DERIVATIVES AND CONVEXITY

Lemma 4.4 in [MW] says that if the composition of a function F strictly convex on an open interval containing the range of a derivative f is also a derivative, then both functions f and $F \circ f$ are Lebesgue functions. Theorem 4 of this note generalizes that result; f is there an *n*-tuple of derivatives and F is strictly convex on an open convex set containing the range of f. Theorems 5 and 8 deal with the one-dimensional case without the assumption that the domain of definition of Fis open.

1. Notation. The symbols D, D^+, C_{ap}, L mean the systems of all derivatives, nonnegative derivatives, approximately continuous functions and Lebesgue functions on the interval I = [0,1], respectively. Symbols like $\int_a^b f$ or $\int_S f$ mean the corresponding Lebesgue integrals. The letter n denotes a natural number and R^n the n-dimensional Euclidean space. For $z = (z_1, \ldots, z_n) \in R^n$ we write $|z| = (z_1^2 + \cdots + z_n^2)^{1/2}$.

2. Lemma. Let $f_1, \ldots, f_n \in D$, $x \in I$. Set $f = (f_1, \ldots, f_n)$, b = f(x), S = f(I). Let H be a function on S such that H(b) = 0, $H \circ f \in D$ and that for each $\varepsilon \in (0, \infty)$ we have

(1)
$$\inf\{H(z)/|z-b|; z \in S, |z-b| > \varepsilon\} > 0.$$

Then

(2)
$$\frac{1}{y-x}\int_x^y |f-b| \to 0 \ (y \to x, y \in I).$$

Proof. Let $\varepsilon \in (0, \infty)$ and let α be the infimum in (1). Set $\varphi = H \circ f$. Then $\varphi \ge \alpha(|f-b|-\varepsilon)$ whence $|f-b| \le \alpha^{-1}\varphi + \varepsilon$ on *I*. Because $\varphi \in D$ and $\varphi(x) = 0$, we have $\limsup \frac{1}{y-x} \int_x^y |f-b| \le \varepsilon$ $(y \to x, y \in I)$ which proves (2).

3. Lemma. Let $f, g \in C_{ap}$, $f \in D$ and $|g| \leq f$. Then $g \in L$. (See [M], 1.8.)

4. Theorem. Let F be a strictly convex function on an open convex set G in \mathbb{R}^n . Let $f_1, \ldots, f_n \in D$, $f = (f_1, \ldots, f_n)$. Suppose that $f(I) \subset G$ and that $F \circ f \in D$. Then f_1, \ldots, f_n , $F \circ f \in L$.

Proof. Let $b \in G$. It is well-known (see, e.g., [Mt], V, 1, Korollar 4) that there is a linear function λ such that $\lambda(b) = F(b)$ and $\lambda \leq F$ on G. Since F is strictly convex, we have $\lambda < F$ on $G \setminus \{b\}$.

Now let ε be a positive number such that the set $A = \{z \in \mathbb{R}^n; |z - b| = \varepsilon\}$ is a part of G. Set $H = F - \lambda$. Since F is continuous (see, e.g., [Mt], X, 1, Satz 2) and H > 0 on A, there is a $\beta \in (0, \infty)$ such that $H > \beta$ on A.

Let $z \in G$ and $|z-b| > \varepsilon$. Set v = (z-b)/|z-b|, $J = \{t \in (-\infty,\infty); b+tv \in G\}$, h(t) = H(b+tv) $(t \in J)$. It is easy to see that h is (strictly) convex. Clearly $h(\varepsilon) > \beta$. Thus $h(t) \ge th(\varepsilon)/\varepsilon > t\beta/\varepsilon$ for each $t \in J \cap (\varepsilon,\infty)$. It follows that $H(z) = h(|z-b|) > |z-b|\beta/\varepsilon$ so that, by 2, $f_1, \ldots, f_n \in L$. Thus $H \circ f \in C_{ap} \cap D^+$. By 3 we have $H \circ f \in L$ whence $F \circ f \in L$.

