It is elementary to establish that Vu(arg(u - z)) = i(u - z)'u - z |~2.

 Consequently,

 Dv arg(u - z) = |VU arg(u - z)| • cos Z (Vu(arg(u - z)), v) =

 sin(arg(t¿ - z) - arg v)

 Hence |JD^arg(i¿ - z)' = 'ip(u - z, v) | = <f)(u - z,£) where £ = £(0 ,v).
 (c) By elementary calculation

 d S(z) _ 29(z) • íR(z) _ -2sinarg(z) • cosarg(z) __ - sin(2 arg(z))
 di W = _ í# " _ M5 __ ~ W

 and

 d 3(z) (3ř(^))2 - (3(^))2 _ cos2arg(z) -sin2arg(z) _ cos(2arg(z))
 dy 'z'2 |z|4 'z'2 'z'2

 Thus

 9(z) - sin(2arg(z)) + zcos(2 arg(z)) _ żexp(2żargz)
 |z|2 |z|2 |z|2

 and ^(z, 1) = Im(l/z) = -7m(z)/|z|2 yields V^(z, 1) = -żexp(2ż argz)/|z|2.
 Clearly, for t¿, z G M2, u/zwe obtain the expression as stated in (c).
 (d) (2. 3. d*) is easily verified from the definition of </> and of the operators

 involved. The estimate (2.3.d**) follows directly from part (c) of this lemma.
 (e) iļj(u - z, /i) is differentiate on its null line for u ^ z and also antisym-

 metric with respect to it. Thus for u situated on that line Du'l){u - z, fi) =
 -Duip(u - z,ß) which implies the first equality of (e) for <ļ> = 'tp'. From part
 (c) of this lemma we get that for the points u on the null line; that is, points
 satisfying arg(u - z) = ±/i, Vip is perpendicular to the null line from which
 (e) is a direct consequence.
 (f) This follows immediately from part (e) of this lemma. □

 3. The Crofton Transform and the Cross Integral. More
 about L and More Preparatory Lemmas.

 Definition 8 Let E C M2. The Crofton transform ( Crofton function ) of E ,
 Ne, is defined by Ne{£) = '£ fl E'0. ( See [Ą].)
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 Thus Ne maps L into {0}UNU{0, 00} counting the number of points in in E .
 Note that NE{£) = J£Xe(u) 'du'0.

 We need certain known properties of the Crofton functions of Borei sets.
 Their proof are included to make the paper as self-contained as possible. The
 next three lemmas deal with sets of lines in L and with the properties of the
 Crofton function. The first uses the continuous mapping T : L° x M2 - > L
 defined by T(¿, z) = z + £ and exploits the one-to-one mapping of L into
 L° x M2.

 Lemma 3.1 (a) Let E G Bor (M2). The support , suppNs, of the Crofton
 function of E is ' - {2 measurable in L. The sections ( suppNe)¿ = {¿ G
 suppNs : fi = £} and ( suppNs)2 = {z + fi G suppNs : fi G L0} are
 |'|i measurable in their respective spaces.
 (b) For A G Bor (L) the section ( T~1(A))Z = {fi e L° : z + fi e A} is in
 Bor (L°) for every z. Moreover , |A|2 = 0 if and only if |(T_1(i4))z|i = 0 for
 I • 1 2 almost every z G M2.

 PROOF, (a) For z e E and fi G L° evidently z + fi G suppiV^. On the other
 hand if £ G suppiV#, then there is a, z e E such that z-fř°G suppiV#. This
 means that suppiV# is the T-image of the set L° x E. A continuous image
 of a Borei set is a Suslin (analytic) set. So suppiV# is a Suslin set in L. Its
 £ sections and z sections are intersections of suppiV# with closed subsets of
 L and hence Suslin sets. It is known that Suslin sets are measurable. Thus

 supp Ne and both types of sections are respectively two and one dimensionally
 measurable in their respective spaces.

 (b) Set# = T~1(A). By Fubini's Theorem |-A|2 = 0 if and only if 'A£o'i = 0
 for I • |i almost every fi. Observe that B¿ 0 = {(z, fi) : z + fi G A} = U {(z,fi) :
 z G £ e A¿o}. Thus 'B£o'2 = 0 if and only if |Á¿o|i = 0. By Fubini's Theorem
 I-BI3 = 0 if and only if |Ąo|2 = 0 for | • |i almost every fi. By the previous
 observations |i?|3 = 0 if and only if 'A'2 = 0. Also By Fubini's Theorem
 |i?|3 = 0 if and only 'Bz'ï = 0 for | • I2 almost every z G M2. □

 Lemma 3.2 Let E G Bor (M2). Then NE is a Borei function on L. Moreover
 if E is rectifiable , then JL Ne{£) 'd£'2 = 2|9t(i£)|i. (This is known as the
 Crofton formula.)

