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 RIEMANN TAILS AND THE
 LEBESGUE AND HENSTOCK INTEGRALS

 The results in this paper are related to the concepts of globally small Rie-
 mann sums and functionally small Riemann sums as defined in [3]. We assume
 that the reader is familiar with the terminology of the Henstock integral. Let
 / : [a, b] - ► R, let E C [a, 6], let 8 be a positive function defined on [a, 6], and
 let V = {(x¿, [cj,dj]) : 1 < i < q} be a finite collection of non-overlapping tagged
 intervals in [a, 6]. Then

 ?

 f(V) = f(xi)(di - ci ) denotes the Riemann sum of / associated with V'
 »=1

 X e denotes the characteristic function of E;

 CE denotes the complement of E; and
 V is ^-subordinate to 8 means that V is subordinate to 8 and each of the

 tags X{ is in E.
 We begin with a result that relates the Lebesgue and Henstock integrals. The
 proof is an adaptation of the proof of Lemma 2 that is found in [3]. It is an easy
 exercise to verify the following lemma.

 LEMMA: Let / : [a, 6] - ► R, let A and B be measurable subsets of [a, 6] with
 A C B, and suppose that / is Lebesgue integrable on B. If £ is a number between
 J. f and fB /, then there exists a measurable set C such that A C C C B and
 Jcf = L-

 THEOREM 1: If / : [a, 6] - » R is Henstock integrable on [a, 6], then for each
 e > 0 there exists a measurable set E C [a, b] such that /¿([a, 6] - E) < e, f is
 Lebesgue integrable on E, and JEf = /.

 PROOF: To omit the trivial case, assume that / is not Lebesgue integrable on
 [a, 6]. For each positive integer n, define sets

 ^„ = {ie[a,ii]:R-l< f(x) < n}; Bn = { x e [a, b] : -n < f(x) < -n + 1};

 then let an = fA f and bn = fg f. Since (Jn(A„ U Bn) = [a,b], there exists an
 N

 integer N such that the set X = (J (An U Bn) satisfies n([a, b] - X) < e. Since
 n=l
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 / is bounded on X , it is Lebesgue integrable on X . Suppose that J ^ f < /a6/;

 the case fxf> Ja f 1S similćLr. Since / is not Lebesgue integrable on [a, 6], the
 OO

 series an diverges. Choose an index M > N such that
 71=1

 / / + <lN+ 1 + ÛJV+ 2 + * * * + dM > / /
 ./X

 and let y = U Ajv+i U • • • U Ajv/ . Now / is Lebesgue integrable on F and
 fx f < /./ < fy f ■ By the lemma, there exists a measurable set X G E G Y
 such that JE f = f. This completes the proof.

 DEFINITION: A measurable function / : [a, 6] - ► R is almost Lebesgue in-
 tegrable on [a, 6] if for each e > 0 there exist a measurable set E C [a, 6] and
 a positive function 8 on [a, 6] such that /¿([a, 6] - E) < e, / is Lebesgue inte-
 grable on E, and 'fXcE(P)' < e whenever V is a tagged partition of [a, 6] that is
 subordinate to 8.

 THEOREM 2: A function / : [a, 6] -* R is Henstock integrable on [a, b ] if and
 only if it is almost Lebesgue integrable on [a, 6].

 PROOF: Suppose first that / is Henstock integrable on [a, 6] and let e > 0. By
 Theorem 1, there exists a measurable set E C [a, ft] such that b] - E) < e,
 f is Lebesgue integrable on E, and JE f = f. Since / and fXß are Henstock
 integrable on [a, 6], there exists a positive function 6 on [a, 6] such that

 |/W-/'/|<«/2 Md 'fXB(V)-fEf'<€/2
 whenever V is a tagged partition of [a, b] that is subordinate to 6. Let V be a
 tagged partition of [a, 6] that is subordinate to 6 and compute

 'fxcE(v)' = I /(V) - fxE(P) I < I m - ¡I f' + 1 U f - Mr) I < «.

 Hence / is almost Lebesgue integrable on [a, 6].
 Now suppose that / is almost Lebesgue integrable on [a, 6] and let e > 0.

 Choose a measurable set E C [a, 6] and a positive function 8' on [a, b] such that
 /i([a, b] - E) < e, f is Lebesgue integrable on E, and 'fXcE(P)' < e/3 whenever
 V is a tagged partition of [a, b] that is subordinate to Si . Since fX e is Henstock
 integrable on [a, 6], there exists a positive function 6 < 6i on [a, 6] such that
 I/XeCPi) - fXE{V2)' < e/3 whenever V' and V2 are tagged partitions of [a, 6]
 that are subordinate to 8. For such partitions, we have

 'fCPi) - f{V2) I < 'fXCE{Vi)' + 'fXE(Vi) - fXE(V2) I + 'fXcE(V2)'
 < e/3 -|- e/3 -f- e/3 = c.
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 By the Cauchy criterion for Henstock integrability, the function / is Henstock
 integrable on [a, b].

