Real Analysis Exchange Vol. 19(1), 1993/94, pp. 48-49

Haseo Ki^{*} and Tom Linton, Department of Mathematics, Caltech, Pasadena CA 91125

NORMAL NUMBERS AND SUBSETS OF N WITH GIVEN DENSITIES

For a set X, we would like to find the exact level of X in the Borel or difference hierarchy. In addition, look for "natural" arising sets (like \mathbb{Q} , C^{∞} etc) that are non-ambiguous sets of high levels. In an attempt to prove that the set of real numbers which are normal to at least one base $n \in \mathbb{N}$, is Σ_4^0 non Π_4^0 , we were naturally lead to the problem of classifying the Borel class of subsets of \mathbb{N} whose densities lie in $X \subseteq [0, 1]$, in terms of the Borel class of X. This work produced several new natural examples of nonambiguous Borel sets and answered two questions of Kechris.

For Polish topological spaces X, let Σ^0_{α} denote the Borel sets of additive class α , Π^0_{α} the sets of multiplicative class α , and $\Delta^0_{\alpha} = \Sigma^0_{\alpha} \cap \Pi^0_{\alpha}$, be the ambiguous sets of class α . Thus, $\Sigma^0_1 = \text{Open}$, $\Pi^0_1 = \text{Closed}$, $\Sigma^0_2 = F_{\sigma}$, $\Pi^0_2 = G_{\delta}$, and so on. More generally we can define the difference hierarchy which is a finer two sided hierarchy on the Δ^0_{α} sets. It extends the Borel hierarchy by including it as the first level ($\xi = 1$) for each countable ordinal α . For each countable ordinal $\xi \ge 1$, let $\mathcal{D}_{\xi}(\Pi^0_{\alpha})$ denote the sets which are nested differences of ξ many Π^0_{α} sets. So $\mathcal{D}_1(\Pi^0_{\alpha}) = \Pi^0_{\alpha}$, $\mathcal{D}_2(\Pi^0_{\alpha}) = \{A - B \mid A, B \in \Pi^0_{\alpha}, \text{ and } A \supseteq B\}$ and $\mathcal{D}_3(\Pi^0_{\alpha})$ is the collection of sets of the form

 $(A-B) \cup C$ where $A, B, C \in \Pi^0_{\alpha}$ and $A \supseteq B \supseteq C$.

For any class of sets Γ , let the dual class, Γ , be the collection of complements of sets in Γ , and say A is properly Γ , if $A \in \Gamma - \widetilde{\Gamma}$.

Definition 1 For $A \subseteq \mathbb{N}$, let $\delta(A) = \lim_{n \to \infty} \frac{|A \cap [0, n)|}{n}$, if the limit exists, and say $\delta(A)$ does not exist, otherwise. We call $\delta(A)$ the density of A.

For nonempty $X \subseteq [0,1] \cap \mathbb{R}$, let $D_X = \{A \subseteq \mathbb{N} \mid \delta(A) \in X\}$. If we identify $A \subseteq \mathbb{N}$ with its characteristic function, then D_X becomes a subset of the Cantor space $2^{\mathbb{N}}$ (with the usual product topology).

^{*}Presenter

As limit is a Π_3^0 notion, the Borel class of D_X should jump well above that of X, surprisingly the jump is almost exactly one level, and a direct relationship between the exact Borel class of X and the exact Borel class of D_X can be exhibited.

Theorem 1 Let $X \subseteq [0,1]$ be nonempty.

X	D_X
i) Π^0_{2} or simpler	properly Π_{3}^{0}
ii) properly Σ_2^0	properly $\mathcal{D}_2(\Pi_{oldsymbol{3}}^0)=\Pi_{oldsymbol{3}}^0\cap\Sigma_{oldsymbol{3}}^0$
	properly $\Pi^0_{n+1}(\Sigma^0_{n+1})$
$iv) properly \Pi^0_{oldsymbol lpha}(\Sigma^0_{oldsymbol lpha}) \ (lpha \geq \omega)$	properly $\Pi^0_{oldsymbol{lpha}}(\Sigma^0_{oldsymbol{lpha}})$
$v) \hspace{0.1 cm} properly \hspace{0.1 cm} \mathcal{D}_{m{\xi}}(\Pi^{0}_{m{lpha}}) \ (lpha \geq 2)$	$properly \ \mathcal{D}_{m{\xi}}(\Pi^0_{m{1+lpha}}) \ (1+lpha=lpha \ if \ lpha\geq \omega)$
$vi) \ properly \ \widetilde{\mathcal{D}}_{\xi}(\Pi^0_{oldsymbol{lpha}}) \ (lpha \geq 3 \ or \ [lpha = 2 \ and \ \xi \geq \omega])$	properly $\widetilde{\mathcal{D}}_{\xi}(\Pi^{0}_{\mathbf{1+lpha}})$
$vii) properly \widetilde{\mathcal{D}}_{m{m}}(\Pi^0_{m{2}}) \ (m < \omega)$	properly $\widetilde{\mathcal{D}}_{m+1}(\Pi^0_{f 3})$

Thus except for vii) and i) the class jumps by exactly one level. In particular i) says the subsets of \mathbb{N} with density 0 (or 1) are properly Π_3^0 and i) can be used to show $\forall n \geq 2$ the real numbers that are simply normal or normal to base n are properly Π_3^0 .

ii) shows $D_{\mathbb{Q}}$ is Δ_4^0 non Π_3^0 non Σ_3^0 . Hence we have a fairly natural set above the third level, but not on the fourth level. We don't know of any "natural" example properly on or above the fourth level.

Conjecture: $S_{\mathbb{N}} =$ The real numbers that are normal to at least one base $n \geq 2$, is Σ_4^0 non Π_4^0 .