A. M. Bruckner* and T. H. Steele, Department of Mathematics, University of California, Santa Barbara, CA 93106

LIPSCHITZ MAPS AND ω -LIMIT SETS

Let \mathcal{C} denote the class of continuous self-maps of an interval I. For $f \in \mathcal{C}$ and for each natural number n let $f^1 = f$, $f^{n+1} = f \circ f^n$.

Definition 1 A set $E \subset I$ is an ω -limit set for $f \in \mathcal{C}$ if there exits $x \in I$ such that the cluster set of the sequence $\{f^n(x)\}$ equals E.

Necessary and sufficient conditions for a set E to be an ω -limit set for some $f \in \mathcal{C}$ have been obtained in [1] and [2]. In particular, every Cantor set is such an ω -limit set.

It is natural to ask whether the same is true under smoothness restrictions on f. Since any $f \in \mathcal{C}$ maps any of its ω -limit sets onto itself, we study the question in the context of continuous maps of a Cantor set onto itself.

Let K denote the class of nonempty closed subsets of I. We furnish K with the Hausdorff metric, producing a compact metric space in which the Cantor sets form a dense G_{δ} .

Theorem 1 There exists a residual subset \mathcal{E} of \mathcal{K} such that if $E \in \mathcal{E}$, and $f: E \to E$ is continuous and not the identity on any portion of E, then the following statements are valid:

- 1. There exists a Cantor set $K \subset E$ such that f is not Lipschitz on any portion of K.
- 2. f(K) = E.
- 3. If $P = (a, b) \cap E$ is a portion of E contiguous to K, then f(P) is nowhere dense in E.
- 4. If f is Lipschitz on a subset C of E, then f(C) is nowhere dense in E.
- 5. f is nondifferentiable on a dense G_{δ} on K.
- 6. f maps the set of points of differentiability of E onto a first category subset of E.

^{*}Presenter

Observe that if E is an ω -limit set for some $f \in \mathcal{C}$, then unless E consists of only one point, f is not the identity on any portion of E. Thus most closed sets E are not ω -limit sets for Lipschitz functions or for differentiable functions.

The class of ω -limit sets of continuous functions f of zero topological entropy has been characterized in [3]. In particular, each Cantor set E is such an ω -limit set. In this setting, f maps portions of E onto other portions of E. It follows from the theorem that f is not Lipschitz on any portion of E, and that the set of points of differentiability of f is first category in E.

References

- [1] S. J. Agronsky, A. M. Bruckner, J. G. Ceder and T. L. Pearson, The structure of ω -limit sets for continuous functions, Real Anal Ex 15 (1990), 483-510.
- [2] A. M. Bruckner and J. Smítal, The structure of ω -limit sets for continuous maps of the interval, Math Bohemica 117:1 (1992) 42-47.
- [3] A. M. Bruckner and J. Smítal, A characterization of ω -limit sets of maps of the interval with zero topological entropy, Ergod. Th. & Dynam. Sys. 13 (1993) 7-19.