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 ON THE THEOREM OF RADEMACHER

 Abstract. It is shown that there exist Cantor subsets X of M" and bi-Lipschitz
 maps / : X - ► f(X) C H, where H is an infinite dimensional Hilbert space, such
 that / is not strongly differentiable at any point of X. Furthermore, for each
 such X and / the image M = f(X) has the property that for any N > 1 and any
 diiferentiable map F : [0, l]" - ► H with dF(x) nonsingular for all x € [0, 1]", the
 set F~ 1(M) is a finite set. Hence, / can agree with a nonsingular diiferentiable
 map at most on a finite set.

 I. Introduction. It follows directly from the classical Lebesgue Differentia-
 bility Theorem that if / : R - ► R is locally Lipschitz, then it is differentiable
 almost everywhere with respect to Lebesgue measure. A more general (and
 more difficult) result is the following theorem of Rademacher.

 Theorem. (Rademacher) Let U be a nonempty open subset of R^ and sup-
 pose that f : 14 - ► Rm is locally Lipschitz. Then f is (strongly) diiferentiable
 almost everywhere with respect to Lebesgue measure.

 This differentiability theorem holds also for functions with values in a Hilbert
 space. (See for instance [1].) Observe however that the domains of these func-
 tions are open in M.N. This leads to the following natural question:

 Suppose that X is a compact (e.g. of Lebesgue measure zero) subset of R^
 and f : X - * Rm is locally Lipschitz. Does it follow that / has to be (strongly)
 differentiable at some point x € X ?
 For the case of sets of measure zero in the line and m = 1 the problem is

 solved. For any set x C R of measure zero Zahorski [8] constructed a real- valued
 Lipschitz function that is not differentiable (with respect to X) at any point
 of X provided that X has no isolated points. In RN, N > 2, there is a set of
 measure zero such that every real-valued locally Lipschitz function has points
 of differentiability in it. (See [7].) Not much more is known; for example the
 question of replacing real-valued by plane valued has not been answered yet.
 In this paper we construct a large family of Cantor subsets X of and

 bi-Lipschitz maps / : X - * f(X) C ?ť, where 7i is an infinite dimensional
 Hilbert space, such that / is not strongly differentiable at any point of X. (By
 a strong derivative D of / at x € X we mean a linear map D : RN -» 7i with
 the property that for any e > 0 there is 6 > 0 such that
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 II f(y) - fi*) - D(y - x)|| < e||y - x||

 provided that x,y € X and ||y - x|| < 8.) Furthermore, the image M = f(X) C
 Tí has the bizarre property that for any differentiable map F : [0, 1]^ - ► Ti with
 dF(x ) nonsingular for all x € [0,1]", the set F~1(M) is a finite set. Hence,
 such a map / can agree with a nonsingular differentiable map on at + most a
 finite set.

 Our constructions are general and mainly geometric in spirit. Specific exam-
 ples follow directly from our general set up. For instance, let X be the Cantor
 ternary subset of [0,1] with the metric p(x,y ) = 1/3**, where x,y are in the
 same interval at the n- level and are in different intervals the (n + 1)- level.
 Clearly, for any x, y 6 X we have

 |s-y| <p(x,y) < 3|a: - y|.

 Let fi be the (log 2/ log 3)-dimensional Hausdorff measure on X. (Throughout
 this paper, log means natural logarithm.) Then the map / : (X,p) » L2(X, ¡x)
 defined by

 f(x) = p(x, -)1"008 2/2 log 3)

 is a bi-Lipschitz map that is not strongly + differentiable at any x 6 X. But,
 / is weakly differentiable at every x € X with weak derivative equal to zero.

 2. Preliminaries. In this section we provide some of the basic machinery
 needed for the construction of our class examples.

