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 DERIVATIVES AND CONVEXITY

 Lemma 4.4 in [MW] says that if the composition of a function F strictly convex
 on an open interval containing the range of a derivative / is also a derivative,
 then both functions / and F o / are Lebesgue functions. Theorem 4 of this note
 generalizes that result; / is there an n-tuple of derivatives and F is strictly convex
 on an open convex set containing the range of /. Theorems 5 and 8 deal with the
 one-dimensional case without the assumption that the domain of definition of F
 is open.

 1. Notation. The symbols D, D+ ,Cap, L mean the systems of all deriva-
 tives, nonnegative derivatives, approximately continuous functions and Lebesgue
 functions on the interval I = [0,1], respectively. Symbols like f* f or fs f mean
 the corresponding Lebesgue integrals. The letter n denotes a natural number
 and Rn the n-dimensional Euclidean space. For z = (zi, . . . , zn) G Rn we write
 'z' = (z* + .-. + ziy/>.

 2. Lemma. Let /i, . . . , /„ G D, x e I. Set f = (/a, . . . , /„), 6 = f(x), 5 =
 /(/). Let H be a function on S such that H(b ) = 0, H o f e D and that for each
 e G (0, oo) we have

 (1) voi{H(z)l'z - 61; z G S , 'z - b' > e} > 0.

 Then

 (2) - f 'f - b' -+ 0 (y -* x,y E I).
 y - x Jx

 Proof. Let e G (0, oo) and let a be the infimum in (1). Set = H o f. Then
 = at('f - b' - e) whence 'f - 6| ^ a_1(p + e on I. Because ip E D and f{x) = 0,

 we have lim sup fj! 'f - 6| ^ e (y - » x, y G I) which proves (2).

 3. Lemma. Let f,g G Cap , / G D and |<?| ^ /. Then g E L. (See [M], 1.8.)

 4. Theorem. Let F be a strictly convex function on an open convex set G
 in Rn. Let /i, . . . , /„ G D, f = (/i,...,/n)- Suppose that /(/) C G and that
 F o f G D. Then /i,...,/„, F o f e L.
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 Proof. Let 6 G G. It is well-known (see, e.g., [Mt], V, 1, Korollar 4) that there
 is a linear function A such that A (6) = F(b) and A ^ F on G. Since F is strictly
 convex, we have A < F on G ' {6}.

 Now let e be a positive number such that the set A = {z G Rn', 'z - b' = e} is
 a part of G. Set H = F - A. Since F is continuous (see, e.g., [Mt], X, 1, Satz 2)
 and H > 0 on A, there is a ß G (0, oo) such that H > ß on A.

 Let z G G and 'z - b'> e. Set v = (z - b)/'z - b', J = {t G (- oo, oo); b + tv G
 G }, h(t) = H(b + tv) ( t G J). It is easy to see that h is (strictly) convex. Clearly
 h(e) > ß. Thus h(t ) > th(e)/e > tß/e for each t G J fi (e, oo). It follows that
 H(z ) = h('z - b') > 'z - b'ß/e so that, by 2, /i, . . . ,fn G L. Thus Hof G Capf)D+.
 By 3 we have H o f G L whence F o f G L.

 5. Theorem. Let f G D. Let F be a strictly convex function on f(I) such
 that F o f G D. Then f E. L. If, moreover, F is continuous, then also Fo/çí.

 Proof. Let x G I, b = f(x). Set S = /(/). If b G intS, we get (2) as in the
 preceding proof. If, e.g., b = min S, then (2) is obvious (since / ^ b and / G D).
 Thus / G L.

 Now suppose that F is continuous. There is a linear function A such that F ^ A
 on S. Then (F - A) o / G Cap H D+ whence, by 3, (F - A) o / G L. Thus F o f G L.

 Remark. The example in 7 shows that the relation F o f G L may be false, if
 F is not continuous (even if /, F o f G D etc.).

 We need first a lemma.

 6. Lemma. Let f be a nonnegative (Lebesgue) measurable function on I. Let
 I fof2 I»11 aP f(x) = 0- Then ' ¡of -* 0 (» -* Ū+).

 Proof. Let e G (0,oo). Set zk = 2~k, «7* = [zk,2zk], Sk = {x G J* ; f(x) >
 e} ( k = 1,2,.. .). Let /?* be the measure of Sk- Then - /, / < - /5 / -f e and

 fskf = fjk f2 ' ßk/zk)* - ► 0 (k -* oo) which easily implies our assertion.

 7. Example. Let F(z) = z2(z G (0, oo)), F(0) = 1. Let / be a function
 such that / G Cop, / is positive and continuous on (0, 1], /(0) = 0 and ' /0X f2 - ►
 1 (x - ► 0+). (It is easy to construct such a function.) Then Fo/gD' Cap and,
 by 6, / G D.
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 8. Theorem. Let f G D. Suppose that f is not constant. Let F be a strictly
 convex function on f(I) and let F o / G D D Cap. Then F is continuous.

 Proof. By 5 we have / G Cop. Define a function Fo on S = /(/) setting
 Fo = F on int S and Fo(x) = lim.F(z) (z - ► x, z 6 int S) for x G S ' int S. Then
 Fo is continuous on S so that F0 o f G Cap. Set <p = (F - F0 ) o /. Then G Caj>.
 We see that <p is a Darboux function that has at most three values. Thus <p is
 constant, <p = 0 on /, F = Fo on 5, F is continuous.

 Remark. Our proof of 8 would fail in more dimensions, because then the limit
 used there need not exist. (Take, e.g., G = (0, oo) x (0, oo) U (0,0), F(x,y) =
 x2Jy + X2 + y2 for x,y > 0, F(0, 0) = 0.)
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