 Proof. First show that if E G Bor (M2), then Ne is a Borei function.
 For m G N let : k = 1,2...} be a Borei partition of E into subsets
 with diam Ek,m < 1/ra. Let Xk,m : I/ - > M be the characteristic function of
 suppiV^ It is easy to see that the values of Xktm do not decrease with
 increasing m. Actually when Ne(£) < 00, they eventually equal Ne(£)', oth-
 erwise they tend to 00. In other words, the nondecreasing sequence Xkym
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 of functions converges pointwise everywhere on L to Ne- By Lemma 3.1 (a)
 XkyTTi is a Borei function on L and for each m e N so is ^ k Xk,m- Thus Ne is
 a Borei function. This concludes the proof of the first part.
 Let E be a subset of a rectifiable arc S and as before let {Sk,m - k = 1,2,...}
 be a partition of S into subarcs with diam (Sfc,m) < 1/m. Let be the chord
 joining the endpoint of Sk,m containing the first endpoint but not the second
 (except for the last which contains both endpoints). The union of these cords
 is a polygon 5m, inscribed in S. a straight line segment J The projection
 of the chord JklTn onto £° G L° is a segment of length |Jfc,m|i • | cos0fc,m(¿°)|
 where 0fc,m(¿°) is the angle between Jfcł7n and £°. Thus for each £° e L° except
 for that £° parallel to we have L0 NJk m(u) 'du'i = | Jfc,m|i| cos0fc,m(¿°)|.
 Integrating with respect to £° over Lö yields fLNjkm(£) 'dq2 = 2|Jk,m|i. By
 the choice of the cords Jfc,m, we have Nsm = J2k^Jk,m and5 except for the
 countable set of lines containing the chords Nsm(£) does not decrease
 with increasing ra. Moreover except for those lines that meet S locally in
 exactly one point, Nsm{¿) tends to Ns(£). These exceptional lines are known
 as support lines. The number of them in any one fixed direction is easily seen
 to be countable. Hence by Fubini's Theorem the set of support lines is of | • I2
 measure 0. Thus Nsm converges almost everywhere on L to Ns . So by the
 Lebesgue Monotone convergence theorem,

 [ Ns(£)'d£'2= lim [ NSrn(e) 'd£'2 = m- lim = 2|5|x JL m-too J ļ m- 00^

 which verifies the Crofton formula thus far for an arc. From an arc, 5, the
 formula extends to a union of disjoint subarcs of S and thus to open (relative
 to S) subsets of S. From there it extends to G s subsets of S using the Lebesgue
 Dominated Convergence Theorem. But this implies that the formula holds for
 every E G Bor (S). Finally, the formula extends to Borei subsets of countable
 unions of rectifiable arcs each two having at most endpoints in common. Thus
 by the Besicovitch structure theorem, it extends to all rectifiable B-regular
 Borei subsets of M2.

 The B-ir regular part of E is also a Borei set. Hence its Crofton function
 is a Borei function. By the property characterizing the B-ir regular part, its
 Crofton function vanishes | • |i almost everywhere on every section {£ : £° =

 const} through L which implies Ą£.£ o=constļ N 3 (E)(w ) = 0. By Fubini's
 Theorem / Ny (E) (£) 'd£'2 =0. □

 Lemma 3.2 immediately implies the following corollary:

 Corollary 3.3 The Crofton function of a rectifiable Borei set is finite | • '2
 almost everywhere on L.
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 The function defined next is crucial for our considerations. It is called the

 cross integral

 Definition 9 For a rectifiable E G Bor (M2) and z G M2 let

 Ce{z)= [ Ne(Z + £°) I ťiř° 1 1 .
 J L°

 Lemma 3.4 (a) Let E G Bor (M2) be rectifiable. Then Ce is a Borei function
 on R2. and Ce(z) = Cx(z).
 (b) Let Ei, E2 G Bor (M2) be rectifiable. Then the following are equivalent:

 (*) Nex(£) = Ne2(() for I • I2 almost every £

 (**) CEl(z) = Ce2(z) for I • I2 almost every z.

