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 LIMITS WITHOUT EPSILONS

 The concept of convergence of real sequences is completely characterized by six
 properties , each essentially a theorem from, the theory of limits of sequences of real
 numbers. Consequently, the foundation of the calculus can be constructed without
 the use of the "e, 6" definitions of Cauchy. The six properties are versions of. ( 1 )
 the scalar multiple of a convergent sequence is convergent ; ( 2 ) the corresponding
 sums of equivalent convergent sequences are equivalent ; (5) the Squeezing Theo-
 rem; (J) all subsequences of a convergent sequence converge and are equivalent;
 (5) the sequence 1,- 1,1,- 1,- • • does not converge; and (6) every divergent and
 bounded sequence has two non- equivalent, convergent subsequences. Five of the
 six properties are shown to be necessary for the characterization of convergence.
 The question of the independence of the Squeezing Theorem from the other five
 properties remains unresolved.

 INTRODUCTION: The following characterization of the convergence of real
 sequences does not use the classical definitions of limits, first used by Cauchy [3]
 in the nineteenth century. Furthermore, the setting of the real number system
 remains the same. There are no unusual or unorthodox changes to the structure
 of the calculus or real analysis. Each of the conditions contained in this charac-
 terization of limits of sequences has an analog in the classical theory of limits of
 sequences.

 The characterization is shown to be precisely equivalent to the concept, "limit of
 a real sequence," as typically defined and universally accepted. In other words,
 any theorem about the convergence of sequences of real numbers can be proven
 in this setting. With the exception of one condition, the characterization is
 shown to be minimal in the sense that each condition is necessary to preserve
 the uniqueness of the characterization.

 The author purposely developed these concepts in the context of the real num-
 ber system for two reasons. The first reason was to show that this approach is a
 practical alternative to the standard method using the Cauchy type(e, 6) defini-
 tions of convergence, traditionally used in elementary calculus and real analysis.
 The second reason is to present these six properties as an axiom system in the
 setting used in the nineteenth century for the Cauchy convergence definitions.
 This system can and should be generalized in several directions. The compara-
 ble concepts of limits of functions and continuity can be examined in a manner
 analogous to the approach given here. The investigation of generalizations and
 similar developments should definitely be explored at a later time.
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 It is surprising that this system was not developed fifty to one hundred years ago.
 Nevertheless, the author has not found any reference to a system that considers
 the very common six properties collectively as a basis for convergence, despite
 considerable searching in the literature and consulting with many colleagues.

 DEFINITIONS: It is assumed that the real number system considered here
 does not use the "epsilon" type conditions of Cauchy in its definition. The
 collection of real sequences will be denoted by S. The set of convergent sequences
 of S will be denoted by C. (A, S, =) is a convergence system on S will mean that
 A Ç 5, " = " is a relation on S and:
 Al. If X = {i„}~=1 G A and k E R( reals), then kX = {&£„}£?_! G A;
 A2. If X,Y,Z,W, X + Z, Y + W E A, X = Y and Z = W,

 then Y + W = X + Z;
 A3. If X, Y E A, Z Ç S, Vn, xn < zn < yn and X = Y, then Z E A and

 Z = Xļ
 A4. If X G A and Y, Z are subsequences of X , then Y,Z E A and Y = Z]
 A5. {(-1)")~ , i A; and
 A6. If X A and X is bounded, then X has two subsequences Y,Z G A such

 that Y ^ Z .

 CONVERGENCE SYSTEMS: This section establishes some basic properties
 of convergence systems that are used later to prove that the concept of conver-
 gence systems completely characterizes the notion of "limit of real sequences."

 Assume that ( A , S, =) is an arbitrary convergence system in Theorems 1-7.

 Theorem 1: If a G R, then {a}£Ļļ G A.

 Proof: Suppose X = {a}^_j ^ A. By A6, there exists two subsequences Y,Z G
 A of X such that Y jé Z. Since X is constant, Y = Z = X and X E A.
 Contradiction.

 Theorem 2: {lfe ^ {0}£°=1.

