Real Analysis Exchange Vol. 19(1), 1993/94, pp. 38-38

Roy A. Johnson, Department of Mathematics, Washington State University, Pullman, WA 99164-3113

ANTIDERIVATIVES OF BAIRE FUNCTIONS

Recall that a function $f : \mathbb{R} \to \mathbb{R}$ is called a Baire function if and only if $f^{-1}(U)$ can be expressed as the symmetric difference of some open set and some meager set for each open set U. We show that for each Baire function f (even one taking on the values $+\infty$ or $-\infty$), there is an absolutely continuous function F and a meager set M such that for each $x \in \mathbb{R} \setminus M$, the derivative F'(x) exists and equals f(x).