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 THE INTEGRAL OVER PRODUCT SPACES AND
 WIENER'S FORMULA

 In Lebesgue integration with Wiener measure W over infinite dimensional
 Cartesian product spaces T of copies of the real line R, and T(N ) the Car-
 tesian product of N (finite) of the R, let / be a function of T(N) alone,
 and otherwise constant. For / Lebesgue integrable over T, f is Lebesgue
 integrable over T(N) and Wiener's formula is

 (1) JrfdW » UiW-
 A few questions arise. Is (1) true for non-absolute integrals such as gener-
 alized Riemann integrals in division spaces? Can we generalize W1 If the
 right-hand integral exists, does the left-hand integral exist? [4], Theorem
 5, pp.223-224 (proof on p. 230) answers the first two questions positively,
 and the third if all divisions of T are the special kind given in the defini-
 tion of the "Fubini property in common", [4],p.220 and [6', Chapter 5 ,p.l49.
 However, even for N = 1, T(N) = R, not all divisions of T are special and
 the question remains: if T = T(N) <g> T(-N)yf : T(N ) -+• R integrable
 over T(N),g : T(-N) - ► sm<jf(l), is f g integrable over 77 [5], Theorem
 1, p.386, is relevant; for length in R as measure, and T = R2, /, g Perron
 (gauge) integrable over intervals of R, f g is gauge integrable over the Carte-
 sian product of the intervals. [3], Theorem 11, p. 83, is a more general
 result for a general product space and products of interval-point VB * func-
 tions hj(j = 1,2), with a suggested extension to VBG* functions. ^(/2,^2)
 finitely additive gives (1). As in [3], [4], [6], sections 2.7, 2.8, 5.1, definitions
 are as follows.

 In the space T of points we choose a family T of some non-empty subsets
 called ( generalized ) intervals I, a fixed non-empty family U1 of interval-point
 pairs (/,<)(/ G T,i £ T), and (controlling integration) non-empty families
 A of some non-empty subsets U Ç U1.
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 An elementary set E is an interval or a union of a finite number of mu-
 tually disjoint intervals. A subset U Ç U1 divides E if, for a finite subset
 fÇW, called a division of E from U, the (/, t) G S have mutually disjoint
 /(called partial intervals of E , and a partition of E , from U) with union E.
 A non-empty V Q S is a partial division of E from U, the union of I from
 (I, t) G V is a partial set P of E that comes from £ and U, and P is proper
 if P / E. For U.E the set of all (I, t) G U Ç U1 with I a partial interval of
 jE7,let >11 E be the set of all U.E dividing E with U G A, and E * .li the set
 of all t with (I, t) G U.E for some I. The star set E* is the intersection of
 E * .U for all U € A'E.

 Taking A'E non-empty (saying that A divides E), we need A directed
 for divisions of E (i.e. given Uj G A'E(j = 1,2), a U Ç U' C'Uļ is in A'E ).
 This is the direction as U shrinks. A restriction of U to a partial set P is a
 non-empty family U' Ç U. P. We assume that A has the restriction property
 (i.e. for each elementary set E , each partial set P, and each U G A'E,
 there is in A'P a restriction of U to P) and that A is additive (i.e. given
 disjoint elementary sets Ej and Uj G A'Ej(j = 1,2), a U Q U' 'JUļ is in
 A'E' U E-ì). Such a (T,T,A) is an additive division space in [6] (previously
 called a division space.) We integrate functions h : U1 - » R or C, e.g.
 h(I, t) = f(t)m(I ) for a measure m; a number H(E ) is the A-integral of h
 over the elementary set E if, given e>0, a U Ç. A'E has every division S of
 E from U satisfying

 |(f)E*-ff(£)l<e,
 (£) J2 denoting summation over the (/, t ) G £. In an additive division space
 an h : U1 - ► C, A-integrable over E, is A-integrable over every partial set
 P of E, say to H(P ), finitely additive in P (i.e. if Pj(j = 1,2) are disjoint
 partial sets of E then

 H(P1) + H(P2) = H(P1UP2),

 and, given e>0, &U Ç. A'E 's such that for every division S of E from U,

 (2) (£)£>(/,
 See [6], Theorem 2.5.2, p. 84;Theorem 2.5.5 (2.5.15), p. 87; without ad-
 ditivity of (T, T, A). More generally, for V(h]U] E) the supremum for all
 divisions S of E from U G A'E, of
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 the variation V(h;A;E) of h over E , is, as U shrinks,

 inf[V(Ä;W;£) : U 6 A'E' = limsup(£)£ 'h(I,t)'.