 Definition 2.1. Let (M, d) be a metric space and for 0 < r2 < r' let N(r' , r2)
 denote the maximum number of disjoint closed r2 -balls contained in a closed
 ri-ball. Let

 A r,t{M) = sup I < r2 < ri < +r and ri > ťr2^ •
 Then the metric dimension of M is defined by

 dimm(M) = lim + limAr <(M).
 r- >0 t-*oo

 These limits exist since they are monotonie, but may be infinite.
 The metric dimension satisfies all the usual properties that a reasonable

 dimension should satisfy. Specifically,

 (i) If (Mi,dļ) is a metric subspace of (M2, (¿2), then
 dimm(M+l) < dim m(M2).

 (ii) If M is an open subset of R" equipped with the inherited + metric,
 then dim m(M) = N.

 (iii) If (Mi , di ) and (M2,eř2) are bi-Lipschitz homeomorphic, + then
 dimm(Mi) = dim m(M2).
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 The metric dimension is distinct from the Hausdorff dimension (as well as any
 of its approximations like limit capacity, etc.). Indeed, there exists a compact
 metric space whose Hausdorff dimension is 1 but whose metric dimension is
 infinite, [6].

 It should be noted that our metric dimension is closely related to the one
 introduced by P. Assouad [2] (denoted by Dim(Af, d)) which, in turn, is a
 generalization of the dimensional order of Bouligand [4]. It is easy to see that
 for a metric space (M, d) we have dimm(M) < Dim(M, d). However, the reverse
 inequality is not clear.

 Recall that a metric space (M, d) is an ultrametric space if the metric satisfies
 a stronger form of the triangle inequality: for all x, y, z € M

 d(x,y ) < ma x{d(x,z),d(y,z)}.

 One special property of these spaces is the fact that any two closed balls in an
 ultrametric space are either disjoint or one is contained in the other. Conse-
 quently, every ultrametric space is totally disconnected. Indeed, it follows from
 a straight forward argument that every compact, perfect, ultrametric space is
 homeomorphic to a Cantor space; that is, to a metric space homeomorphic to
 the Cantor set. However, there exist Cantor spaces, e.g. a fat Cantor subset of
 the unit interval, which are not bi-Lipschitz homeomorphic to an ultrametric
 space; [6].

 Theorem 2.2. Let ( M,d ) be a compact ultrametric space. If dimm(M) < N,
 then (M, d) is bi-Lipschitz embeddable in R.N. Conversely, if ( M,d ) is bi-
 Lipschitz embeddable in RN, then dim m(M) < N.

 For a proof of this theorem see [6].
 Next, let H be a Hilbert space and M C H be closed. We say that a

 function / : M - ► R is differentiable if and only if there is a differentiable
 function F : Ti - > R such that / = F'M, where the differentiable functions on
 a Hilbert space are defined in the usual way. This is probably the most natural
 way to define a differentiable structure on a closed subset of a Hilbert space.
 (See [5]).

 Definition 2.3. Let M be a subset of a Hilbert space 7i and let x G M.
 (i) The set of strong tangent vectors to M at i is defined as +

 SXM = {ÍIÍ =(strong)Jiim) +1,T-*nll' where and {*n}n>i are
 sequences + in
 M, yn ^ zn, converging in norm to x}.

 (ii) The set of weak tangent vectors to M at x is defined as +

 WXM = = (weak) Jirn^ , where {y„}n>i and {z„}„>i are
 + sequences in M, yn ^ z n, converging in norm to x).
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 Lemma 2.4. Let M be a, compact subset of a Hilbert space Ti. Then for any
 X € M we have that SXM and WXM are invariant under C1 diffeomorphisms.

 The proof is straight forward and is left to the reader. Observe that for a
 subset of a Euclidean space, the set of strong and weak tangent vectors are
 identical. Hence, if M is a compact subset of a Hilbert space and WXM Ý SXM
 for some x G M, then M is not C1 diffeomorphic to a subset of KN for any N,
 i.e., M is not C1 embeddable in finite dimensions.