 PROOF, (a) The first part follows from general facts about product integration.
 Since C e = ^ 1S enough to note that as a consequence of

 Lemma 3.2 JL0 Ny ^(z + £°) 'd£°'i = 0 for | * I2 almost every z e R2 which
 proves (a).

 (b) By (*) the set A = {£ G L : (£) ^ Ne2 (^)} is of | • I2 zero. Therefore
 by Lemma 3.1 (b) for ļ • I2 almost every z G M2 the section G L° : z+£° G A}
 is of |-|i zero. Thus both cross integral functions in (**) are equal for such z.

 Conversely if (**) holds, then | • I2 almost every z-section through A
 mentioned above is of | • |i zero. Thus 'A¡2 =0. □

 4. The Full Angle of Visibility, $E>

 For E G Bor (M2) rectifiable and z G M2 we define $e(z) which we call the full
 angle of visibility of E from the point z. (The intuition behind the choice of
 such a term will be clear after the proof of Lemma 4.2 (a).) It plays a crucial
 role in this paper.

 Definition 10 Let E G Bor (M2) be rectifiable and let z G M2. Then

 $e{z)= [ <t>(u - z,£{E,u)) 'du'i.
 JE

 The following lemma establishes certain properties of this function.

 Lemma 4.1 Let E G Bor (M2) be rectifiable. (a) <&e is finite and continuous

 on M2 ' cl(Ë). Moreover $e(z) < ^ 'E'i.
 o'z,E)

 (b) $E(z) = CE(z ) for zg12' cl(E).
 (c) If E is linear with carrier K, then $e is harmonic onR2 ' K.
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 Note: A rectifiable B-regular set E can be dense in M2 making the domain of
 continuity of $e empty. For a strongly rectifiable E the IR2 ' E is an open
 dense subset of M2.

 PROOF. First assume that E is a rectifiable arc, S, with arclength parametriza-
 tion u = u{s) : s € [0, |5|i]. The assertion (b) will be established first in this
 special case. Let z G M2 with 6(zìS) > 0. The function u{s) as well as
 arg(u(s) - z) are absolutely continuous on [0, |5|i]. Consequently the vari-

 ation of arg(u(s) - z) over that interval is arg(u(s) - z) | ds. Note
 that u' is the unit derivative vector of u. Using the notation introduced
 earlier we write '(d/ds) aig(u(s) - z) | = 'DU> arg(i¿ - z) |. By Lemma 2.3
 (b), 'DU>, arg(u - z)' = <ļ){u - z, ¿{E, u)). Thus the above integral equals
 JE(f>{u - z,£{E, u)) |du|i, which by definition is $e{z). On the other hand
 the variation of arg(u(s) - z) can be represented in terms of the so-called
 Banach indicatrix, lnd(0) = '{s e S : argi¿(s) = 6}'0. (Here it is assumed
 that arg(i¿) € [0, 2tt'.) In particular $s(z) = Ind (6) dO. It is easy to see
 that the right hand side of the expression above is the same as the cross in-
 tegral, Cs(z ), for the arc S which was introduced earlier. Thus (b) holds for
 rectifiable arcs.

 For (a) again in the special case of a rectifiable arc note that finiteness
 and continuity of $s in M2 ' 5 are among the basic properties of the integral
 by which $5 is defined. The estimate in (a) follows immediately from the
 definition of the kernel function.

 The properties (a) and (b) of the lemma are verified so far only for recti-
 fiable arcs. They are extended to any B-regular set as in the proof of Lemma
 3.2. The assertion (c) for a straight line segment is elementary and can be
 extended to any linear B-regular set again as in the proof of Lemma 3.2. □

 Lemma 4.2 For j = 1,2 let Ej G Bor (M2) with 'Ej'i < 00 and 91 {Ej)
 strongly rectifiable. Let T = {z : Ce1{z) = Ce2{z)}. Then the following are
 equiva,lent.ś

 (•) |M2'T|2=0.

 (••) T is metrically dense in M2.

 Proof. We shall show that (••) implies (•), the converse being obvious.
 By Lemma 4.1 (a) both functions .) are continuous on the open set
 M2 ' cl{$t{Ei) U 9ï(i?2)) which due to strong rectifiability of $t{Ej) is dense
 and of full | • I2 measure in M2. Furthermore, (••) and Lemma 4.1 (b) imply

 that CV)^ (Ei) = QH(£2) on set' Hence the equality on it of the two cross
 integrals, on a set of | • I2 full measure in IR2. By passing to the full
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 sets Ej we note that by Lemma 3.4 (a) the equality might be further affected
 by the B-irregular parts only on a set of | • I2 measure zero. Thus (•) follows.
 □

 The following lemma deals with the properties of the operators defined in
 the previous section acting on $£.

