R. Henstock, Department of Mathematics, University of Ulster, Coleraine, County Londonderry, Northern Ireland BT52 1SA

THE INTEGRAL OVER PRODUCT SPACES AND WIENER'S FORMULA

In Lebesgue integration with Wiener measure W over infinite dimensional Cartesian product spaces T of copies of the real line \mathbf{R} , and T(N) the Cartesian product of N (finite) of the \mathbf{R} , let f be a function of T(N) alone, and otherwise constant. For f Lebesgue integrable over T, f is Lebesgue integrable over T(N) and Wiener's formula is

(1)
$$\int_T f dW = \int_{T(N)} f dW.$$

A few questions arise. Is (1) true for non-absolute integrals such as generalized Riemann integrals in division spaces? Can we generalize W? If the right-hand integral exists, does the left-hand integral exist? [4], Theorem 5, pp.223-224 (proof on p. 230) answers the first two questions positively, and the third if all divisions of T are the special kind given in the definition of the "Fubini property in common", [4], p.220 and [6], Chapter 5, p.149. However, even for $N = 1, T(N) = \mathbf{R}$, not all divisions of T are special and the question remains: if $T = T(N) \otimes T(-N), f : T(N) \rightarrow \mathbf{R}$ integrable over $T(N), g: T(-N) \to sing(1)$, is fg integrable over T? [5], Theorem 1, p.386, is relevant; for length in **R** as measure, and $T = \mathbf{R}^2, f, g$ Perron (gauge) integrable over intervals of \mathbf{R} , fg is gauge integrable over the Cartesian product of the intervals. [3], Theorem 11, p. 83, is a more general result for a general product space and products of interval-point VB* functions $h_j(j=1,2)$, with a suggested extension to VBG* functions. $h_2(I_2, t_2)$ finitely additive gives (1). As in [3], [4], [6], sections 2.7, 2.8, 5.1, definitions are as follows.

In the space T of points we choose a family T of some non-empty subsets called (generalized) intervals I, a fixed non-empty family \mathcal{U}^1 of interval-point pairs $(I, t)(I \in \mathcal{T}, t \in T)$, and (controlling integration) non-empty families A of some non-empty subsets $\mathcal{U} \subseteq \mathcal{U}^1$.

An elementary set E is an interval or a union of a finite number of mutually disjoint intervals. A subset $\mathcal{U} \subseteq \mathcal{U}^1$ divides E if, for a finite subset $\mathcal{E} \subseteq \mathcal{U}$, called a division of E from \mathcal{U} , the $(I,t) \in \mathcal{E}$ have mutually disjoint I(called partial intervals of E, and a partition of E, from \mathcal{U}) with union E. A non-empty $\mathcal{P} \subseteq \mathcal{E}$ is a partial division of E from \mathcal{U} , the union of I from $(I,t) \in \mathcal{P}$ is a partial set P of E that comes from \mathcal{E} and \mathcal{U} , and P is proper if $P \neq E$. For $\mathcal{U}.E$ the set of all $(I,t) \in \mathcal{U} \subseteq \mathcal{U}^1$ with I a partial interval of E, let A|E be the set of all $\mathcal{U}.E$ dividing E with $\mathcal{U} \in A$, and $E * .\mathcal{U}$ the set of all t with $(I,t) \in \mathcal{U}.E$ for some I. The star set E^* is the intersection of $E * .\mathcal{U}$ for all $\mathcal{U} \in A|E$.

Taking A|E non-empty (saying that A divides E), we need A directed for divisions of E (i.e. given $U_j \in A|E(j = 1, 2)$, a $U \subseteq U_1 \cap U_2$ is in A|E). This is the direction as U shrinks. A restriction of U to a partial set P is a non-empty family $U_1 \subseteq U.P$. We assume that A has the restriction property (i.e. for each elementary set E, each partial set P, and each $U \in A|E$, there is in A|P a restriction of U to P) and that A is additive (i.e. given disjoint elementary sets E_j and $U_j \in A|E_j(j = 1, 2)$, a $U \subseteq U_1 \cup U_2$ is in $A|E_1 \cup E_2$). Such a (T, T, A) is an additive division space in [6] (previously called a division space.) We integrate functions $h : U^1 \to \mathbb{R}$ or C, e.g. h(I,t) = f(t)m(I) for a measure m; a number H(E) is the A-integral of hover the elementary set E if, given $\varepsilon > 0$, a $U \in A|E$ has every division \mathcal{E} of E from \mathcal{U} satisfying