 3. The Example. Let {çn}n>i C Z with qn > 1 for all n > 1, fix 1/2 < rj <
 1, and let r„ = (çi<j2 • • *Çn-i)-1> n > 1. Let Z qn = Z/çnZ and set G = fļ Z?n.

 n> 1

 Fora: = {xt}»>i and y = {y¿}«>i in G let d(x,y ) = rn if Xi = y¿ for 1 < i < n - 1
 and xn ^ y n- Clearly (G, d) is a compact perfect ultrametric space and so a
 Cantor space. In order to compute the metric dimension of ( G,d ) we note
 that for any m, n G N with n < m we have Af(rn,rm ) = qnqn+i • • • ?m-i and
 Tnļ Tļ n ~~ ÇnÇn+i * * * Çtn - i • Hence, we see that dim^j (G) = 1.

 Next, let ļi be the probability measure on G defined by fjt = fiļ x x • • •
 where /¿n is the normalized counting measure on Z qn. Observe that (G, d) is a
 commutative compact topological group with multiplication

 = (x« + vi( mod ?•)}«> i
 and fi is its unique invariant Haar measure. For x G G and n > 1 let B(x, rn) =
 {y G Gļd(x,y) < rn}. Then n(B(x,rn)) = (qiq2 . . . în-i)"1 = rn for n > 1.
 It follows that for each x G G and n > 1 we have log fx(B(x, rn))/ logrn = 1.
 Therefore, the HausdorfF dimension of G is also 1. (See [3]).

 Now, let 0 < e < 9/16 be fixed and let p be the ultrametric on G defined
 by the sequence {en}n>i- Specifically, for z,y G (G, d), let p(x, y) = en if x
 and y are in the same €n-1-ball (in metric d) but in distinct en-balls. Then
 en < d(x,y) < en_1 and so

 ed(x,y) < p(x,y ) < d(x,y).

 Therefore, (G,d) and ( G,p ) are bi-Lipschitz homeomorphic under the iden-
 tity map. Furthermore, for each en-ball B(x, en) C (G,p) we have en+1 <
 n(B(x,en)) <€n, n> 1.

 The next step is to look for a bi-Lipschitz embedding of (G, d) in some Hilbert
 space. To this end, let <p : ( G,d ) «- ► L2{G,n) by setting <p(x) = p{xi-)1f2.

 Lemma 3.1. The map <p is bi-Lipschitz.

 Proof. Let x,y G G with p(x,y) = en for some n > 1. Denote Bn(x) = {z G
 G'p(x,z ) < en}, n > 1. Then

 ||v?(x) - <p(y) ''l = f I p{x,zfl2 - p(y,z)1/2'2dfi(z)+
 Jg

 = J [ l/>0>2)1/2 - p(y,z)1/2'2dn(z). J Bn(x)
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 The last equality follows from the fact that the integrand is identically zero on
 G'Bn(x). Note that if z Ç Bn+i(x), then p(y,z ) = en and if z
 then p(x , z) = en. Furthermore, for z G Bn(x) ' ( Bn+i(x ) U Bn+ļ(y)) we have
 p(x,z ) = p(y,z) = en. Hence,

 II (P(x)-<P(y)''l= f (p(x,zyl2 v -e+n/2) ' dp(z) Jb„+i( x) v '

 + / ^en/2 V _p(yiZy/2' ' JBn+1(y) V '

 = 2 / (e«/2-^^)1/2)2^). V ' ^Bn+1(i) V '

 But if z e ßn+1(x), then

 en/2 _ e(„+l)/2 < en/2 _ p(x^)l/2 < e+n/2

 Consequently, for e < 9/16 we have

 Therefore,

 e2d(x, y) < ep(x, y) < ||<^(x) - vKîOlh < V2ep(x, y) < y/2e d(x , y). ■

 Let M = tp(G) C L2(G,p). Since tp is bi-Lipschitz we se that dimm(M) = 1
 and so by Theorem 2.2 M is bi-Lipschitz embeddable in Kw for any N > 2.
 We show, however, that M is not C1 embeddable in RN for any JV. This fact
 is a consequence of the following lemma.

 Lemma 3.2. For any x 6 M we have SXM = <f> but WXM = {0}.

