Real Analysis Exchange Vol. 19(1), 1993/94, pp. 24-26

N. Tanović–Miller, Department of Mathematics, University of Sarajevo, Bosnia and Hercegovina, Mathematical Reviews, Ann Arbor, MI

NEW INTEGRABILITY CLASSES

The problem of integrability amounts to the question when is a trigonometric series $\sum_{k \in \mathbb{Z}} c_k e^{ikx}$ a Fourier-Lebesgue series, i.e. when does $(c_k) \in \widehat{L}^1$? Since there are no suitable characterizations of the space \widehat{L}^1 we search for subsets of \widehat{L}^1 that can be characterized in terms of sequences alone, called the *integrability classes*. In some sense the even integrability classes, i.e. the classes of $(c_k) \in \widehat{L}^1$ satisfying $c_k = c_{-k}$ for all k, are most essential.

The class of all even convex null sequences \mathcal{K} is an integrability class, i.e. $\mathcal{K} \subset \widehat{L}^1$. This class obtained by Young (1913) was extended by Kolmogorov (1923) to the space of quasiconvex null sequences q_0 . Since q_0 is the linear span of \mathcal{K} , the conclusion that $q_0 \subset \widehat{L}^1$ also follows from Young's theorem. We are referring here to standard BK spaces of two-way even sequences: \mathbf{c}_0 -the space of null sequences with norm $||c||_{\ell^{\infty}} = \sup_k |c_k|; \ell^p, 1 \leq p < \infty, -$ the space of all (c_k) such that $||c||_{\ell^p} = (\sum |c_k|^p)^{1/p} < \infty;$ bv_0 - the space of null sequences of bounded variation under norm $||c||_{bv_o} = ||c||_{\ell^{\infty}} + ||\Delta c||_{\ell^1}; q_0$ - the space of quasiconvex null sequences with norm $||c||_q = \sum k |\Delta^2 c_k| + ||c||_{\ell^{\infty}} < \infty$.

An enlargement of q_0 , introduced by Sidon (1939) and redescribed by Telyakovskii (1973), is the class ST of all $(c_k) \in \mathbf{c}_0$ such that for some $A_k \downarrow 0$ with $\sum A_k < \infty$, $|\Delta c_k| \leq A_k$. This class was extended by Fomin (1978) to a family of even integrability classes \mathcal{F}_p , p > 1. A sequence $c = (c_k) \in \mathcal{F}_p$ if and only if $c \in \mathbf{c}_0$ and (1) $\sum_{j=0}^{\infty} 2^{j/q} || d^j \Delta c ||_{\ell^p} < \infty$. Here 1/p + 1/q = 1 and $d^j c$ is the *j*th dyadic section of a sequence *c*, i.e. $d^j c = \sum_{k=2^j}^{2^{j+1}-1} c_k e^k$. That \mathcal{F}_p , p > 1 are integrability classes for even series was rediscovered by other authors. It turns out that $\mathcal{F}_{\infty} = ST$ and the following chain of proper inclusions is valid for r > p > 1: (2) $\mathcal{K} \subset q_0 \subset ST = \mathcal{F}_{\infty} \subset \mathcal{F}_p \subset bv_0 \cap \widehat{L}^1$.

There were several attempts to derive integrability classes larger than Fomin's. Some were shown to reduce to the classes \mathcal{F}_p . The proper enlargements are the classes \mathcal{F}_p^* , p > 1 [4] and their later extensions hv^p , p > 1 [1] and HV^p , p > 1 [3]. A sequence $c = (c_k) \in hv^p$ if and only if $c \in \mathbf{c}_0$ and there exist sequences of natural numbers (ν_j) nondecreasing and, (k_j) increasing, such that $\nu_j \leq k_{j+1}$ and (3) $\sum_{j=0}^{\infty} \log \frac{k_{j+1}}{\nu_j} \| h^j \Delta c \|_{\ell^1} + \nu_j^{1/q} \| h^j \Delta c \|_{\ell^p} < \infty$. Here $h^j c = \sum_{k=k_j}^{k_{j+1}-1} c_k e^k$. The restrictions $\nu_j = k_j$ and (k_j) lacunary in (3) describe the classes \mathcal{F}_p^* and further restrictions to $k_j = 2^j$ give Fomin's classes described by (1). The classes HV^p are certain BK spaces containing hv^p . All of these classes decrease with $p \uparrow \infty$ and satisfy the following proper inclusions for p > 1: (4) $\mathcal{F}_p \subset \mathcal{F}_p^* \subset hv^p \subset HV^p \subset bv_0 \cap \widehat{L}^1$. The corresponding general integrability classes were also determined [5].

