Washek F. Pfeffer, Department of Mathematics, University of California, Davis, CA 95616.

Wei-Chi Yang, Department of Mathematics and Statistics, Radford University, Redford, VA 24142.

A NOTE ON CONDITIONALLY CONVERGENT INTEGRALS

Recently, S.P. Lu and P.Y. Lee obtained an interesting characterization of the Henstock-Kurzweil integrability based on a suitable truncation of integrable functions (see [LL]). We generalize their result to an abstract setting that encompasses all the Riemann type integrals found in the present day literature.

Throughout this note, (X, \mathfrak{M}, μ) is a fixed measure space with a *finite* and *nonatomic* measure μ . All functions we consider are real-valued functions defined on measurable subsets of X. The Lebesgue integral of a function f on a set $E \in \mathfrak{M}$ with respect to μ is denoted by $\int_E f$. If $E \in \mathfrak{M}$, then $L^1(E)$ is the linear space of all measurable functions f on E for which $\int_E |f| < +\infty$. For each $f \in L^1(X)$, we set $|f|_1 = \int_X |f|$.

A partition is a collection (possibly empty) $P = \{(\theta_1, x_1), \dots, (\theta_p, x_p)\}$ where x_1, \dots, x_p are points of X, and $\theta_1, \dots, \theta_p$ are nonnegative functions from $L^1(X)$ such that $\sum_{i=1}^{p} \theta_i \leq 1$ almost everywhere in X. If f is a function on X and $E \subset X$, we let

$$\sigma(f,P;E) = \sum \left\{ f(x)|\theta|_1 : (\theta,x) \in P \text{ and } x \in E \right\}.$$

We write $\sigma(f, P)$ instead of $\sigma(f, P; X)$; thus $\sigma(f, P) = \sum_{i=1}^{p} f(x_i) |\theta_i|_1$.

Remark 1. Our general concept of a partition includes the usual partitions used in [LL], the approximating partitions of [P], and also the partitions of unity employed in [JK] and [KMP].

In the family of all partitions, we fix once and for all a *filter base* \mathfrak{P} , i.e., a collection of nonempty families Π of partitions such tha for each Π_1 and Π_2 in \mathfrak{P} there is a Π in \mathfrak{P} with $\Pi \subset \Pi_1 \cap \Pi_2$.

Definition 2. A function f on X is called *integrable* if there is a real number I having the following property: given $\varepsilon > 0$, we can find a $\Pi \in \mathfrak{P}$ so that

$$|\sigma(f,P)-I|<\varepsilon$$

for each $P \in \Pi$.

Since \mathfrak{P} is a filter base, the number *I* of Definition 2 is determined uniquely by the integrable function f; it is called the *integral* of f denoted by $\int^* f$.

It is easy to verify that the family \mathcal{I} of all integrable functions is a linear space and that the map $f \mapsto \int^* f$ is a nonnegative linear functional on \mathcal{I} . A simple proof of the following Cauchy test for integrability is also left to the reader.

Lemma 3. A function f on X is integrable if and only if given $\varepsilon > 0$, there is a $\Pi \in \mathfrak{P}$ such that

$$|\sigma(f,P)-\sigma(f,Q)|$$

for each P and Q in Π .

It is clear that without additional hypotheses little can be said about the integral \int^* . Thus we make two natural assumptions that are easy to verify for each available version of the Henstock-Kurzweil integral.

Assumptions 4. Throughout, we shall assume that the following conditions are satisfied:

- (i) $L^1(X) \subset \mathcal{I}$, and $\int^* f = \int_X f$ for each $f \in L^1(X)$;
- (ii) each $f \in \mathcal{I}$ is measurable.

Proposition 5. The following statements are true.

- (1) If f and g are functions on X and f = g almost everywhere, then $f \in \mathcal{I}$ if and only if $g \in \mathcal{I}$, in which case $\int^* f = \int^* g$.
- (2) A function f on X belongs to $L^1(X)$ if and only if both f and |f| belong to \mathcal{I} .
- (3) If {f_n} is a sequence in I converging pointwise to a function f on X, then f ∈ I whenever either of the following conditions holds:
 (a) f₁ ≤ f₂ ≤ ··· and sup ∫* f_n < +∞;
 (b) g ≤ f_n ≤ h for some g and h in I and n = 1, 2,

Proof. We prove each assertion separately.