5. Theorem. Let $f \in D$. Let F be a strictly convex function on f(I) such that $F \circ f \in D$. Then $f \in L$. If, moreover, F is continuous, then also $F \circ f \in L$.

Proof. Let $x \in I$, b = f(x). Set S = f(I). If $b \in intS$, we get (2) as in the preceding proof. If, e.g., $b = \min S$, then (2) is obvious (since $f \ge b$ and $f \in D$). Thus $f \in L$.

Now suppose that F is continuous. There is a linear function λ such that $F \geq \lambda$ on S. Then $(F - \lambda) \circ f \in C_{ap} \cap D^+$ whence, by 3, $(F - \lambda) \circ f \in L$. Thus $F \circ f \in L$.

Remark. The example in 7 shows that the relation $F \circ f \in L$ may be false, if F is not continuous (even if $f, F \circ f \in D$ etc.).

We need first a lemma.

6. Lemma. Let f be a nonnegative (Lebesgue) measurable function on I. Let $\frac{1}{x} \int_0^x f^2 \to 1$, lim ap f(x) = 0. Then $\frac{1}{x} \int_0^x f \to 0$ $(x \to 0+)$.

Proof. Let $\varepsilon \in (0,\infty)$. Set $z_k = 2^{-k}$, $J_k = [z_k, 2z_k]$, $S_k = \{x \in J_k; f(x) > \varepsilon\}$ $\{\varepsilon\}$ $\{k = 1, 2, \ldots\}$. Let β_k be the measure of S_k . Then $\frac{1}{z_k} \int_{J_k} f \leq \frac{1}{z_k} \int_{S_k} f + \varepsilon$ and $\frac{1}{z_k} \int_{S_k} f \leq (\frac{1}{z_k} \int_{J_k} f^2 \cdot \beta_k / z_k)^{\frac{1}{2}} \to 0$ $(k \to \infty)$ which easily implies our assertion.

7. Example. Let $F(z) = z^2(z \in (0,\infty))$, F(0) = 1. Let f be a function such that $f \in C_{ap}$, f is positive and continuous on (0,1], f(0) = 0 and $\frac{1}{x} \int_0^x f^2 \to 1$ $(x \to 0+)$. (It is easy to construct such a function.) Then $F \circ f \in D \setminus C_{ap}$ and, by $6, f \in D$.

8. Theorem. Let $f \in D$. Suppose that f is not constant. Let F be a strictly convex function on f(I) and let $F \circ f \in D \cap C_{ap}$. Then F is continuous.

Proof. By 5 we have $f \in C_{ap}$. Define a function F_0 on S = f(I) setting $F_0 = F$ on int S and $F_0(x) = \lim F(z)$ $(z \to x, z \in \text{int } S)$ for $x \in S \setminus \text{int } S$. Then F_0 is continuous on S so that $F_0 \circ f \in C_{ap}$. Set $\varphi = (F - F_0) \circ f$. Then $\varphi \in C_{ap}$. We see that φ is a Darboux function that has at most three values. Thus φ is constant, $\varphi = 0$ on I, $F = F_0$ on S, F is continuous.

Remark. Our proof of 8 would fail in more dimensions, because then the limit used there need not exist. (Take, e.g., $G = (0, \infty) \times (0, \infty) \cup (0, 0)$, $F(x, y) = x^2/y + x^2 + y^2$ for x, y > 0, F(0, 0) = 0.)

References

- [M] Jan Mařík, Transformation and multiplication of derivatives, Contemporary Mathematics, Vol. 42 (1985), 119-134.
- [Mt] Jürg T. Marti, Konvexe Analysis, Birkhäuser Verlag, 1977.
- [MW] Jan Mařík and Clifford E. Weil, Sums of powers of derivatives, Proc. AMS, Vol. 112, No. 3, 807-817.

Received December 12, 1991