 Theorem 3 of [3] yields the following corollary:

 COROLLARY: A measurable function f : [a, b] -* R has functionally small
 Riemann sums if and only if it is almost Lebesgue integrable on [a, b].

 We next present two types of uniform integrability and two well-known con-
 vergence theorems.

 DEFINITION: Let {/„} be a sequence of Lebesgue integrable functions defined
 on [a, b]. The sequence {/„} is uniformly Lebesgue integrable on [a, 6] if for each

 e > 0 there exists a positive integer N such that '>n) I /«I < e for all n.

 Vitali Convergence Theorem: Let {/»»} be a sequence of Lebesgue integrable
 functions defined on [a, 6] and suppose that {/n} converges point wise to / on
 [a, 6]. If the sequence {/„} is uniformly Lebesgue integrable on [a, 6], then / is

 Lebesgue integrable on [a, b] and J* f = lim J* fn.

 DEFINITION: Let {/«} be a sequence of Henstock integrable functions defined
 on [a, 6]. The sequence {/„} is uniformly Henstock integrable on [a, 6] if for each

 e > 0 there exists a positive function S on [a, 6] such that |/n("P) - f* fn' < e for
 all n whenever V is a tagged partition of [a, 6] that is subordinate to 6.

 Simple Convergence Theorem: Let {/„} be any sequence of Henstock inte-
 grable functions defined on [a, 6] and suppose that {/„ } converges pointwise to
 / on [a, 6]. If the sequence {/„} is uniformly Henstock integrable on [a, 6], then
 / is Henstock integrable on [a, 6] and / = lim Jb /„.

 fl - ►OO

 Several comments are in order at this point. The sequence {/«} is uniformly
 Lebesgue integrable on [a, 6] if and only if the sequence {/./«} is equi-absolutely
 continuous with respect to Lebesgue measure on [a, b]. The proof of this is a
 routine exercise. The statement of the Vitali convergence theorem given here is
 only a special case - the theorem actually is much stronger. See page 152 of [4].
 The word simple in the convergence theorem for the Henstock integral refers to
 the fact that the proof is very easy. The theorem itself is quite powerful. See [1].

 Now suppose that / : [a, 6] - » R is a measurable function. For each positive
 integer n, let

 W») = { ^ = {» e [a,6]: |/(i)| >„}.
 791



 Then {/„} converges pointwise to /,/ - /„ = fXEni and {£?„} is a nonincreasing
 sequence of sets that converges to the empty set. If / is Lebesgue integrable
 on [a, 6], then the sequence {/n} is uniformly Lebesgue integrable on [a, b] and

 fbf = lim fb fn- However, if / is Henstock integrable on [a, 6], the sequence

 {/„} is not necessarily uniformly Henstock integrable on [a, b ] and Jb / may not

 equal lim Ja fn. An example of this phenomenon is given on page 115 of [2].
 The function / : [0, 1] - ► R is defined by

 Í"2. +

 k 0, otherwise.

 See [2] for details. We look for conditions on / to guarantee that the sequence

 {fn} is uniformly Henstock integrable on [a, 6] and fbf a = lim fb a /„. a n - ^oo a

 DEFINITION: Let f : [a, b] -* R be measurable and let {¿£n} be defined as
 above.

 (a) The function / has small Riemann tails if for each e > 0 there exist a positive
 integer N and a positive function 8 on [a, b] such that | fXEn(P)' < e for all
 n > N whenever "P is a tagged partition of [a, 6] that is subordinate to 8.
 (b) The function / has really small Riemann tails if for each e > 0 there exist
 a positive integer N and a positive function 6 on [a, b] such that 'f(V)' < e
 whenever V is En -subordinate to 6.

 As defined above, the concept of small Riemann tails is a uniform type of
 globally small Riemann sums. The difference between small Riemann tails and
 really small Riemann tails is subtle. Any V that is ^-subordinate to 8 can
 be extended to a tagged partition V' of [a, 6] that is subordinate to 8. But
 since the extended partition may have more tags in En, it does not follow that
 1/(^)1 = This definition leads to the following results.

 THEOREM 3: Let / : [a, 6] - * R be measurable and let {/n} be the sequence
 defined above. Then {/„} is uniformly Lebesgue integrable on [a, 6] if and only
 if / has really small Riemann tails.

 PROOF: Suppose first that the sequence {/„} is uniformly Lebesgue integrable
 on [a, 6]. It is easy to verify that |/|„ = |/n| and that the sequence {|/n|} is
 uniformly Lebesgue integrable on [a, 6]. By the Vitali Convergence Theorem, the

 function l/l is Lebesgue integrable on [a, 6] and lim Jb a |/„| = fb a |/|. It follows n - ►oo a a
 that

 „Hm f «/a |/|XEn = lim /'(l/l Ja - I/.I) = 0. «/a Ja
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 Thus there exist a positive integer N and a positive function 8 on [a, 6] such that
 'f'XEN(Vi) < e whenever Vi is a tagged partition of [a, 6] that is subordinate to
 8. Suppose that V is E n -subordinate to 8. Extend V to a tagged partition V'
 of [a, 6] that is subordinate to 8. We then have

 'f(V)' < l/l (V) = |/|Xe„(T>) < |/|Xe„(T>,) < e.