- (1) Clearly, $f g \in L^1(X)$ and $\int_X (f g) = 0$. Thus if $g \in \mathcal{I}$, it follows from 4(i) that f = (f g) + g belongs to \mathcal{I} and $\int^* f = \int^* g$. The proof is completed by symmetry.
- (2) If f and |f| belong to \mathcal{I} , then $f_n = \min\{|f|, n\}, n = 1, 2, \ldots$, belong to $L^1(X)$ by 4(ii). As $f_n \nearrow |f|$, it follows from 4(i) that

$$\int_X |f| = \lim \int_X f_n = \lim \int^* f_n \le \int^* |f| < +\infty.$$

The converse is a direct consequence of 4(i).

(3) Using (2) and 4(i), it suffices to apply the monotone and dominated convergence theorems for the Lebesgue integral to the sequences $\{f_n - f_1\}$ and $\{f_n - g\}$, respectively.

So far we have not used the fact that the measure μ is nonatomic; however, the next lemma depends on it in an essential way

Lemma 6. Let $A \subset B$ be measurable sets and let $f \in L^1(B)$. If $\int_A f \leq c \leq \int_B f$, then there is a measurable set C such that $A \subset C \subset B$ and $\int_C f = c$.

Proof. On the σ -algebra $\mathfrak{N} = \{E \in \mathfrak{M} : E \subset B - A\}$ consider the signed measure $\nu : E \mapsto \int_E f$. Since μ is a nonatomic measure, it is easy to verify that so is ν . According to Liapounoff's theorem ([**R**, Theorem 5.5]), the set $\{\nu(E) : E \in \mathfrak{N}\}$ is a compact interval. As

$$\nu(\emptyset) = 0 \le c - \int_A f \le \nu(B - A),$$

there is a $D \in \mathfrak{N}$ with

$$\int_D f = \nu(D) = c - \int_A f.$$

Consequently, $C = A \cup D$ is the desired set.

Proposition 7. Let f be a measurable function with $\int_X f^+ = \int_X f^- = +\infty$, and let c be a real number. There is an increasing sequence $\{X_n\}$ of measurable sets whose union is X and such that $f \in L^1(X_n)$ and $\int_{X_n} f = c$ for n = 1, 2, ...

Proof. We follow the proof of [LL, Lemma 2]. For n = 1, 2, ..., let

 $A_n^+ = \{x \in X : n-1 \le f(x) < n\} \text{ and } A_n^- = \{x \in X : -n \le f(x) < -(n-1)\}.$ Since

$$\sum_{n=1}^{\infty} \int_{A_n^+} f = \int_X f^+ = +\infty \quad \text{and} \quad \sum_{n=1}^{\infty} \int_{A_n^-} f = -\int_X f^- = -\infty,$$

we can construct inductively increasing sequences $\{r_k\}$ and $\{s_k\}$ of positive integers so that

$$\sum_{n=1}^{r_k} \int_{A_n^+} f + \sum_{n=1}^{s_k} \int_{A_n^-} f < c < \sum_{n=1}^{r_{k+1}} \int_{A_n^+} f + \sum_{n=1}^{s_k} \int_{A_n^-} f$$

for $k = 1, 2, \ldots$ Thus letting

$$E_k^- = \left(\bigcup_{n=1}^{r_k} A_n^+\right) \cup \left(\bigcup_{n=1}^{s_k} A_n^-\right) \quad \text{and} \quad E_k^+ = \left(\bigcup_{n=1}^{r_{k+1}} A_n^+\right) \cup \left(\bigcup_{n=1}^{s_k} A_n^-\right),$$

we have $E_1^- \subset E_1^+ \subset E_2^- \subset E_2^+ \subset \cdots$,

$$\bigcup_{k=1}^{\infty} E_{k}^{-} = \bigcup_{k=1}^{\infty} E_{k}^{+} = X, \text{ and } \int_{E_{k}^{-}} f < c < \int_{E_{k}^{+}} f \text{ for } k = 1, 2, \dots$$

By Lemma 6, there are measurable sets X_k such that $E_k^- \subset X_k \subset E_k^+$ and $\int_{X_k} f = c$. Since $E_k^- \subset X_k \subset E_k^+ \subset E_{k+1}^- \subset X_{k+1}$, we see that $\{X_k\}$ is the desired sequence.

Corollary 8. If $f \in \mathcal{I}$, then there is an increasing sequence $\{X_n\}$ of measurable sets whose union is X and such that $f \in L^1(X_n)$ and $\int_{X_n} f = \int^* f$ for n = $1, 2, \ldots$

Proof. If $f \in L^1(X)$, then in view of 4(i), it suffices to let $X_n = X$ for n = X1,2,.... If f does not belong to $L^1(X)$, then by Proposition 5(2), neither does f^+ nor f^- , and the corollary follows from Proposition 7.