 Lemma 4.3 Let E G Bor (M2) and let z G M2. Suppose 6(z, E) > 0.

 (a) Then Du$e{z) is well defined for u G C. Moreover
 Dv$e(z) = SEDu(t>{u - z,£(E,u)) 'du'i.

 (b) For l = fi we have Se$E(z) = Sts(e,z) lduli- This
 expression vanishes for z £ Sp(E) and is positive for z G Sp(E).

 (c) Se$E{z) for £ e L coincides with S¿$e (z) on {z : M2 ' cl (E)}. It is also
 well defined for z G cl(E) and for those lines t(z,v) where the limits
 $e(z ± 0 u) = lim*_>o $e{z ± tu) exist.

 (d) We have S¿o$e(z) > 0 and S¿$e - 0 except for the points of the
 spectrum of E .

 (e)

 PROOF, (a) is obtained by interchanging differentiation and integration which
 is valid since by Lemma 2.3 (c) and (d) the integrand is bounded and is a
 Lipschitz function in u outside of a certain neighborhood of z.

 (b) From formula (a) of this lemma with u replaced by -u and adding
 both expressions one gets 2 St<j) (u - z,i(E, u)) 'du''. Observe that
 the S¿ operator applied at a point of differentiability of function yields zero
 and apply Lemma 2.3 (f). Finally note that for z G M2 ' cl (E) and z ^ Sp (E)
 the integration is over a set of | • |i measure zero; otherwise over a set of positive
 measure.

 (c) By (a) of this lemma and by the continuity of at 2 we have for
 £ = £(z , u)

 a * í' hm v $E(z * + tu) L + $E(z-tu)-2QE(z) L 'J.
 Se$E(z) a * í' = v hm sup

 t- 0+ t

 tlim + tv) ~ *e{z) I *e{Z ~ tv) ~ *e{z) = St*E{z).
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 (d) On M2 ' cl(£) the function $e is continuous. Hence S¿$e{z) =
 S¿$e{z) there. Thus its non-negativity follows from (b) of this lemma. The
 expression is zero except for the points of Sp(E) which may be (within the
 complement of E ) either points of U{£ : '£ fl E'' > 0} or the points of the set
 difference Sp(E) ' L){£ : '£(~) E'i > 0}.
 Clearly, if 2 and z' are two distinct points of the latter, and £ is the line
 joining them, then '£ fl E'i = 0. Hence Ts {E, z) and Ts (E, z') are almost
 disjoint. Consequently, the set difference additional set is at most countable.
 (e) This estimate follows from (a) of this lemma and from the estimate in

 Lemma 2.3 (c)

 5. Sweep and Induced Mass

 Definition 11 Let E and A be two disjoint Borei sets in M2 with E recti -
 fiable. Then the sweep through A from E, a(AiE),is defined by a(AiE) =

 Je /km./ Je(E,u) £*$*.1.. 'u - z' Je Je(E,u) 'u - z'

 Clearly the sweep is nonnegative, countably additive in both its set argu-
 ments and monotonie; that is, cr(A,E) < a(A'iE') when A C A' and E C E'.

 Definition 12 Let F be a function with dom F open , let G C dom F be a
 regular multidomain with 6(G,M?'domF) > 0 and let v(z) denote the interior
 unit normal to dG which is well defined (except for at most finitely many
 points) unit-vector valued function for z G dG. Then the F- induced mass in
 G j r(G,F), is defined by r(G, F) = §dGDv^z)F{z)dz.

 In particular when F is the full angle of visibility $e of a rectifiable set E
 with 6(E, dornas) > 0, we write T(G, E) for T(G, $e)- Let E G Bor (M2) be
 rectifiable with |£?|i < oo such that E = Dì (E). When F = Ce , by Definition

 5, (i) and by Lemmas 3.4 (a) and 4.1 (b) DvCe{z) = Du^ç^^(z) for z e G,
 and, consequently, T(G, Ce) = T(G,9ł(E)).

 For the time being we shall concentrate on establishing a few properties of
 the sweep.

 Lemma 5.1 Let £ G L and let E C £ be rectifiable.

 (a) Then cr(A,E) = Je S¿±^e(z)Xa(z) 'dz'x.