The corresponding general integrability classes were also determined [5]. By relaxing the ℓ^1 -norm in condition (3) new integrability classes were introduced in [5], denoted dl^p and hl^p , p > 1, incomparable with hv^p , as well as their BK enlargements HL^p ; p > 1. These contain sequences outside of bv_0 and give rise to a second chain of proper inclusions valid for all p > 1, namely (5) $\mathcal{F}_p \subset dl^p \subset hl^p \subset HL^p \subset \hat{L}^1$.

A troublesome fact about the above two types of integrability classes was that neither of them contain a special integrability class \mathcal{W} , described by a necessary and sufficient condition for integrability of even series with coefficients constant on lacunary blocks, due to M. Weiss (1967). This fact inspired new enlargements of the classes \mathcal{F}_p , namely the classes dv^2 and cv^2 [2]. A sequence c belongs to the class dv^2 , [respectively to the class, cv^2], if and only if $(c_k) \in \mathbf{c}_0$ and satisfies $\sum_{j=0}^{\infty} \left(\sum_{r=1}^{\infty} \|d^{rj}\Delta c\|_{\ell^1}^2\right)^{1/2} < \infty$, $\left[\operatorname{respectively}, \sum_{j=0}^{\infty} \max_{0 \leq \nu < 2^j} \left(\sum_{r=1}^{\infty} |c_{r2^j+\nu} - c_{(r+1)2^j}|^2\right)^{1/2} < \infty\right]$, where $d^{rj}c = \sum_{k=r2^j}^{(r+1)2^j-1} c_k e^k$. They are BK spaces and natural extensions of both Fomin's classes \mathcal{F}_p , p > 1 and the special class \mathcal{W} . Furthermore, $dv^2 \subset bv_0$, while cv^2 is incomparable with bv_0 and (6) $\mathcal{W} \cup \mathcal{F}_p \subset dv^2 \subset cv^2 \subset \hat{L}^1$.

A new and surprising result is that cv^2 is the largest among all these integrability classes, that is a class connecting the chains (3), (5) and (6). Precisely the following proper inclusions are valid for all p > 1: $\mathcal{W} \cup \mathcal{F}_p \subset \mathcal{W} \cup hv^p \subset \mathcal{W} \cup HV^p \subset dv^2 \subset cv^2 \cap bv_0 \subset \widehat{L}^1$ and $\mathcal{F}_p \subset dl^p \subset hl^p \subset HL^p \subset cv^2 \subset \widehat{L}^1$.

We conclude with a conjecture about yet a larger family of integrability classes that can be obtained by refining dyadic divisions of dv^2 and cv^2 via a recent extension of the Housdorff-Young theorem.

References

[1] M. Buntinas and N. Tanović-Miller, New integrability and L^1 convergence

classes for even trigonometric series, Rad. Mat. 6 (1990), 149-170.

- [2] M. Buntinas and N. Tanović-Miller, New integrability and L¹ convergence classes for even trigonometric series II, Colloquia Math. Soc. János Bolyai 58, Approximation Theory, Kecskemét (Hungary) 1990, 103-125
- [3] M. Buntinas and N. Tanović-Miller, Integrability classes and summability, Israel Math. Conf. Proc. 4 (1991), 75-88.
- [4] N. Tanović-Miller, On integrability and L¹ convergence of cosine series, Boll. Un. Mat. Ital. (7) 4-B (1990), 499-516.
- [5] N. Tanović-Miller, New integrability and L¹ convergence classes for general trigonometric series, Rad. Mat. 8 (1992), to appear.