 In (2), V(h - H' A] E) = 0 (h - H has variation zero). If X Ç T we write
 V(h; U ; E; X) and V(h ; A; E; X) for V(kX(X ; .); U' E ) and V (hX{X- .); A; E),
 respectively, x(^i being the characteristic function or indicator of X. A
 majorant of h : U1 - ► R is an M : T - ► R such that for some U G A'E ,
 h(I,t) < M(I)((I,t) € £/). An h : U1 C is ultimately finitely additive
 in E if, for some U 6 A'E,h is finitely additive in li, independent of t. If
 the majorant J (I) is the finite supremum of (£) h f°r aU divisions S of I
 from some U € A'I, then J is finitely superadditive (i.e. < «/(/) for
 all divisions E of I). However, at times we need ultimately finitely additive
 majorants M satisfying

 (3) M(E) < KJ(E)

 for some fixed number K > 1. No problem occurs if T = R. Writing J(u, v)
 for J([u,u)),

 J(a,u) + J(u, v) < J(a,v),J(u,v) < J(a,v ) - J(a,u)(a < u < v < b)

 and in [a, b) we take K - 1 and J(a,v) - J(a,u) for M(u,v). [1] shows
 difficulties in R2.

 In special cases more can be proved. J.Mařik gave me an honours project
 by L.Trudzik that translates and discusses [7], including a construction of a
 finitely additive majorant of f(x)G(I) where fG, 'f'G are Perron integrable
 and G is non-negative and finitely additive, so that fG is Radon (Lebesgue-
 Stieltjes) integrable. [1] gives marginally better results; W. F. Pfeffer says
 that even after 25 years it has not yet been superseded, so that here is another
 task.

 Continuing with the definitions, (T, T, A) is fully decomposable (respec-
 tively, decomposable , or measurably decomposable relative to a measure or
 measure space) if to every family (respectively, countable family or countable
 family of measurable sets) X of mutually disjoint subsets X Ç T and every
 U{.) : X - ► A'E , there is a U G A'E with U[X] = {(/,<) : (/, t) G U,t G
 X} ç U(X)(X e X). IÌU[X) = U(X)[X](X G X),u is the diagonal of the
 (U(X), X). A fully decomposable additive division space is stable {i.e. for a
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 U(E) G A'E, every Hi G A'E with^ Ç U(E) has E*.Ui = E*.U(E) = E*).
 See [6], p. 43, before (1.1.2).

 A Cartesian product (TZ,TZ, Az) of additive division spaces (TU,TU,AU)
 (it = x,y), possibly similar, possibly very different, has Tz - Tx® Ty, Tz the
 family of Ix®Iy for all /„ G Tu(u = x, y), and Az based on them and the fam-
 ily U' of ( Ix®Iy,(x,y )), written (7X, x)<8>(/y, y), for all (7u,u) G Ul{u = x,y).
 We suppose that Ax, Ay, Az have the Fubini property in common (really two
 properties). First, for Eu an arbitrary elementary set in Tu(u = x, y), Ez =
 Ex <S> Ey, and arbitrary Uz G AZ'EZ, there is a Uy{.) : Ex* - ► Ay'Ey,
 and to each collection of divisions Sy(x) of Ey from Uy{x), one division for
 each such x, there is a Ux € AX'EX such that (Ix,x) <g> ( Iy,y ) Ç. Uz when
 (Ix,x) G Ux, (7y, y) € £y(x). Secondly, interchange x,y, but with x first in all
 Cartesian products.

 Note that star sets give location, particularly in a stable division space.
 For a particular construction let Uu{.) : Tz -* Au'Eu(u = x,y). Let Uz be

 the family of all (Ix, x) <g> (Iy, y) with (7U, u) G Uu(z)(u = x,y, z = (x, y)). Az
 is the family of finite unions of Uz for all finite unions of disjoint products
 Ex (g) Ey. Calling this the product division space, by [6], Theorem 5.1.1, p.
 149, and fully decomposable division spaces, the Ax,Ay,Az have the Fubini
 property in common. (4) seems to follow,

 (4) If Ix ® Iy is a partial interval of Ex <g) Ey , there are elementary

 sets Eiu disjoint from 7U with 7U U Eļu = Eu(u = x,y).