$$|(\mathcal{E})\sum h-H(E)|<\varepsilon,$$

 $(\mathcal{E}) \sum$ denoting summation over the $(I, t) \in \mathcal{E}$. In an additive division space an $h: \mathcal{U}^1 \to \mathcal{C}$, *A*-integrable over *E*, is *A*-integrable over every partial set *P* of *E*, say to H(P), finitely additive in *P* (i.e. if $P_j(j = 1, 2)$ are disjoint partial sets of *E* then

$$H(P_1) + H(P_2) = H(P_1 \cup P_2),$$

and, given $\varepsilon > 0$, a $\mathcal{U} \in \mathbf{A}|E$ is such that for every division \mathcal{E} of E from \mathcal{U} ,

(2)
$$(\mathcal{E})\sum |h(I,t)-H(I)| < \varepsilon.$$

See [6], Theorem 2.5.2, p. 84; Theorem 2.5.5 (2.5.15), p. 87; without additivity of $(T, \mathcal{T}, \mathbf{A})$. More generally, for $V(h; \mathcal{U}; E)$ the supremum for all divisions \mathcal{E} of E from $\mathcal{U} \in \mathbf{A}|E$, of

$$(\mathcal{E})\sum |h(I,t)|,$$

the variation $V(h; \mathbf{A}; E)$ of h over E, is, as U shrinks,

$$\inf[V(h; \mathcal{U}; E) : \mathcal{U} \in \boldsymbol{A}|E] = \limsup(\mathcal{E}) \sum |h(I, t)|.$$

In (2), V(h-H; A; E) = 0 (h-H has variation zero). If $X \subseteq T$ we write $V(h; \mathcal{U}; E; X)$ and V(h; A; E; X) for $V(h\chi(X; .); \mathcal{U}; E)$ and $V(h\chi(X; .); A; E)$, respectively, $\chi(X; t)$ being the characteristic function or indicator of X. A majorant of $h: \mathcal{U}^1 \to \mathbb{R}$ is an $M: \mathcal{T} \to \mathbb{R}$ such that for some $\mathcal{U} \in A|E$, $h(I,t) \leq M(I)((I,t) \in \mathcal{U})$. An $h: \mathcal{U}^1 \to \mathcal{C}$ is ultimately finitely additive in E if, for some $\mathcal{U} \in A|E, h$ is finitely additive in \mathcal{U} , independent of t. If the majorant J(I) is the finite supremum of $(\mathcal{E}) \sum h$ for all divisions \mathcal{E} of I from some $\mathcal{U} \in A|I$, then J is finitely superadditive (i.e. $(\mathcal{E}) \sum J \leq J(I)$ for all divisions \mathcal{E} of I). However, at times we need ultimately finitely additive majorants M satisfying

$$(3) M(E) \le KJ(E)$$

for some fixed number $K \ge 1$. No problem occurs if $T = \mathbf{R}$. Writing J(u, v) for J([u, v)),

$$J(a, u) + J(u, v) \le J(a, v), J(u, v) \le J(a, v) - J(a, u) (a < u < v \le b)$$

and in [a, b) we take K = 1 and J(a, v) - J(a, u) for M(u, v). [1] shows difficulties in \mathbb{R}^2 .

In special cases more can be proved. J.Mařik gave me an honours project by L.Trudzik that translates and discusses [7], including a construction of a finitely additive majorant of f(x)G(I) where fG, |f|G are Perron integrable and G is non-negative and finitely additive, so that fG is Radon (Lebesgue-Stieltjes) integrable. [1] gives marginally better results; W. F. Pfeffer says that even after 25 years it has not yet been superseded, so that here is another task.

Continuing with the definitions, $(T, \mathcal{T}, \mathbf{A})$ is fully decomposable (respectively, decomposable, or measurably decomposable relative to a measure or measure space) if to every family (respectively, countable family or countable family of measurable sets) \mathcal{X} of mutually disjoint subsets $X \subseteq T$ and every $\mathcal{U}(.): \mathcal{X} \to \mathbf{A}|E$, there is a $\mathcal{U} \in \mathbf{A}|E$ with $\mathcal{U}[X] \equiv \{(I,t): (I,t) \in \mathcal{U}, t \in$ $X\} \subseteq \mathcal{U}(X)(X \in \mathcal{X})$. If $\mathcal{U}[X] = \mathcal{U}(X)[X](X \in \mathcal{X}), \mathcal{U}$ is the diagonal of the $(\mathcal{U}(X), \mathcal{X})$. A fully decomposable additive division space is stable (i.e. for a $\mathcal{U}(E) \in \mathbf{A}|E$, every $\mathcal{U}_1 \in \mathbf{A}|E$ with $\mathcal{U}_1 \subseteq \mathcal{U}(E)$ has $E^*.\mathcal{U}_1 = E^*.\mathcal{U}(E) = E^*$. See [6], p. 43, before (1.1.2).