 Proof: Suppose {1)^-1 = {Oļ^Ļj. { - 1/2)^.1 is a subsequence of itself.
 As a result, {-1/2}^ = {-l/2}£Ļļ and
 {- 1/2}~ ! = {0}^=1 + {-l/2}~ 1 = {1}~ 1 + {-l/2}~ 1 = {l/2}~ r For every
 positive integer n, -1/2 < (-l)n/2 < 1/2. Consequently, {(-l)"^}^ G A
 and {(- l)n}£Ļļ G A. Contradiction.

 Theorem 3: If X G A, then X is bounded.

 Proof: Suppose X E A and X is unbounded above. Let Y denote a subsequence
 of X such that for every n, yn < yn + 1/2 < yn+i-
 The sequences {y„}~ x, {y„+i}~ 1? {-yn}£°=i G A and {y„}~ x ee {y„+i}~=1.
 As a result, {yn + 1/2}?=1 E A and {yn + l/2}~ 1 = {yn}~ x. {-y„}~ l
 is a subsequence of itself. Consequently, {- yn}£Li = {- yn}^Li- By A2, it
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 follows that, {0}S=1 = {»n}£Li + {-»n}^=l = {Vn + 1/2}^=, + {-¡fn}^! =
 {l/2}~,. As a result, {1}~ , » {1/2}« , + {1/2}» , s {0}~ , + {0}~, =
 {0}^Ļļ. Contradiction. A similar argument holds when X is unbounded below.
 Consequently, X is bounded.

 Theorem 4: If X, Y € A, then X + Y € A.

 Proof: Suppose X, Y € A and X + Y £ A. X + F is bounded. By A6, there
 exist two subsequences Z, W € A of X + Y such that Z ^ W. There exist two
 subsequences U, V € A of X and two subsequences 5, T 6 A of Y such that
 U + S = Z and V + T = W. Since V = U ¡mdT = S, Z = U + S = V + T = W.
 Contradiction.

 Theorem 5: The relation " = " is an equivalence relation on A.

 Proof: (Reflexive) Suppose X € A. X is a subsequence of X. By A4, X = X.
 (Symmetric) Suppose X,Y 6 A and X = Y. {0}£Lļ = {0}^-!-
 It follows from A2 that Y = Y + {0}^Ļj = X + {0}5JĻļ = X.
 (Transitive) Suppose X, Y, Z 6 A, X = Y and Y = Z .
 Again using A2, Z + Y, Y + X Ç A and Z + Y = Y + X.
 Since -Y G A and -Y = -Y,X = (Y + X) + (-F) = (Z + Y) + ( -Y ) = Z.

 TheoremS: {l/<si,{-l/»Ł.W»fe Ē A and
 {1/»}~=1 = {0}~. s {- l/n}~ 1 = {2/r»}~

 Proof: Suppose {l/n}£Ļx = X ^ A. There exist two subsequences Y, Z G A of
 X such that Y ^ Z. There exists a subsequence W of Y and a subsequence V of
 Z such that for every positive integer n, wn+i < vn < wn. Since {wn+i}^Ļļ and
 {i»tt}S°=i are subsequences of Y, {u)n+i}^=1 = {%}~=1. By A3, {vn}^=i € A
 and V = W . Consequently, Y = W = V = Z. Contradiction.
 Therefore, {l/n}^, {- l/n}^, {2/«}^ G A. {2 /n}^=1 is a subsequence of
 {l/n}SLi M«1 {1/"}S=1 = {2/"}£=i- since {-l/n}£=i = f-1/™}^. {1/"}£=1
 = {2/n}~ ,+{-l/n}~ , = {l/n}~ ,+{-l/n}~ , = {0}~ „ and {-l/n}~ , =
 {0}S°.i + {-l/«}~=! = {l/n}r.i + {-l/»)SŁl = {O}?«.

 Theorem 7: If X, Y E A and X = Y, then for every positive integer p, pX =
 {p*n}s°=i = {pyn}%=! = pY-

 Proof: The result follows from A2 and induction.

 CHARACTERIZATION OF LIMITS: The following theorems show that
 convergence systems exist, the set of "convergent sequences" is unique and the
 relation described in the definition of convergence systems is unique.

 Theorem 8: (C, S, =) is a convergence system on S where X = Y means that X
 and Y are equivalent Cauchy sequences.
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 Proof: Each of the six conditions for a convergence system, with C replacing A
 and X = Y meaning X and Y are equivalent Cauchy sequences, is an elementary
 result for limits of sequences.