 We can call the integral from the product division space a product space
 integral.

 Necessary conditions in Theorem 1 are sufficient in special cases (The-
 orem 2).

 Theorem 1. Let (TU,TU, Au){u = x,y) be fully decomposable and
 Ax, Ay , Az have the Fubini property in common. Let Ex, Ey be elementary
 sets with Ez = Ex® Ey. Let

 (5) hx(Ix, x)hy(x; Iy, y)

 be Az-Šmtegrable over E z with X the set of x for which hy(x; .) is ultimately
 finitely additive. Then hx is VBG* in Ex * 'X.
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 Let

 (6) hy(Iv,y)hx(y,Itix)

 be Az-integrable over Ez with Y the set of y for which hx(y ; .) is ultimately
 finitely additive. Then hy is VBG* in Ey * 'Y.

 (7) f{xi y)hx(Ix, x)hy(Iy, y)

 has the form of (5), (6); and if the products there are equal , they have the
 form (7).

 Proof. In (5) hy(x' .) is -4y-integrable over Ey to (say) Hy(x; Ey) for
 /i^-almost all x € Ex* (the unsymmetrical Fubini theorem, [6], Theorem
 5.1.2, p. 150.) As the exceptional set X0 has /^-variation 0 it is included in
 Ex * 'X in (5). For all x G Ex * '(X U X0 ) each Uy(x) G Ay' Ey contains a
 division £y(x) of Ey with

 (8) g(x) = (£y(x)) IM®! A" V) - Hy(x'i h)' > °>

 or else hy(x ; .) would ultimately be Hy(x] .), finitely additive. By the Fubini
 property, for e > 0 there are Uz,Uy(x),Sy{x)iUx with the given properties,
 so that

 (9) (£*) IM-k, aOltfO*) < e, 9{x) > Ū(z G Ex * '(X U X0).)

 As Sx is an arbitrary division of Ex from Ux we take the sets of x where,
 respectively, 1/n > g(x) > l/(n + 1) ,(n = 0,1,2,...). By (9), hx is VB* in
 each, and so VBG* in Ex * 'X. For (6) interchange x and y.

 The converse of Theorem 1 would at least involve proof of the inte-
 grability of (7) over the product set. But a Sierpiński [8] construction, a
 non-measurable plane set meeting every line parallel to the x and y axes in
 at most two points, shows that a converse of Theorem 1 can only be partial,
 with no easy proof except in simple cases.

 Theorem 2. For the product division space ( TZ,TZ,AZ ) with (4), of
 (Tu, Tu, Au) , (u = x, y), fully decomposable additive division spaces, let hu
 be Au-integrable to HU(PU) over the partial sets Pu of an elementary set Eu
 and let Mu be an ultimately finitely additive majorant of 'ku - Hu' satis-
 fying (3) for some Ku > 1 in Eu(u = x, y). Then hxhy is Az-integrable to
 Hx(Ex)Hy(Ey) over Ez = Ex® Ey in the following cases :
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 1. if hu is ultimately finitely additive over Eu, VBG* or not (u = x , y);

 2. if hu is VBG* and ultimately finitely additive over Eu*,but hv is not
 ultimately finitely additive over Ev * (u = x and v = y, or u = y and
 v = x);

 3. if hu is VBG* and not ultimately finitely additive over Eu* (u = x, y).

 Proof. In (10) let Sz be a division of Ez from a Uz for which hx,hy are
 finitely additive, and let ( Ix,x ) ® ( Iy,y ) e £z. By (4) there is a partition
 of Ex that includes Ix. Repeating for each interval-point pair in Ez and
 using [6], Theorem 2.7.1, p. 93 (that needs the additivity of the space),
 with direction in Ax, we have a partition of Ex that partitions every Ix with
 (h, x) ® (Iy, y) G Sz. The corresponding partition Vz of Ez is a collection of
 partitioned strips Iox <g) Ey. By finite additivity of hx the sum of hxhy over
 £z is equal to the sum over Vz, which is Hx(Ex)Hy(Ey).

 For (11) we need only take u = x,v = y,hx = Hx , finitely additive,
 and VB* in each of a sequence (Xn) of mutually disjoint sets with union Tx,
 proving that

 (10) hxhy - HxHy = Hx(hy - Hy)

 has variation zero. We temporarily omit suffices x. As V(H] A] E; X) is an
 outer measure in X ([6], Theorem 2.2.1 (2.2.1), p. 71),

 ^ /1 , ' Vn = V (H' A ; E ; Xn) = 0 (all n) imply ^ ; V(H-,A-,E) = V(H-,A-,E;T) = 0.