A Cartesian product $(T_z, \mathcal{T}_z, \mathbf{A}_z)$ of additive division spaces $(T_u, \mathcal{T}_u, \mathbf{A}_u)$ (u = x, y), possibly similar, possibly very different, has $T_z = T_x \otimes T_y, \mathcal{T}_z$ the family of $I_x \otimes I_y$ for all $I_u \in \mathcal{T}_u(u = x, y)$, and \mathbf{A}_z based on them and the family \mathcal{U}_z^1 of $(I_x \otimes I_y, (x, y))$, written $(I_x, x) \otimes (I_y, y)$, for all $(I_u, u) \in \mathcal{U}_u^1(u = x, y)$. We suppose that $\mathbf{A}_x, \mathbf{A}_y, \mathbf{A}_z$ have the Fubini property in common (really two properties). First, for E_u an arbitrary elementary set in $T_u(u = x, y)$, $E_z = E_x \otimes E_y$, and arbitrary $\mathcal{U}_z \in \mathbf{A}_z | E_z$, there is a $\mathcal{U}_y(.) : E_x * \to \mathbf{A}_y | E_y$, and to each collection of divisions $\mathcal{E}_y(x)$ of E_y from $\mathcal{U}_y(x)$, one division for each such x, there is a $\mathcal{U}_x \in \mathbf{A}_x | E_x$ such that $(I_x, x) \otimes (I_y, y) \in \mathcal{U}_z$ when $(I_x, x) \in \mathcal{U}_x, (I_y, y) \in \mathcal{E}_y(x)$. Secondly, interchange x, y, but with x first in all Cartesian products.

Note that star sets give location, particularly in a stable division space.

For a particular construction let $\mathcal{U}_u(.): T_z \to A_u | E_u(u = x, y)$. Let \mathcal{U}_z be the family of all $(I_x, x) \otimes (I_y, y)$ with $(I_u, u) \in \mathcal{U}_u(z)(u = x, y; z = (x, y))$. A_z is the family of finite unions of \mathcal{U}_z for all finite unions of disjoint products $E_x \otimes E_y$. Calling this the product division space, by [6], **Theorem 5.1.1**, p. 149, and fully decomposable division spaces, the A_x, A_y, A_z have the Fubini property in common. (4) seems to follow,

(4) If $I_x \otimes I_y$ is a partial interval of $E_x \otimes E_y$, there are elementary

sets E_{1u} disjoint from I_u with $I_u \cup E_{1u} = E_u(u = x, y)$.

We can call the integral from the product division space a *product space* integral.

Necessary conditions in **Theorem 1** are sufficient in special cases (**Theorem 2**).

Theorem 1. Let $(T_u, \mathcal{T}_u, \mathbf{A}_u)(u = x, y)$ be fully decomposable and $\mathbf{A}_x, \mathbf{A}_y, \mathbf{A}_z$ have the Fubini property in common. Let E_x, E_y be elementary sets with $E_z = E_x \otimes E_y$. Let

$$(5) h_x(I_x,x)h_y(x;I_y,y)$$

be A_z -integrable over E_z with X the set of x for which $h_y(x;.)$ is ultimately finitely additive. Then h_x is VBG* in $E_x * \backslash X$.

Let

$$h_y(I_y, y)h_x(y; I_x, x)$$

be A_z -integrable over E_z with Y the set of y for which $h_x(y; .)$ is ultimately finitely additive. Then h_y is VBG* in $E_y * \setminus Y$.

(7)
$$f(x,y)h_x(I_x,x)h_y(I_y,y)$$

has the form of (5), (6); and if the products there are equal, they have the form (7).