 (b) Let z e E andr > 0. Suppose 0 < '(U(z,r) C'£(E,z) 'i£)|i < 2r. Then
 <r((U(z,r)'E),E) = oo.
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 PROOF, (a) Changing the order of integration in the expression defining the

 sweep we get a (A, E) = [ Xa(z) 'dz'i [ 'du''. In the case under con-
 J t J£ 'u ~ z'

 sideration Ts (E, z) = E and (a) is obtained by substituting for the inner
 integral in u its value from Lemma 4.3 (b).

 (b) It suffices to let J C M be an interval and let E C M be measurable
 such that 0 < | J D E' i < ' J''. Show cr((J ' E),E) = oo. In this setting we
 have

 ,((J'E),E)=[ J to! JE ( x *0^=1 - ) J J'E JE ( x - y ) J(J'E)xe (x - y )
 Observe that the product (J ' E) x E intersected with the diagonal line y =
 x - tì t G M yields {x : x e J ' E,y e E,y = x - t} = (J ' E) D (E + 1). By
 the change of coordinates x = x,t = x - y

 Í dxdy _ i00 '(J'E)n(E + t)'ļdt
 J(J'E)xE {x-y)2 ~ _ J-oo t2

 Observe again that

 J n ((E + 1) ' E) = J n (E + 1) ' J n E = (J ' E) n (E + 1).

 Thus by Lemma 3.2 for h > 0 sufficiently small |(J ' E) fi (E + t)'i > t/2 for

 i . i / i00 '(J'E)n(E + t))'1dt 1 fe dt
 0 < t < h as a result i of . which i J-oo / J-oo t 2 J _e t
 □

 Lemma 5.2 Let E be rectifiable, let z e cl (E) ' SLI(E)) and let r > 0. Then
 cr((U(z, r) n £(E, z)'E),E) = oo.

 Proof. Under the assumption, for E fi U(z,r) at least one of the following
 three situations occurs

 (a) 'U(z,r)nNL(E)h > 0.

 (b) U(z,r) n WL{E) ± 0.

 (c) U(z, r)nSLN(£) ^ 0.

 The proof deals with each of them in order.

 (a) Set U = U (z, r). For u G U n NL(E) we have í -rr^iõ 'dz''i =
 Jí{E,u) 'z - u'

 oo. Integration of the above in u over U fi NL(E) obviously produces infinity.
 (b) Let z' 6 U(z,r) fi WL(E) and let U{zf,r') C U(z,r) '£(Eiz) where

 r' > 0. By Lemma 5.1 (b), a((U {z' , r') D £(E, z ) 'E),E) = oo from which by
 monotonicity of the sweep the conclusion follows.
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 (c) Let zo G U(zìr)capsln(E). The assumption of not being metrically
 laterally isolated means that zo is in the closure of that part of E of positive
 linear measure which is outside i(E,z o), which means zo is the limit of a
 sequence, zn e E' £(E, zo), each of metric density of E. For every n G N and
 for sn > 0 arbitrarily small 'Un fi E'i >0, where Un = U (zn,sn). For n large
 enough Un C U(zir). If zn G WL(E) U NL(E ), then (c) holds already by (a)
 and (b) of this lemma. Thus consider only the case zn G SL(E)'£(EÌ zo). (The
 tangents £{E, zn) may be assumed to exist.) By rectifiability of E, we have
 limn_^00 I £(E, zn) D E |i =0. This means that there are numbers rn> 0 with
 limn_oorn = 0, such that '(U(znìrn) D £(E, zn)) ' JE7|i > 0 for n sufficiently
 large. By Lemma 5.1 (b) this implies a((U(znìrn)r'E'£(Eì zn)),E) = oo and
 the presence of even one U(zn,rn) within U(z,r) leads again to the desired
 conclusion.

 6. Multilinear Sets Inscribed in a Measurable Subset of
 a Rectifiable Arc.

 Let S be a rectifiable arc and let £ = {zo,...,2m}> where Zk G 5, partition
 S into subarcs. Inscribe in S the polygon Sç using the C partition points as
 vertices and define a mapping pç : S - > Sç by projecting every point z e S
 orthogonally onto the chord connecting the two partition points between which
 z lies on S. (The vertices map onto themselves.) For a Borei set E C S the
 multilinear set pç(E) is denoted by E This set has at every point (except for
 the vertices and isolated points of the set) a well defined tangent line which
 remains constant along each linear component. Use v = pç(u) to reparametrize
 the integral formula for to the set E after which it takes the form

 $£<(*) = Je <f>(v-z,t{Eļ,v)) |dv|i = ^0(pc(u)-«,^(Ec,pc(w))^^ |du|i.

