ERRATA TO ON TWO GENERALIZATIONS OF THE DARBOUX PROPERTY by Gabriel I. Istrate Volume 17, Number 2, page 544

The are two errors in the references.

- 1. Reference [MS4] should be:
- [MS4] S. Marcus, Sur une prorieté appartenant à toutes les fonctions réelles d'une variable réelle, Indian J. Math., 9 No.2, (1967)
- 2. The following reference should be added to the bibliography
 - [MA] J. L. Massera, Sobre les fonctiones derivables, Boletin de la Facultad de Ingeniere, 2 (Ano 9), (1944), 647-648.

ERRATA TO A_{∞} TYPE CONDITIONS FOR GENERAL MEASURES IN \mathbb{R}^1 by Petr Gurka and Luboš Pick Volume 17, Number 2 pages 706–727

In the proof of Theorem 3.3 of our paper [1] there is an error which can not be amended. The error occurs in the proof of the implication $(v)\Rightarrow(vi)$ on page 716. The integration can not be performed since the preceding change of variables can change the points $x_{j,n}$ as they depend on λ , and thus the resulting intervals need no longer be disjoint.

This error invalidates many of the results in the paper for general Borel measures μ , although they continue to hold if $\mu\{x\} = 0$ for every $x \in \mathbb{R}^1$.

The following counterexample was communicated to us by A. de la Torre: Let μ , ν be measures on positive integers, given by $\mu(n) = 2^n$ and $\nu(n) = n^n$. Let $w = \frac{d\mu}{d\nu}$. Then $\mu \in A_{\infty}(\nu)$ but not $\nu \in A_{\infty}(\mu)$.

Basically with the same example one can show that

1) there exists a weight w such that $w \in A_1(\nu)$ but $w^{1+\epsilon} \notin A_1(\nu)$ for any $\epsilon > 0$;

Errata 57

2) there exists a weight w such that $w \in A_p(\nu)$ but $w \notin A_{p-\varepsilon}(\nu)$ for any $\varepsilon > 0$;

3) there exists a weight w such that $w \in A_1(\nu)$ but $w \notin RH(\nu)$.

Compared to well-known results for continuous measures, this is surprising and very interesting. The subject is under investigation and the above—mentioned and other pertinent facts will appear in a forthcoming paper based on work done in collaboration with F. J. Martín–Reyes, P. Ortega, M. D. Sarrion and A. de la Torre from the University of Malaga

ERRATA TO LIMITS OF SIMPLY CONTINUOUS FUNCTIONS by Ján Borsík Volume 18, Number 1, pages 270 – 275

- the title of the paper is Limits of simply continuous functions
- Theorem 5 should be: Let (Y,d) be a locally compact separable metric space. Then $f:X\to Y$ has the Baire property if and only if there is a simply continuous function $g:X\to Y$ such that $\{x\in X:f(x)\neq g(x)\}$ is of the first category.
- at 270₈ it should be S, K
- at 270₂ it should be Proposition 2
- at 270_1 it should be $P(\mathcal{K}) = \mathcal{B}$
- $\bullet\,$ at 271^20 it should be $V^n_j=IntW^n_j$
- at 271^{23} it should be $j \in \mathbb{N}$
- at 271^{23} it should be g^{-1}
- at 271₈ it should be $x \in V_i^n \setminus ClA_n$
- at 2724 it should be $Y = \bigcup_{j=1}^{\infty} S(u_j^n, \frac{1}{n})$
- \bullet at 272^{15} it should be $U(\mathcal{S})\subset D(\mathcal{S})\subset D(\mathcal{K})\subset \mathcal{K}$
- \bullet at 272^{20} it should be [2]
- at 273^{19} it should be $A \subset C_g$