 Theorem 9: If {A, 5, =) is a convergence system on S , then A Ç C.

 Proof: Suppose X e A and X ^ C. By the standard definition of convergence,
 there is a positive integer p such that for every positive number K there are
 positive integers m,n > K such that 'xn - xm' > 1/p. Let Y, Z denote two
 subsequences of X such that for every positive integer k, yk - z* > 1/p. Therefore,
 Zk < Zk + 1 ļp < yk- Since Y, Z G A and Y = Z, {zn + l/p}£Ļj € A and
 Z = {Zn }n=l = {.Zn "ł" 1/ P}n==l • It follows that {l/p}~=i = {(zn + 1/p) ~Zn }£Lļ =
 {z„ + l/p}~=1-{2rn}~=i, {2n + l/p}~=1-{2n}~=1 = {Zn}n='-{Zn}™= i = {0}~ j,
 and {l/p}£°=1 = {0}~=1. Consequently, {1}~=1 = {p/p}£°=1 = p{l/p}£°=i =
 P{0}£Li = {pO}?Li = {0}£Li- Contradiction.

 Theorem 10: If (^4, 5, =) is a convergence system on S, then CCA.

 Proof: Suppose X € C and X ^ A. Therefore, X is bounded. Let Y,Z 6 A
 denote two subsequences of X such that Y ^ Z . Let W denote a subsequence of
 X such that {iU2n}£Li a subsequence of F, {io2n+i}£Ļj a subsequence of Z
 and for every n € N, -1/n < w2n-W2n+i < 1 /n. Since {1/n} = {-l/n}£Ļx,
 {W2n - U72n+l}£=i G A and {u>2„ - W2n+l}^=i = {l/n}£°=1 = {0}~=1.

 Y= {u>2n}^=i and -Z = {-u;2n+i}^i, since {it>2n}£Li and {u^n+i}^!
 are subsequences of Y and Z, respectively. As a result, Y - Z = {tU2n}£Li -
 {W2n+1}?=1 = {w2n-w2n+1}Z>=1 = {0}~ x, and Y = Z+(Y-Z) = Z+{ 0}~ , =
 Z . Consequently, Y = Z. Contradiction.

 Theorem 11: If (A, S , =) is a convergence system on S and (A, S , =) is a conver-
 gence system on S, then " = " and " = " are the same relation on A.

 Proof: Suppose X,Y G A and X = Y. By A2, X - Y = Y - Y = {0}~=1,
 {0}£Ļļ = {l/n}£Ļļ, X - Y = {l/n}£Ļj. Suppose there is a positive integer p
 and a subsequence W of X - Y such that for every n G N, 0 < 1/p < wn. As
 a result, W = {0}~ l5 {0}~ x = {l/p}~ ! and {0}~ x = {p0}~ x = p{ 0}~ x =
 p{1/p}^= i = {l}^=i- Contradiction.

 A similar argument holds for the case when there is a positive integer p
 and a subsequence W of X - Y such that for every n G N, wn < -1/p < 0.
 Therefore, there is a subsequence W of X - Y such that for every n G N, - 1/n <
 wn < 1/n. Since {-l/n}^ £ {l/n}2°=1, X - Y ^ W = {l/n}£Ļx ^ {0}~=1.
 Consequently, X = Y . Likewise when X,Y £ A and X = Y.

 Since Theorem 8 shows that ordinary convergence is an example of a conver-
 gence system and Theorems 9-11 show uniqueness of convergence systems, the
 classical concept of convergence of real sequences is completely characterized by
 convergence systems.
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 MUTUAL INDEPENDENCE OF CONVERGENCE CONDITIONS:

 The following examples show, with one exception, that each of the condi-
 tions in the definition of a convergence system is necessary in order to preserve
 uniqueness. In other words, any five of the conditions taken as a system has mul-
 tiple examples. The one exception is the "Squeezing Theorem" or condition A3.
 The question of the dependence or independence of this condition with respect
 to the other five conditions is unresolved.