 Here the factor in the integrand has a simple geometric meaning. It
 du

 equals cos A[£(E,u),£(Eç,p(u)].
 Let {C(n)}^Li be a sequence of partitions of S of increasing refinement. Set

 Pn = Pan) and En = pan)(E). Set £(u) = £{E,u) and £n(u) = £(Enipn(u)).
 The above formula becomes

 $JEn(*)= f 4>(Pn(u) - z,£n(u)cosĄ£(u),£n{u)] |du|i. (6*)
 JE

 Lemma 6.1 (a) For every u e E we have limn_00pn(i¿) = u. For ļ • |i
 almost every u e E we have limn_*oo Z.[£n{u) , £{u)' = 0. For z £ Sp(E) with
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 6(z,E) > 0 we have

 lim <p(pn(u) - Z, ¿n(u)) COS¿[£(u), ¿n("))] = <P(U ~ z> u )) (6.1.0*)
 n-too

 and

 lim D„(<p(pn(u) - z, £n(u)) cos Z[£(u),£n(u)]) = Du<j>(u- z, £(u)). (6.1 .a**)
 n- »>00

 (b) For G a regular multidomain with Ö(G,E) > 0 we have
 limn- »oo ct(G, En) = cr(G, E).

 (c) For 6(ziE) > 0 we have limn_>oo $En(z) = $e(z).
 (d) For 6(z, E) > O, v e C and z £ Sp (E) we have
 lilïln-KX) Dyì&E^z) = e(Z) •
 (e) For G a regular multidomain with 6(G,E) > 0 we have
 lim^oo r(G, En) = r(G, E).

 PROOF, (a) The first limit relationship is the consequence of the definition
 of the pn mappings. Since E is rectifiable, £(u) exists at | • |i almost every
 point u G E. Let u be such a point. The tangent í(En,v), v G En represent
 as a function £(Enipn(u)) in the variable u, defined over E. Considering that
 limn_+00pn(i¿) = u and the fact that as n - > oo the line carrying the chord
 containing pn(u) converges to £(E,u) in set theoretical sense, the equation
 (6.1. a*) follows from the continuity of the 0 function in both of its arguments.
 Likewise, (6.1. a**) follows from Lemma 2.3 (d)

 (b) As a result of (a) of this lemma and in view of the assumed regularity
 of the boundary, 9G, we have linin-ooG fi £(Enipn(u)) = G D £(u) in the
 set-theoretical sense a.e. on E and lim^oo | G n £(En,pn(u)) |i = 'G D £(u)'i.

 But then limn_>oo [ - - 'dw'i = [ .*G^2 2 'dw'i a.e. on E.
 Jen(u) 'w - Pn{u)'2 J£(u) I w - u' 2

 Since inf n6(G,En) > 0, the integrands are uniformly bounded on E. Thus
 integration of this sequence over E proves (b).

 (c) The integrands in (6*) are all bounded in u uniformly in n for n large
 enough (depending on z) which in view of (a) of this lemma justifies passage
 to limit.

 (d) For E and En use the integral representation for $ functions offered
 by Lemma 4.3 (a). When the £(En,v), v G En has been represented as
 £(En,pn(u)) over E the representation of $ takes the form

 DJ/^En(z)= Í 'D„((p(pn(u) - z,£n(u) cos Ą£(u),£n(u))) du (6.1.d*).
 J E

 For a z subject to conditions indicated we have |Ts (E, z) |i =0 and, as follows
 from Lemma 2.3 (d) estimate (2.3d**), the integrand in (6.1.d*) is bounded



 76 Henry Fast

 in the variable u uniformly in n for n sufficiently large. This together with
 (6.1. a**) of this lemma justifies passage to limit as n - ► oo in (6.1.d*).

 (e) From the definition of G it follows immediately that dG D Sp ( E ) is
 at most countable. Thus (e) is a consequence of (d) of this lemma taking
 into account the inequality of Lemma 4.3 (e) by which the integrands in the
 integral representation of r(G, En) are uniformly bounded. □

 Lemma 6.2 Let E G Bor (M2) be rectifiable and let G be a regular multido-
 main with 6(G,E) > 0. Then r(G, E) = -cr{G,E).

