Real Analysis Exchange Vol. 19(1), 1993/94, pp. 32-32

Pamela B. Pierce, Department of Mathematics, Syracuse University, Syracuse, NY 13244

REGULATED FUNCTIONS WHOSE FOURIER SERIES CONVERGE FOR EVERY CHANGE OF VARIABLE

Let $I_{n,m}, m = 1, 2, ..., k_n$ be disjoint closed intervals such that for each $n, I_{n,m-1}$ is to the left of $I_{n,m}$. Given x, if for every $\epsilon > 0$ there exists N such that $I_{n,m} \subset (x, x + \epsilon)$ whenever n > N, then $\mathcal{I} = \{I_{n,m} : n = 1, 2, ...; m = 1, 2, ...; m = 1, 2, ...; k_n\}$ is called a *right system* of intervals (at x). A left system is defined similarly. Let

$$lpha_n(\mathcal{I}) = \sum_{i=1}^{k_n} rac{f(I_{n,i})}{i} \qquad where \qquad f([a,b]) = f(b) - f(a).$$

We present a proof of the following result:

Theorem 1 If f is regulated, then $f \circ g$ has an everywhere convergent Fourier series for every homeomorphism g if and only if $\lim_{n\to\infty} \alpha_n(\mathcal{I}) = 0$ for every system \mathcal{I} and for every x.

This is a generalization of a theorem of Goffman and Waterman [1] which gave an analogous result for continuous functions. A principal tool in the proof was the following generalized Mean Value Theorem.

Theorem 2 If f is defined on [a, b] and $\mu \ge 0$ on [a, b] then

$$\int_a^b f(t)\mu(t) dt = c \int_a^b \mu(t) dt \quad for some \quad c \in [\inf_{[a,b]} f, \sup_{[a,b]} f].$$

Either there exists an x such that f(x) = c, or there exists an x in [a, b] such that $\liminf_{t \to x} f(t) \le c \le \limsup_{t \to x} f(t)$.

References

 C. Goffman and D. Waterman, Functions Whose Fourier Series Converge for Every Change of Variable, Proc. Amer. Math. Soc. 19 (1968), 80-86.