 H is finitely additive, hence H = 0 and (13) is 0. Thus we forget (14), taking
 m the smallest integer with Vm > 0, aggregating with Xm all Xn with Vn = 0,
 again using the outer measure property. Thus we take Vn > 0 (all n) and
 again use suffices x.

 In the product division space construction, (Ty,Ty,Ay) being fully de-
 composable, we replace Uy(z) by Uy(x), chosen so that in (2) all divisions
 £y(x) over Ey from Uy(x) satisfy

 (12) (Ą(x))^|A„(/„y) - Hy{Iy)' < e x„).
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 From (15) and (3)(K = Ky) a finitely additive majorant Mny of 'hy - Hy'
 exists with

 (13) Mm(E,)<e.

 A Ux and a finitely superadditive majorant snx of 'Hx'x(Xn] .) using IAX, exist
 with

 (14) snx(Ex) < V(HX, Ux ; Ex, Xn ) < 2 V(HX; Ax ; Ex ; Xn) = 2Vn.

 Using (16), (17), and the proof of (10) (interchanging x and y),
 OO

 'Hx(Ix)''hy(Iy,y) - Hy(Iy)' < snx(Ix)Mny(Iy) < £ smx{h)Mmy{Iy)
 m= 1

 (x e xn),

 oo

 (e.) E WJIIMJ». y) - < E < e.
 m= 1

 Hence (11). For (12), if, because of (3), there is a suitable finitely additive
 majorant Mu of 'hu - Hu'(u = x, y), then, using the proof of (10),

 (15) (S2) ¿2 'h* - Hx''hy - Hy I < (£z)J2MxMy <

 suitably small, so that ( hx - Hx)(hy - Hy) has variation zero. As

 hxhy - HxHy = ( hx - Hx)(hy - Hy) + Hx(hy - Hy) + ( hx - Hx)Hyi

 (18), (11), and the given conditions show that hxhy is product space integrable
 to HxHy.

 By Mařík [7] the existence of the ultimately finitely additive majorant
 M occurs when h = f A G and |/i| are gauge integrable with AG > 0. For
 the generalization of Wiener's formula (1) in which hy is ultimately finitely
 additive, if hxhy is .^-integrable, the Fubini property and Theorem 1 show
 that hx is ultimately finitely additive, or Ax-integrable with hy VBG*. Con-
 versely, by Theorem 2, if hy is ultimately finitely additive, say to Hy, with
 hx Ajc-integrable to Hx and either ultimately finitely additive or such that
 I hx - Hx I has an ultimately finitely additive majorant satisfying (3) with hy
 VBG*, then hxhy is product space integrable to HxHy. These results apply
 even when hx , hy are not necessarily non-negative, and particularly in Feyn-
 man integration. Also this paper shows that in [2],p.330, the VBG* condition
 is necessary even though it is not used in the proof of [2], Theorem 4.

 743



 References

 [1] R. Henstock, Majorants in variational integration, Canadian Journal of
 Math. 18 (1966) 49-74, MR 32#2545.

 [2] R. Henstock, Integration in product spaces, including Wiener and Feyn-
 man integration , Proceedings London Math.Soc. (3) 27 (1973) 317-344,
 MR 49#9145.

 [3] R. Henstock, Integration, variation and differentiation in division spaces,
 Proceedings Royal Irish Academy, series A, 78 (1978) 69-85, MR
 80d:26011.

 [4] R. Henstock, Division spaces, vector-valued functions and backwards mar-
 tingales, Proceedings Royal Irish Academy, series A, 80 (1980) 217-232,
 MR 82i:60091.

 [5] R. Henstock, A problem in two-dimensional integration, Journal Aus-
 tralian Math.Soc., series A, 35 (1983) 386-404, MR 84k:26010.

 [6] R. Henstock, General theory of integration (Clarendon Press, Oxford,
 1991)

 [7] J. Mařík, Základy theorie integrálu v euklidovych prostorech (Foundations
 of the theory of the integral in Euclidean spaces), Časopis Pest.Mat. 77
 (1952), 1-51, 125-145, 267-301, MR 15.691.

 [8] W. Sierpiński, Sur un problème concernant les ensembles mesurables su-
 perficiellement, Fundamenta Math. 1 (1920) 112-115.