 Proof. In view of the results of Lemma 6.1, it suffices to show that this
 equality holds for a multilinear set. Let E be such a set and let Ek = £k fl
 E, k = 1, ..., m be its linear components. Let Gj, s = 0, 1; k = 1, ..., m be the
 two multidomains into which £k splits G, one on either side of £k (G§ or Gk
 could be empty). Their boundaries are dGk = ( lk n G) U d(Gk ' £k). For a
 given k we have dG = (9G§ ' £k) U ( dGk '£k). Accordingly, writing v(w) for
 the interior unit normal vector to a respective boundary at w,

 r(G, Ek)=( [ + f ) Du(w)$e* (w) 'dw'! =
 yJdG^e1' J dG'ļ'ik j

 li +6 ] Dvtw)$Ek(w) 'dw'i -2 / Dutw)$Ek(w) |dtu|i.
 'JdG 5 JdG' J Jane"

 Since neither of the two multidomains Gks, s = 0, 1 has points of Sp (Ek) =
 £k in its interior, $£k(z) is harmonic in the interior of each of them. Thus

 §dG J Dv(w)®Ek(u>) 'dw'i = 0 and fdGļ |du>|i = 0. Hence

 T(Gk ,Ek) = -2 / D„{w) $Ek{w) 'dw'i = - [ Su(w)$Ek(w) |ďw|i
 JGn£k JGnek

 for s = 0, 1. Application of Lemma 5.1 (a) to the right-hand expression yields
 T(G,Ek) = - cr(G, Ek). Thus the lemma holds for Ek. By additivity

 n n

 r(G, E) = r(G, Ek) = - Y, Ek) = -a(G, E). □
 k= 1 k=l

 [Note: The equality of Lemma 6.2 shows that induced mass is nonpositive.]
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 7. The A and A' Point-indices

 Definition 13 Let F be a function with an open domain , domF, and let
 z G cl(domF). The A -point index of F at z, A (F,z), is defined to be

 lim inf{r {G,F) : G is a regular multidomain with G C U(z,r) D domF}.
 r- ► 0

 If domF is dense in M2, then A(F, z) is well defined for every z G M2.
 By the equality of Lemma 6.2 and by the monotonicity of cr(A, E ) in its first
 set-argument

 inf{r(G, F) : G C U(z,r) HdomF} = -a((U(z, r) n domF), E).

 For F take $e where F is a strongly rectifiable set. The domain in this case
 is an open dense subset of M2 and the right-hand side of the above expression
 becomes -a((U(zìr) ' F),F). Moreover A($#,z) is well defined on M2 and
 A($£,z) = - limr_>o &{(U{z,r) 'E),E). We accept - oo as a possible value.

 Definition 14 Let F be a function with domF open and let z G cl (dom F).
 The A' -point index of F at z, A '(F,z), is defined by

 A'(F, z) = mí{Š£F{z) : £ e L0}.

 Lemma 7.1 Let E be rectifiable. Then

 A A,* {9Eì z) - if z e cl(E' SLI(E))
 A A,* {9Eì z) - ļ 0 y z 6 SLI^Ey

 Proof. For z e cl (E ' SLI (E)) and r > 0 Lemma 5.2 implies

 inf{r(G, $) : G C U(z, r) n dom $} = -oo.

 Thus - oo is the limit of this expression as r - > 0. On the other hand, when
 z G SLI (F), there is a r > 0 for which U(zir) is essentially cut by a linear
 part of E into two half disks. For a multidomain G with G C U(zìr)' E we
 have cr(U(z,r) 'E,E) = 0 since £(E,z') D G = 0 for z' G U(z,r) D E, which
 completes the proof of the lemma.

 Lemma 7.2 Let E G Bor (M2) be rectifiable and let 6(z,E) > 0. Then

 (a) A($e,z) = 0

 (b) A'(*e,z)>0
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 Proof, (a) The r infimum appearing in the definition of A ($£,2) is real-
 ized for the closed neighborhood ci U(zir) (which is a regular multidomain.)
 Integrating the inequality of Lemma 4.3 (e) in | • |i over dG one obtains

 |r(G,£)| < from which A($E,z) = 0 follows.
 t)(Cr, ±L /J

 (b) By Lemma 4.3 (b), (c) D^e(z) = 0 for those 2 ^ Sp(E) and for any
 £ e L°. For z G Sp (E) the value may be positive. □

 8. Boundary Behavior of $e on SLI

 Since this case is treated by methods different from the rest, this section is
 devoted to it.

 Lemma 8.1 Let E be closed and rectifiable and let zo e SLI (E). There is a
 r > 0 such that on a dense set of points z e U(zo,r) D E , A '($e, z) < 0.