 Hence / has really small Riemann tails.
 Now suppose that / has really small Riemann tails. To prove that {/„} is

 uniformly Lebesgue integrable on [a, i>], it is sufficient to prove that / is Lebesgue
 integrable on [a, 6]. This is equivalent to ļ/| being Henstock integrable on [a, 6].
 We will prove that |/| is almost Lebesgue integrable on [a, 6] and apply Theorem
 2. Let € > 0. There exist a positive integer Ni and a positive function 8 on [a, b]
 such that [/('P)! < e/2 whenever V is -subordinate to 8. Choose an integer
 N > Ni such that ļi(En) < e. Since / is bounded on [a, 6] - En, the function
 l/l is Lebesgue integrable on [a, b] - En- Let V be a tagged partition of [a, 6]
 that is subordinate to 8. Let Vpļ he the subset of V with the property: if x is a
 tag of Vpj, then x G En and f(x) > 0; and let be the subset of V with the
 property: if x is a tag of then x 6 En and f(x) < 0. Since both Vfc and
 VÑ are E -subordinate to 8,

 l/l Xe„(V) = KP%) - fV>a) < e/2 + e/2 = e.

 Hence |/| is almost Lebesgue integrable on [a, 6]. This completes the proof.

 THEOREM 4: Let / : [a, b] - ► R be measurable and let {/n} be the sequence
 defined above. Then {/n} is uniformly Henstock integrable on [a, 6] if and only
 if / has small Riemann tails.

 PROOF: Suppose first that the sequence {fn} is uniformly Henstock integrable
 on [a, 6]. By the Simple Convergence Theorem, the function / is Henstock inte-

 grable on [a, 6] and lim fn = f* f. Let e > 0. Choose a positive function 8
 on [a, 6] such that

 |/(P) ~ /« /I < €/3 and 'fn(V) - /a fn ' < €/3 for all Tl

 whenever V is a tagged partition of [a, 6] that is subordinate to 8 and choose a
 positive integer N such that

 I /« fn~ Ja f'< e/3 for all n > TV.

 Let i' be a tagged partition of [a, 6] that is subordinate to 8 and for n > N
 compute

 1/xe.wi = wp) - un i

 < 'm - si /I + 1/' / - si u i + 1/.' /» - urn i
 <i e/3 -f- e/3 -|- c/3 = c.

 793



 Hence / has small Riemann tails.
 Now suppose that / has small Riemann tails and let e > 0. From the

 inequality,

 I - /'/m| < I /„'/» - /»c)| + 1 ut) - m I + 'm - fm(T) i
 + 'fm(P) - Sa fm'

 = I Si U - MP) I + IAŁWI + |AE.CP)|
 + 'MP)-SÌf-l

 it is easy to verify that the sequence {/^ /„} is Cauchy. Let e > 0. There exist a
 positive integer Ni and a positive function ¿1 on [a, 6] such that 'fXEn(V)' < e/4
 for all n > Ni whenever V is a tagged partition of [a, 6] that is subordinate to
 il . Choose an integer N > Ni such that

 I /« fn ~ /a f™ I < e/4 for rn,Ti> N

 and choose a positive function 8 < Si on [a, 6] such that

 'fn{T>) - /06 /„I < e for 1 <n<N

 whenever V is a tagged partition of [a, 6] that is subordinate to 6. Suppose that
 V is a tagged partition of [a, 6] that is subordinate to 6 and for n > N compute

 |/»c) - sìf- 1 < I MP) - m' + 1 m - ¡N(v) i + 1 mv) - s'/n i
 + I Si fN - Si /" I

 = |Ae,(P)| + '/XEA-p)' + 1 M-P) - Si /«I

 + 1 SÌ fu - Si M
 < e/4 + e/4 + e/4 + e/4 = e.

 Hence {/„} is uniformly Henstock integrable on [a, 6].

 The following theorem is proved in [2].

 THEOREM 5s Let / : [a, 6] - ► R be measurable and let {/n} be the sequence
 defined above. Then / is Henstock integrable on [a, 6] and J f = lim f* /„ if
 and only if / has globally small Riemann sums.

 We conclude this paper with an open question. The function given earlier is
 an example of a function that is Henstock integrable but does not have globally
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 small Riemann sums. Is there a function that has globally small Riemann sums
 but does not have small Riemann tails? That is, is it possible for / to be Henstock

 integrable on [a, 6] and / = lim /„, but that the sequence {/„} is not
 uniformly Henstock integrable on [a, 6]?
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