 Example 1: The following is an example of a system (E1,S, =) that satisfies
 conditions A2 through A6 of the definition of a convergence system, but does
 not satisfy condition Al.
 Let El = C U Dn where Dn denotes the set of real sequences that diverge
 downward (all subsequences diverge downward). Let X = Y mean that X and
 Y are equivalent Cauchy sequences when X,Y G C, let X = Y when X, Y G Dn
 and let X ^ Y otherwise.

 Proof that Al does not hold: {- n}£Ļj € El and (- 1){- ^ El.

 Proof that A2 holds: Suppose X,Y, Z,W, X + Z, Y + W € El, X = Y and
 Z = W. If X, Y, Z, W G C, then Y + W = X + Z. If X, Y G Dn and Z, W G Dn,
 then X + Z, Y + W G Dn and Y + W = X + Z. If X,Y G C and Z, W G Dn,
 then X + Z, Y + W € Dn and Y + W = X + Z.

 Proof that A3 holds: Suppose X, Y G El, Z € S, Vn, xn < zn < yn and X = Y.
 If X G C, then Y G C, Z G C and Z = X. If X G Dn, then Y G Dn, Z G Dn
 and Z = X.

 Proof that A4 holds: Suppose X G El and Y, Z are subsequences of X. If X G C,
 then Y, Z G C and Y = Z. If X G Dn, then Y, Z G Dn. Therefore, Y, Z G El
 and Y = Z.

 Proof that A5 holds: {(- 1)"}^ <Ļ C and {(-l)"}^ ^ Dn. Consequently,
 i El.

 Proof that A6 holds: Suppose X <£ El and X is bounded. Therefore, X (fc C
 and X has two subsequences Y, Z G C Ç El such that Y ^ Z.

 Example 2: The following is an example of a system (E2, S, =) that satisfies
 conditions Al and A3 through A6 of the definition of a convergence system, but
 does not satisfy condition A2.
 Let E2 denote the set of convergent real sequences, each sequence of which does
 not contain two subsequences, one of which is strictly increasing and the other
 is strictly decreasing. Let X = Y mean that X, Y G E2, X and Y are equiva-
 lent Cauchy sequences and if one of the sequences contains a strictly increasing
 subsequence, then the other sequence does not contain a strictly decreasing sub-
 sequence.
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 Proof that Al holds: Suppose X = {arnJ^Ļļ G E2 and k G R( reals). If k = 0
 and X G E2, then kX G E2. Suppose k 0, X G E2, y is a strictly increasing
 subsequence of kX and Z is strictly decreasing subsequence of kX. Therefore,
 (l/k)Y and (1 /k)Z are two subsequences of X such that one is strictly increasing
 and the other is strictly decreasing. Contradiction. Consequently, kX e E2.

 Proof that A2 does not hold: Let X = {l/n}JJĻļ, Y = {(l/n)2}£Ļļ, Z =
 {- (l/n)2}~=1, and W = {-l/n}~=1. Therefore, X = Y, Z = W and X +
 Z, Y + W G E2. The sequence X + Z = {l/n - (l/n)2}£Ļļ contains a strictly
 decreasing subsequence and the sequence Y + W = {(l/n)2 - l/n}£Ļj contains
 a strictly increasing subsequence. Consequently, Y + W ^ X + Z.

 Proof that A3 holds: Suppose X,Y 6 E2 , Z G S, Vn, xn < zn < yn and
 X = Y . Therefore, Z G E2. If one of the sequences X and Y contains a strictly
 increasing subsequence, then the other sequence does not contain a strictly de-
 creasing subsequence. Consequently, if one of the sequences X and Z contains
 a strictly increasing subsequence, then the other sequence does not contain a
 strictly decreasing subsequence. In either case, Z = X.

 Proof that A4 holds: Suppose X G E2 and Y, Z are subsequences of X. If one of
 the subsequences contains a strictly increasing subsequence, then the other subse-
 quence does not contain a strictly decreasing subsequence. Therefore, 7,2 G E2
 and Y = Z.

 Proof that A5 holds: {(- l)n}£Ļļ ^ C and E2 Ç C.

 Proof that A6 holds: If X (fc E2 and X is bounded, then X G C or X ^ C.
 If X G C, then X has two subsequences Y,Z G E2 such that one is strictly
 increasing and the other is strictly decreasing. Consequently, Y ^ Z. If X C,
 then X has two monotone subsequences Y,Z G E2 Ç C such that Y ^ Z.

