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 THE FRÉCHET BOUNDS REVISITED
 What have become known as the Fréchet bounds,

 max(F(x) + G(y) - 1,0) < H(x,y) < min (F(x),G(y)),

 were published by Fréchet [2] in 1951 and even earlier by Hoeffding [3] in
 1940. Here H is the joint distribution function of a pair X , Y of random
 variables whose one- dimensional distribution functions are F and G , respec-
 tively. It is well-known that H(x, y) is identically equal to its Fréchet upper
 (lower) bound if and only if the mass of H is concentrated on a nondecreasing
 (nonincreasing) curve. Fréchet (1951) discussed this result in both the dis-
 crete case and the continuous case, and went on to say that things worked in
 essentially the same way in the general case. Hoeffding (1940) discussed the
 continuous case and said that his discussion of the discontinuous case would

 appear elsewhere. Motivated to some extent, perhaps, by the relative inac-
 cessibility of these papers but also, undoubtedly, by a desire for a "better"
 proof, a number of others, including Dall'Aglio [1], Kimeldorf and Sampson
 [4], and Wolff [5], have since given proofs.

 To our knowledge, each proof in the literature is either limited to the
 discrete or continuous case or else is quite sketchy. Perhaps it is fair to say
 that the literature even lacks a clear formulation of the result. Our purpose,
 in this paper, is to give a clear formulation of the result accompanied by
 a simple proof which makes no such assumptions about the nature of the
 marginals, F and G.

 We begin with a definition. A subset S of R2 is nondecreasing if and only
 if, for all (x,t/),(u, v) in S,

 X < u implies y < v.

 Lemma 1 Let S C R2 be nondecreasing. Let (x, y) be an arbitrary element
 o/R2. Either
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 (1) For all (u, v) (E S, u < x implies v < y
 or

 (2) For all (u,v) G S, v < y implies u < x.

 Proof: If (1) and (2) are false, points ( a,b),(c,d ) € S exist with a <
 x> b > y, d < y , and c > x yielding a < c and d < 6, a contradiction because
 S is nondecreasing. □

 A picture gives worthwhile intuition. In Figure 1, condition (1) is satisfied;
 in Figure 2, condition (2) is satisfied. Loosely speaking, Lemma 1 tells us that
 at ( x,y ), either "quadrant II" or "quadrant IV" has an empty intersection
 with S.

 I (x,y)

 Figure 1
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 y/ </y) ļ
 Figure 2

 Proposition 2 Let S C R2 be nondecreasing. Let X and Y be random,
 variables such that (X, Y) is almost surely in S. Then H(x,y ) is identically
 equal to its Fréchet upper bound.

 Proof: Let ( x,y ) € R2. Either (1) and (2) of Lemma 1 is satisfied.
 Suppose (1) is satisfied. Then,

 F(x) = P[X < x]

 = P[X <x,Y <y' + P[X <x,Y>y]

 = P[X < x, Y < y] + 0 (because (1) is satisfied)

 < P[X <x,Y <y] + P[X>x,Y <y ]

 = P[Y < y] = G(y)
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 Thus,
 H(x,y) = P[X <x,Y < y] = min (F(x),G(y)).

 Similarly, because of the symmetry, if (2) is satisfied, then

 G(y) = P[X<x,Y<y'<F(x).

 Hence, we again have

 H(x, y) = min(F(x), G(y)). □

 Lemma 3 Suppose ļi is a Lebesgue-Stieltjes measure on R2 and A is a subset
 of R2 having positive ļi-measure. Then there is a point p € A such that

 > 0

 for every e > 0 where B(p,e) denotes the open ball about p with radius e.

 Proof: If there is no such p, we can produce ®, a countable open cover
 for A by sets of /i-measure zero, so that 0 < fi(A) < /t(U©) = 0, which is a
 contradiction. □

 Lemma 4 Let n be a Lebesgue-Stieltjes probability measure on R2. Then
 n(D) = 1, where

 D = {(x,y) € R2 : for every e > 0, n(B((x,y),e)) > 0}.

 Proof: Lemma 3 implies that /x(R2 - D) = 0. Hence

 H(D) = 1 - fi( R2 - D) = 1 □

 Lemma 5 Let H(xi y) be identically equal to its Fréchet upper bound. Then,
 for every (a:, y) € R2, either P[X > x,Y < y] = 0 or P[X < x, Y > t/] = 0.

 Proof: Notice that

 F(x) = P[X <x] = P[X <x,Y <y] + P[X <x,Y>y]

 = H(x, y) + P[ X <x,Y >y]
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 and

 G(y) = P[Y<y} = P[X<x,Y <y] + P[X>x,Y < y]

 = H(x,y) + P[X>x,Y<y}.

 Thus,

 H(x,y) = min (F(x),G(y))

 = H(x, y) + min(P[X < x,Y > y], P[X > x, Y < y]).

 It is now clear that either P[X < x,Y > y] = 0 or P[X > x, Y < y] = 0.
 □

 Proposition 6 Let H(x, y) be identically equal to its Fréchet upper bound.
 Then there is a nondecreasing subset D of R2 such that ( X , Y) is almost
 surely in D .

 Proof: Let fi be the Lebesgue-Stieltjes measure on R2 induced by H.
 Let

 D = {(x,y) e R2 : for every e > 0, /i(£((x,y),e)) > 0}.

 We know from Lemma 4 that (X, Y) is almost surely in D so we need only
 show that D is nondecreasing. To this end, suppose (®i,yi) and (x2,y2) are
 both in D. Suppose further that Xļ < x2 and y2 < y'. Let x0 = (xi + x2)/2,
 let y0 = (yi + j/2)/2, and let e be the smaller of |x2 - a?i|/2 and |y2 - yi|/2.
 Then,

 n(B((xuyi),e)) > 0 and n(B((x2,y2,e)) > 0.
 Moreover, if ( x,y ) G B((xļ,yi),e) then x < xo and y > yo. Hence

 P[X <x0,Y> y0] > 0.

 Likewise, if (®,y) € B((x2,y2),e) then x > xq and y < y0. Hence

 P[X >Xq,Y < y0] > 0.

 By Lemma 5, H(x , y) is not identical to its Fréchet upper bound, a contra-
 diction. □

 We may now combine Propositions 2 and 6 to obtain

 762



 Proposition 7 H(x,y) is identically equal to its Fréchet upper bound if and
 only if (X, Y) lies almost surely in a nondecreasing subset of R2.

 Turning our attention to the Fréchet lower bound, we again start with
 a definition. A subset S of R2 is nonincreasing if and only if, for every
 (x,y),(u,v) e S ,

 X < u implies y > v.

 There are two ways to get the corresponding result for the Fréchet lower
 bound. One way is to proceed in a fashion similar to our approach given
 above for the Fréchet upper bound. The other way is to notice that the set
 S*, given by

 s* = {(Z'f) : (*»-y) € S},

 is nondecreasing if and only if the set S is nonincreasing. Also, (X,Y) lies
 a.s. in S if and only if (X, -Y) lies a.s. in S*. Finally, one makes use of the
 fact that

 max(a + b - 1, 0) = a - min(a, 1-6)

 to prove that the distribution function of ( X , - F) is identically equal to its
 Fréchet upper bound if and only if the distribution function of (X, Y) is
 identically equal to its Fréchet lower bound. Either path easily yields the
 following:

 Proposition 8 H(x,y) is identically equal to its Fréchet lower bound if and
 only if (X, Y) lies almost surely in a nonincreasing subset of R2.
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