Errata 57

2) there exists a weight w such that $w \in A_p(\nu)$ but $w \notin A_{p-\varepsilon}(\nu)$ for any $\varepsilon > 0$;

3) there exists a weight w such that $w \in A_1(\nu)$ but $w \notin RH(\nu)$.

Compared to well-known results for continuous measures, this is surprising and very interesting. The subject is under investigation and the above—mentioned and other pertinent facts will appear in a forthcoming paper based on work done in collaboration with F. J. Martín–Reyes, P. Ortega, M. D. Sarrion and A. de la Torre from the University of Malaga

ERRATA TO LIMITS OF SIMPLY CONTINUOUS FUNCTIONS by Ján Borsík Volume 18, Number 1, pages 270 – 275

- the title of the paper is Limits of simply continuous functions
- Theorem 5 should be: Let (Y,d) be a locally compact separable metric space. Then $f:X\to Y$ has the Baire property if and only if there is a simply continuous function $g:X\to Y$ such that $\{x\in X:f(x)\neq g(x)\}$ is of the first category.
- at 270₈ it should be S, K
- at 270₂ it should be Proposition 2
- at 270_1 it should be $P(\mathcal{K}) = \mathcal{B}$
- $\bullet\,$ at 271^20 it should be $V^n_j=IntW^n_j$
- at 271^{23} it should be $j \in \mathbb{N}$
- at 271^{23} it should be g^{-1}
- at 271₈ it should be $x \in V_i^n \setminus ClA_n$
- at 2724 it should be $Y = \bigcup_{j=1}^{\infty} S(u_j^n, \frac{1}{n})$
- at 272¹⁵ it should be $U(\mathcal{S}) \subset D(\mathcal{S}) \subset D(\mathcal{K}) \subset \mathcal{K}$
- at 272^{20} it should be [2]
- at 273^{19} it should be $A \subset C_g$