 Example 3: The following is an example of a system ( E3 , S, =) that satisfies
 conditions Al, A2 and A4 through A6 of the definition of a convergence system,
 but does not satisfy condition A3.
 The dependence or independence of condition A3 with respect to the other five
 conditions is unresolved.

 Example 4: The following is an example of a system ( E4 , S, =) that satisfies
 conditions Al through A3, A5 and A6 of the definition of a convergence system,
 but does not satisfy condition A4.
 Let E 4 denote the set of convergent real sequences.
 Let X = Y mean that X = Y.

 Proof that Al holds: Suppose X = {in}~i G EA and k G R (reals). Therefore,
 kX G EA.
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 Proof that A2 holds: Suppose X,Y,Z,W, X + Z, Y + W 6 EA, X = Y and
 Z = W. Therefore, X = Y and Z = W. Consequently, Y + W - X + Z and
 Y + W = X + Z.

 Proof that A3 holds: Suppose X, Y £ EA, Z 6 S, Vn, xn < zn < yn and X = Y.
 Therefore, Vn, xn = zn = yn and Z = X. Consequently, Z G EA and Z = X.

 Proof that A4 does not hold: Suppose X € EA, X is non-constant and y is a
 subsequence of X such that X jí Y, then Y G EA, but X ^ Y.

 Proof that A5 holds: {(- l)n}^=i £ EA.

 Proof that A6 holds: Suppose X £ EA and X is bounded. Therefore, X (fc C
 and X has two subsequences Y, Z € C Ç E A such that Y ^ Z . Consequently,
 Y £Z.

 Example 5: The following is an example of a system (Eò, S , =) that satisfies
 conditions Al through A4 and A6 of the definition of a convergence system, but
 does not satisfy condition A5.
 Let E5 = S.

 Let X = Y mean that X, Y € 5.

 Conditions Al through A4 hold since each of their conclusions is always true.
 Condition A5 is false since {(- l)n}^Ļļ G S = E5. Condition A6 is true since
 £75 = S, which makes the antecedent of A6 always false.

 Example 6: The following is an example of a system (¿£6,5,=) that satisfies
 conditions Al through A5 of the definition of a convergence system, but does
 not satisfy condition A6.
 Let E6 = $.

 Let X = Y mean that X, Y € S.

 Conditions Al through A4 hold since each of their antecedents is always false.
 Condition A5 holds since {(- l)n}^Ļj ^ $. Condition A6 is false since the
 consequent is always false.

 Conclusion: The foundation of the calculus has evolved slowly during the past
 three centuries. In the seventeenth century, Newton and Leibniz [3] each unified
 the fundamental concepts of the calculus, including the notion of the limit of
 a sequence of real numbers. In the nineteenth century, Cauchy [2] and others
 refined the concepts and gave the first modern, precise and rigorous definitions of
 the limit concepts. In 1960, Abraham Robinson [6] redesigned the real number
 system with his hyperreal numbers in order to simplify the definitions of limits.
 In this century, the teaching of the foundation of the calculus has used the "e, <$"
 definitions of Cauchy [1] that had their basis in Newton's ideas. Robinson's
 methods have not been widely used.
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 The "convergence systems" characterization of limits of sequences of real num-
 bers given here is precise and rigorous and, furthermore, it uses the universally
 accepted real number system. The conditions of a convergence system can be
 examined individually and seen to be common properties used regularly by prac-
 titioners of the calculus and real analysis. The utility of this approach to the foun-
 dation of convergence remains to be determined. Nevertheless, the convergence
 system defined herein is a legitimate alternative to the established definition of
 Cauchy.

 The identification of a value for the "limit" of a sequence in a convergence system
 can be done in the following manner. Each equivalence class of sequences will
 contain exactly one constant sequence. This constant value can be defined as the
 limit.

 Since the concepts of continuity and limits of real functions with real domains can
 be defined in terms of limits of sequences of real numbers [7], the foundation of
 the calculus can be completely based upon the concept of "convergence systems"
 without using the "e, 6" definitions of Cauchy.
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