Remark 9. Propositions 5 and 7, as well as Corollary 8, are true for any linear space \mathcal{I} and any nonnegative linear functional $f \mapsto \int^* f$ on \mathcal{I} that satisfy both conditions of Assumption 4. The approximation of $\int f$ by the sums $\sigma(f, P)$ was not used in obtaining these results.

Theorem 10. A function f on X belongs to \mathcal{I} if and only if given $\varepsilon > 0$, there are $E \in \mathfrak{M}$ and $\Pi \in \mathfrak{P}$ such that $f \in L^1(E)$ and

$$|\sigma(f,P;X-E)| < \varepsilon$$

for each $P \in \Pi$. If $f \in \mathcal{I}$, then E can be chosen so that $\mu(X - E) < \varepsilon$ and $\int_E f = \int^* f.$

Proof. Choose an $\varepsilon > 0$, and suppose first that there are $E \in \mathfrak{M}$ and $\Pi \in \mathfrak{P}$ such that $f \in L^1(E)$ and $|\sigma(f,P;X-E)| < \varepsilon/3$ for each $P \in \Pi$. Define a function $g \in L^1(X)$ by setting

$$g(x) = \left\{ egin{array}{cc} f(x) & ext{if } x \in E, \ 0 & ext{if } x \in X-E \end{array}
ight.$$

According to 4(i) and Lemma 3, there is a $\Pi_g \in \mathfrak{P}$ such that $|\sigma(g, P) - \sigma(g, Q)| < \infty$ $\varepsilon/3$ for each P and Q in Π_g . Now if $\Pi_f \in \mathfrak{P}$ and $\Pi_f \subset \Pi \cap \Pi_g$, then

$$|\sigma(f, P) - \sigma(f, Q)| \le |\sigma(g, P) - \sigma(g, Q)| + |\sigma(f, P; X - E)| + |\sigma(f, Q; X - E)| < \varepsilon$$

for every P and Q in Π_f . Consequently, $f \in \mathcal{I}$ by Lemma 3.

Conversely, suppose that $f \in \mathcal{I}$ and find $\Pi_f \in \mathfrak{P}$ so that $|\sigma(f, P) - \int^* f| < \infty$ $\varepsilon/2$ for each $P \in \Pi_f$. By Corollary 8, there is an $E \in \mathfrak{M}$ such that $\mu(X - E) < \varepsilon/2$ $\varepsilon, f \in L^1(E)$, and $\int_E f = \int^* f$. Again, define a function $g \in L^1(X)$ by setting

$$g(x) = \left\{egin{array}{cc} f(x) & ext{if } x \in E, \ 0 & ext{if } x \in X-E. \end{array}
ight.$$

According to 4(i), the function g belongs to \mathcal{I} and

$$\int_{-\infty}^{\infty} g = \int_{X} g = \int_{E} f = \int_{-\infty}^{\infty} f dx$$

There is a $\Pi_g \in \mathfrak{P}$ such that $|\sigma(g, P) - \int^* g| < \varepsilon/2$ for each $P \in \Pi_g$. Thus if $\Pi \in \mathfrak{P} \text{ and } \Pi \subset \Pi_f \cap \Pi_g, \text{ then}$

$$|\sigma(f, P; X - E)| = |\sigma(f, P) - \sigma(g, P)| \le \left|\sigma(f, P) - \int^* f \right| + \left|\sigma(g, P) - \int^* g \right| < \varepsilon$$
for each $P \in \Pi$

for each $F \in \Pi$.

References

- [JK] J. Jarník and J. Kurzweil, A nonabsolutely convergent integral which admits transformation and can be used for integration on manifolds, Czechoslovak Math. J. 35 (1986), 116-139.
- [KMP] J. Kurzweil, J. Mawhin and W.F. Pfeffer, An integral defined by approximating BV partitions of unity, Czechoslovak Math. J. 41 (1991), 695-712.
- [LL] S.P. Lu and P.Y. Lee, Globally small Riemann sums and the Henstock integral, Real Analysis Exchange 16 (1990-91), 537-545.
- [P] W.F. Pfeffer, A Riemann type definition of a variational integral, Proc. American Math. Soc. 114 (1992), 99-106.
- [R] W. Rudin, Functional Analysis, McGraw-Hill, New York, 1973.

Received November 18, 1991