 Received December 6, 1991

 744


	Contents
	p. 737
	p. 738
	p. 739
	p. 740
	p. 741
	p. 742
	p. 743
	p. 744

	Issue Table of Contents
	Real Analysis Exchange, Vol. 17, No. 2 (1991-92) pp. 452-826
	Front Matter
	EDITORIAL MESSAGE [pp. 454-454]
	CONFERENCE ANNOUNCEMENTS [pp. 455-456]
	Corrections to the Report on the Summer Symposium in Real Analysis XV, Smolenice 1991 [pp. 457-457]
	On local characterization of almost continuous functions [pp. 458-459]
	Some properties of subclasses of Darboux functions [pp. 460-461]
	TOPICAL SURVEY
	Almost Continuity [pp. 462-520]

	RESEARCH ARTICLES
	BOREL MEASURABILITY OF EXTREME LOCAL DERIVATIVES [pp. 521-534]
	ON TWO GENERALIZATIONS OF THE DARBOUX PROPERTY [pp. 535-544]
	Heredity of Density Points [pp. 545-549]
	ON m-RINGS OF FUNCTIONS AND SOME GENERALIZATIONS OF THE NOTION OF DENSITY POINT [pp. 550-570]
	ON THE DARBOUX PROPERTY OF THE SUM OF CLIQUISH FUNCTIONS [pp. 571-576]
	ON THE GROUP GENERATED BY QUASI CONTINUOUS FUNCTIONS [pp. 577-589]
	ON d-MEASURE AND d-DIMENSION [pp. 590-596]
	SOME REMARKS ON SUP-MEASURABILITY [pp. 597-607]
	THE PEANO CURVE AND I-APPROMIMATE DIFFERENTIABILITY [pp. 608-621]
	Riemann Integral vs. Lebesgue Integral [pp. 622-632]
	RESTRICTION THEOREMS ON WEIGHTED SOBOLEV SPACES OF MIXED NORM [pp. 633-651]
	APPROXIMATE SYMMETRIC DERIVATIVES ARE UNIFORMLY CLOSED [pp. 652-656]
	Mean Value Properties for Symmetrically Differentiable Functions [pp. 657-667]
	PARAMETRIC SEMICONTINUITY IMPLIES CONTINUITY [pp. 668-680]
	ON THE STRUCTURE OF MEASURABLE FILTERS ON A COUNTABLE SET [pp. 681-701]
	Cantor Type Sets of Positive Measure and Lipschitz Mappings [pp. 702-705]
	A∞ TYPE CONDITIONS FOR GENERAL MEASURES IN R¹ [pp. 706-727]
	SEQUENCE CONDITIONS WHICH IMPLY APPROXIMATE CONTINUITY [pp. 728-736]
	THE INTEGRAL OVER PRODUCT SPACES AND WIENER'S FORMULA [pp. 737-744]
	DERIVATIVES AND CONVEXITY [pp. 745-747]

	INROADS
	ON A PROBLEM OF SKVORTSOV INVOLVING THE PERRON INTEGRAL [pp. 748-750]
	LIMITS WITHOUT EPSILONS [pp. 751-758]
	THE FRÉCHET BOUNDS REVISITED [pp. 759-764]
	SOME PARAMETERS OF DISTRIBUTION OF MASS IN SELFSIMILAR FRACTALS [pp. 765-770]
	CERTAIN MEASURE ZERO, FIRST CATEGORY SETS [pp. 771-774]
	ON JOINT SUMMABILITY OF FOURIER SERIES AND CONJUGATE SERIES [pp. 775-780]
	ANOTHER NONMEASURABLE SET WITH PROPERTY (s⁰) [pp. 781-784]
	THE PACKING MEASURE AND FUBINI'S THEOREM [pp. 785-788]
	RIEMANN TAILS AND THE LEBESGUE AND HENSTOCK INTEGRALS [pp. 789-795]
	ON SAKS-HENSTOCK LEMMA FOR THE RIEMANN-TYPE INTEGRALS [pp. 796-801]
	ON THE THEOREM OF RADEMACHER [pp. 802-808]
	Some theorems whose σ–porous exceptional sets are not σ–symmetrically porous [pp. 809-814]
	A NOTE ON CONDITIONALLY CONVERGENT INTEGRALS [pp. 815-819]
	A NOTE ON SYMMETRIC AND ORDINARY DIFFERENTIATION [pp. 820-826]

	Back Matter