 Proof. We first show that SXM = <f>. To this end, assume that there are se-
 quences {x„}n>i and {y„}„>i in G converging to x € G such that the sequence

 {(<^(®n) - <P(yn))/''<f(Xn) ~ <¿>(yn)||2 }n>l

 converges strongly (in L2 norm) to some ( E SXM. Then ||£||2 = 1. Given
 r > 0 there is n0 G N such that if ra0 < ra, then xn £ B(x,r ) and yn G B(x,r).
 Because G is an ultrametric space, if rao < ra, then

 p(xn,yn) < max{p(xn,x),p(yn,x)} < r.
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 Therefore, B{xn,p{xn,yn)) = B(yn,p(xn,yn )) C B(x,r) for n0 < n.
 On the other hand, suppose z G G with p(z,xn) > p{xn,yn) and p(z,yn) >

 p(xn,yn). Then we must have

 p(z,Vn) < max{p(z,xn),p(xn,yn)} = p(z,xn ).

 Similarly, we get p{z,xn) < p{z,yn) and so p(z,xn) = p(z, yn) + . Hence, if
 « £ B(xn,p(xn,yn )) = B(yn,p(xn,yn)), then <p(xn)(z) - <p(yn)(z) = 0 for
 no < n. In other words, if no < n, then

 ■I M*») ^Xn) - - v>(yn)||2 y/yn?ii (*) = 0 + for a11 z £ B(x,r). ■I M*») - v>(yn)||2

 This means that supp(£) C B(x,r ) for all r > 0. Therefore, diam(supp(£)) = 0
 and so £ = 0 almost everywhere with respect to ¡i. This contradiction proves
 that SXM = <ļ>.

 An analogous argument using weak limits establishes that WXM = {0} and
 the lemma is proved. ■

 Corollary 3.3. M is not C1 embeddable in RN for any N.

 Theorem 3.4. There exists a Cantor subspace M of a Hilbert space Tí such
 that for any differentiable map F : [0, 1]" - » Tí with dF(x ) nonsingular for all
 x 6 [0, l]N, the set F~1(M ) is a finite set.

 Proof. Let M = <p(G) above and Tí = L2(G,fi). Suppose that F : [0, 1]" - ► Tí
 is differentiable with dF(x) nonsingular for all x G [0, 1]" and that the set K =
 F~X(M) is infinite. Since K is compact, there is a sequence {^n}n>i C K con-
 verging to some zeK such that the sequence {(zn - z)/'zn - z|}n>i converges
 to a unit vector a € SZK C E.N. Then dF(z)a ^ 0 and dF(z)a/''dF(z)(r''2 €
 Sp(x)M. But 5p(z)M = 4>. This contradiction proves the theorem. ■

 Theorem 3.5. There exist Cantor subspaces X of RN and bi-Lipschitz maps
 f : X -* f(X) C Tí, where Tí is an infìnite dimensional Hilbert space, such that
 f is not strongly -f differentiable at any point of X.

 Proof. Let M = <p(G) above and recall that dimm(M) = 1. Therefore M is
 bi-Lipschitz embeddable in MN, N > 2. Let j : M <- ► RN, N > 2, be any
 bi-Lipschitz embedding and let X = j(M ) inherit the C1 structure from RN.
 Because SXM = (f> for all x € M, the map

 / = r1 : j(M) = X - ► M C L2(G,fi)

 is a bi-Lipschitz map which is not strongly differentiable at any point of X. ■
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 Corollary 3.6. The map f above can agree with a nonsingular differentiable
 map at most on a finite set.

 Observe that the map / above is weakly differentiable at every point of X
 with weak derivative equal to zero.

 We conclude by remarking that the above construction represents a family of
 examples. Indeed, any compact ultrametric space ( Jļ Z çn, {rn}n>i) yields one

 n>l

 such example provided that the sequences {gn}n>i C N and {r„}n>i C (0,1)
 are chosen so that dimm ( II z9n) < oo and arf < fi(B(x,rn)) < A r% for

 n>l

 some constants 0 < D < 2 and 0 < a < A. In such a case, the map (p in Lemma
 3.1 becomes <p(x) = p(x,')^1~D^2K
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