Proof. In (5) $h_y(x; .)$ is A_y -integrable over E_y to (say) $H_y(x; E_y)$ for h_x -almost all $x \in E_x *$ (the unsymmetrical Fubini theorem, [6], **Theorem** 5.1.2, p. 150.) As the exceptional set X_o has h_x -variation 0 it is included in $E_x * X$ in (5). For all $x \in E_x * (X \cup X_o)$ each $\mathcal{U}_y(x) \in A_y|E_y$ contains a division $\mathcal{E}_y(x)$ of E_y with

(8)
$$g(x) \equiv (\mathcal{E}_{y}(x)) \sum |h_{y}(x; I_{y}, y) - H_{y}(x; I_{y})| > 0,$$

or else $h_y(x; .)$ would ultimately be $H_y(x; .)$, finitely additive. By the Fubini property, for $\varepsilon > 0$ there are $\mathcal{U}_z, \mathcal{U}_y(x), \mathcal{E}_y(x), \mathcal{U}_x$ with the given properties, so that

$$(9) \qquad (\mathcal{E}_x) \sum |h_x(I_x, x)| g(x) < \varepsilon, g(x) > 0 (x \in E_x * \backslash (X \cup X_o).)$$

As \mathcal{E}_x is an arbitrary division of E_x from \mathcal{U}_x we take the sets of x where, respectively, $1/n > g(x) \ge 1/(n+1)$, (n = 0, 1, 2, ...). By (9), h_x is VB^{*} in each, and so VBG^{*} in $E_x * \backslash X$. For (6) interchange x and y.

The converse of **Theorem 1** would at least involve proof of the integrability of (7) over the product set. But a Sierpiński [8] construction, a non-measurable plane set meeting every line parallel to the x and y axes in at most two points, shows that a converse of **Theorem 1** can only be partial, with no easy proof except in simple cases.

Theorem 2. For the product division space (T_z, T_z, A_z) with (4), of (T_u, T_u, A_u) , (u = x, y), fully decomposable additive division spaces, let h_u be A_u -integrable to $H_u(P_u)$ over the partial sets P_u of an elementary set E_u and let M_u be an ultimately finitely additive majorant of $|h_u - H_u|$ satisfying (3) for some $K_u \ge 1$ in $E_u(u = x, y)$. Then $h_x h_y$ is A_z -integrable to $H_x(E_x)H_y(E_y)$ over $E_z \equiv E_x \otimes E_y$ in the following cases :

- 1. if h_u is ultimately finitely additive over E_u , VBG* or not (u = x, y);
- 2. if h_u is VBG* and ultimately finitely additive over E_u *, but h_v is not ultimately finitely additive over $E_v * (u = x \text{ and } v = y, \text{ or } u = y \text{ and } v = x)$;
- 3. if h_u is VBG* and not ultimately finitely additive over $E_u * (u = x, y)$.

Proof. In (10) let \mathcal{E}_z be a division of E_z from a \mathcal{U}_z for which h_x, h_y are finitely additive, and let $(I_x, x) \otimes (I_y, y) \in \mathcal{E}_z$. By (4) there is a partition of E_x that includes I_x . Repeating for each interval-point pair in \mathcal{E}_z and using [6], **Theorem** 2.7.1, p. 93 (that needs the additivity of the space), with direction in A_x , we have a partition of E_x that partitions every I_x with $(I_x, x) \otimes (I_y, y) \in \mathcal{E}_z$. The corresponding partition \mathcal{P}_z of E_z is a collection of partitioned strips $I_{ox} \otimes E_y$. By finite additivity of h_x the sum of $h_x h_y$ over \mathcal{E}_z is equal to the sum over \mathcal{P}_z , which is $H_x(E_x)H_y(E_y)$.

For (11) we need only take $u = x, v = y, h_x = H_x$, finitely additive, and VB^{*} in each of a sequence (X_n) of mutually disjoint sets with union T_x , proving that

$$(10) h_x h_y - H_x H_y = H_x (h_y - H_y)$$

has variation zero. We temporarily omit suffices x. As $V(H; \mathbf{A}; E; X)$ is an outer measure in X ([6], **Theorem** 2.2.1 (2.2.1), p. 71),

(11)
$$V_n \equiv V(H; \mathbf{A}; E; X_n) = 0 \text{ (all } n) \text{ imply} \\ V(H; \mathbf{A}; E) = V(H; \mathbf{A}; E; T) = 0.$$

H is finitely additive, hence H = 0 and (13) is 0. Thus we forget (14), taking *m* the smallest integer with $V_m > 0$, aggregating with X_m all X_n with $V_n = 0$, again using the outer measure property. Thus we take $V_n > 0$ (all *n*) and again use suffices *x*.