 PROOF. The point zo being laterally isolated and E being closed imply that
 there is a r > 0 such that | U (zo> r) D (E'£(E, 2o))|i = 0; that is, every point in
 U (zo, r) fi E is at a positive distance from the metrically dense-in-itself part of
 E'£(E , zo). Moreover, U ( zo , r) fl (En£(E, zo)) is a segment of the tangent line
 £(E , zo ). Sp (E)fl£ is at most countable for each £ (Ji Sp ( E ); in particular, with
 Sp(E) fl £(E , zo) is at most countable. This means that on £(E , 20) there is a
 dense subset of points not from that spectrum. Let z € U(zoì r) fi E fi £{E , zo)
 be one of such points.

 Partitioning E into E fl £(E, zo) and E ' £(E , zo) we write

 $E = $En£(E,z0) + $E'£(E,z0)'

 According to Lemma 4.3 (d) and our choice of z, S¿±$e'£(e,zo)(z) = 0- Now
 set E fl £(E,zo) being closed and rectifiable, there is an interval J such that
 J C £(E, zo)'E ' U(zoir). Thus for t ^ 0 and v perpendicular to £(E , zo)

 X ( d-f|J|i d'
 $j(z =h tu) X = ( arctan

 $£(E,zo)'e(z ± tu) < $e(E,zo)'U(zo,r)(z ± tu),

 where d = 6(z,J). (The inequalities are strong since J is only one of such
 intervals. Note also that a $ function of a subset of £(E, zo) is symmetric with
 respect to this line.) Since

 $t(E,z o)'U(zo,r)(z ± 0 V) = $ í(e,z0)-e(z ± 0 u) = 0, (8.1*)
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 we have

 u f *<(E.„,ftE(z + e) , ļAļ + tļ) = t J' / ' t j J t- 0+ t ~t- 0+ t t J' / ' J

 The expression on the right side of (8.1**) is positive. Indeed,

 d + I J|i d
 Du$j{z ± tu) - -(d+1J|i)2 + ť2 + ¿21^2

 which is continuous in t for t ^ 0, right and left continuous at t = 0. Further-
 2 2

 more 5¿a.$jr(z) = - - - prp + - > 0. Thus (8.1 * *) leads to
 d+'J'i d

 to lnt jÍSSfíMÍilM > 0 (8 j , t<)
 ť- 0+ t

 Observe now that for z ^ £(E,zo) we have $¿{e,zq)(z) = * = +
 ^(E,z0)'ß(z)- As a result of (8.1*), (8.1***) and of the last equality
 $Ene(E,zo)(z ± Oí/) = 7T and

 7» /' v ^Ene(E,zo)(z 1 + tu)-TT
 7» Se^Ene(E,z0)(z) /' = v lim SUP 2

 t->0+ t

 _llm inf 2*«e..,>'E('+'-> <0,
 ¿-►0+ t

 It follows that for an arbitrary £ = i(z,v) S¿$e(z) < 0? which completes the
 proof of this lemma. □

 9. The 'Probing Touch' Index ©

 Definition 15 Let F be a function with dom F open and let z G cl (dom F).
 Then

 ®(F, z) = min{A(F, z), A '(F, z)}
 (with - oo as an accepted value).

 Lemma 9.1 Let E e Bor (M2) with 'E'i < oo and with strongly rectifiable
 9t (£). Then

 &(Cr Z)-Í ~°° ÍfZe

 Proof. It follows from Lemmas 7.1, 7.2 and 8.1 that when z e cl (91 (E))
 either A (Ce, z) = - oo or A '(Ce,z) < 0 and for z ^ cl (91 (E)) both A and
 A' indices vanish. □

 Its ability to localize the essential proximity of a point to a set under
 consideration justifies application of the designation 'probing touch' to this
 index.
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 10. Conclusion

 We are now able to present the major results of this paper.

 Theorem 10.1 (Crofton weak transform inversion) Let E G Bor (M2) with
 'E'i < oo and with strongly rectifiable 9i(E). Then

 cl (9t (E)) = {z : ®(CE,z) < 0}.

 The assertion follows directly from the Lemma 9.1.

 Theorem 10.2 Let Ej j = 1,2 be two Borei subsets o/M2 with strongly rec-
 tifiable B-regular parts whose cross integral functions agree on a metrically
 dense subset o/M2. Then

 c/(9t(£i) = cl(Vi(E2).

 Proof. Under the assumption made by the Lemma 4.3 the cross integrals of
 both sets are | • I2 equivalent. Thus according to Theorem 10.1 the closures of
 the B-regular parts of both sets being determined by their cross integrals, are
 identical.
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