In the product division space construction, $(T_y, \mathcal{T}_y, \mathcal{A}_y)$ being fully decomposable, we replace $\mathcal{U}_y(z)$ by $\mathcal{U}_y(x)$, chosen so that in (2) all divisions $\mathcal{E}_y(x)$ over E_y from $\mathcal{U}_y(x)$ satisfy

(12)
$$(E_y(x)) \sum |h_y(I_y, y) - H_y(I_y)| < \varepsilon \cdot 2^{-n-1} V_n^{-1} K_y^{-1} (x \in X_n).$$

From (15) and (3)($K = K_y$) a finitely additive majorant M_{ny} of $|h_y - H_y|$ exists with

(13)
$$M_{ny}(E_y) < \varepsilon \cdot 2^{-n-1} V_n^{-1}$$

A \mathcal{U}_x and a finitely superadditive majorant s_{nx} of $|H_x|\chi(X_n;.)$ using \mathcal{U}_x , exist with

(14)
$$s_{nx}(E_x) \leq V(H_x; \mathcal{U}_x; E_x; X_n) \leq 2V(H_x; \mathbf{A}_x; E_x; X_n) = 2V_n.$$

Using (16),(17), and the proof of (10)(interchanging x and y),

$$|H_x(I_x)||h_y(I_y, y) - H_y(I_y)| \le s_{nx}(I_x)M_{ny}(I_y) \le \sum_{m=1}^{\infty} s_{mx}(I_x)M_{my}(I_y)$$

 $(x \in X_n),$

$$(\mathcal{E}_z)\sum |H_x(I_x)||h_y(I_y,y)-H_y(I_y)|\leq \sum_{m=1}^\infty s_{mx}(E_x)M_{my}(E_y)<\varepsilon.$$

Hence (11). For (12), if, because of (3), there is a suitable finitely additive majorant M_u of $|h_u - H_u|(u = x, y)$, then, using the proof of (10),

(15)
$$(\mathcal{E}_z) \sum |h_x - H_x| |h_y - H_y| \leq (\mathcal{E}_z) \sum M_x M_y \leq M_x(E_x) M_y(E_y),$$

suitably small, so that $(h_x - H_x)(h_y - H_y)$ has variation zero. As

$$h_x h_y - H_x H_y = (h_x - H_x)(h_y - H_y) + H_x(h_y - H_y) + (h_x - H_x)H_y,$$

(18),(11), and the given conditions show that $h_x h_y$ is product space integrable to $H_x H_y$.

By Mařík [7] the existence of the ultimately finitely additive majorant M occurs when $h = f \Delta G$ and |h| are gauge integrable with $\Delta G \ge 0$. For the generalization of Wiener's formula (1) in which h_y is ultimately finitely additive, if $h_x h_y$ is A_x -integrable, the Fubini property and **Theorem 1** show that h_x is ultimately finitely additive, or A_x -integrable with h_y VBG^{*}. Conversely, by **Theorem 2**, if h_y is ultimately finitely additive, say to H_y , with $h_x A_x$ -integrable to H_x and either ultimately finitely additive or such that $|h_x - H_x|$ has an ultimately finitely additive majorant satisfying (3) with h_y VBG^{*}, then $h_x h_y$ is product space integrable to $H_x H_y$. These results apply even when h_x , h_y are not necessarily non-negative, and particularly in Feynman integration. Also this paper shows that in [2], p.330, the VBG^{*} condition is necessary even though it is not used in the proof of [2], **Theorem 4**.

References

- R. Henstock, Majorants in variational integration, Canadian Journal of Math. 18 (1966) 49-74, MR 32#2545.
- R. Henstock, Integration in product spaces, including Wiener and Feynman integration, Proceedings London Math.Soc. (3) 27 (1973) 317-344, MR 49#9145.
- [3] R. Henstock, Integration, variation and differentiation in division spaces, Proceedings Royal Irish Academy, series A, 78 (1978) 69-85, MR 80d:26011.
- [4] R. Henstock, Division spaces, vector-valued functions and backwards martingales, Proceedings Royal Irish Academy, series A, 80 (1980) 217-232, MR 82i:60091.
- [5] R. Henstock, A problem in two-dimensional integration, Journal Australian Math.Soc., series A, 35 (1983) 386-404, MR 84k:26010.
- [6] R. Henstock, General theory of integration (Clarendon Press, Oxford, 1991)
- J. Mařík, Základy theorie integrálu v euklidovych prostorech (Foundations of the theory of the integral in Euclidean spaces), Časopis Pest.Mat. 77 (1952), 1-51, 125-145, 267-301, MR 15.691.
- [8] W. Sierpiński, Sur un problème concernant les ensembles mesurables superficiellement, Fundamenta Math. 1 (1920) 112-115.

Received December 6, 1991